Cantera  3.0.0
Loading...
Searching...
No Matches
PlasmaPhase Class Reference

Base class for a phase with plasma properties. More...

#include <PlasmaPhase.h>

Inheritance diagram for PlasmaPhase:
[legend]

Detailed Description

Base class for a phase with plasma properties.

This class manages the plasma properties such as electron energy distribution function (EEDF). There are two ways to define the electron distribution and electron temperature. The first method uses setElectronTemperature() to set the electron temperature which is used to calculate the electron energy distribution with isotropic-velocity model. The generalized electron energy distribution for isotropic-velocity distribution can be expressed as [1,2],

\[ f(\epsilon) = c_1 \frac{\sqrt{\epsilon}}{\epsilon_m^{3/2}} \exp(-c_2 (\frac{\epsilon}{\epsilon_m})^x), \]

where \( x = 1 \) and \( x = 2 \) correspond to the Maxwellian and Druyvesteyn (default) electron energy distribution, respectively. \( \epsilon_m = 3/2 T_e \) [eV] (mean electron energy). The second method uses setDiscretizedElectronEnergyDist() to manually set electron energy distribution and calculate electron temperature from mean electron energy, which is calculated as [3],

\[ \epsilon_m = \int_0^{\infty} \epsilon^{3/2} f(\epsilon) d\epsilon, \]

which can be calculated using trapezoidal rule,

\[ \epsilon_m = \sum_i (\epsilon^{5/2}_{i+1} - \epsilon^{5/2}_i) (f(\epsilon_{i+1}) + f(\epsilon_i)) / 2, \]

where \( i \) is the index of energy levels.

For references, see Gudmundsson [9]; Khalilpour and Foroutan [17]; Hagelaar and Pitchford [10], and BOLOS [23].

Warning
This class is an experimental part of Cantera and may be changed or removed without notice.
Todo:
Implement electron Boltzmann equation solver to solve EEDF. https://github.com/Cantera/enhancements/issues/127

Definition at line 57 of file PlasmaPhase.h.

Public Member Functions

 PlasmaPhase (const string &inputFile="", const string &id="")
 Construct and initialize a PlasmaPhase object directly from an input file.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
void setElectronEnergyLevels (const double *levels, size_t length)
 Set electron energy levels.
 
void getElectronEnergyLevels (double *levels) const
 Get electron energy levels.
 
void setDiscretizedElectronEnergyDist (const double *levels, const double *distrb, size_t length)
 Set discretized electron energy distribution.
 
void getElectronEnergyDistribution (double *distrb) const
 Get electron energy distribution.
 
void setIsotropicShapeFactor (double x)
 Set the shape factor of isotropic electron energy distribution.
 
double isotropicShapeFactor () const
 The shape factor of isotropic electron energy distribution.
 
void setElectronTemperature (double Te) override
 Set the internally stored electron temperature of the phase (K).
 
void setMeanElectronEnergy (double energy)
 Set mean electron energy [eV].
 
string electronEnergyDistributionType () const
 Get electron energy distribution type.
 
void setElectronEnergyDistributionType (const string &type)
 Set electron energy distribution type.
 
string quadratureMethod () const
 Numerical quadrature method. Method: m_quadratureMethod.
 
void setQuadratureMethod (const string &method)
 Set numerical quadrature method for integrating electron energy distribution function.
 
double meanElectronEnergy () const
 Mean electron energy [eV].
 
void enableNormalizeElectronEnergyDist (bool enable)
 Set flag of automatically normalize electron energy distribution Flag: m_do_normalizeElectronEnergyDist.
 
bool normalizeElectronEnergyDistEnabled () const
 Flag of automatically normalize electron energy distribution.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
double electronTemperature () const override
 Electron Temperature (K)
 
double RTe () const
 Return the Gas Constant multiplied by the current electron temperature.
 
virtual double electronPressure () const
 Electron pressure.
 
size_t nElectronEnergyLevels () const
 Number of electron levels.
 
size_t electronSpeciesIndex () const
 Electron Species Index.
 
double enthalpy_mole () const override
 Return the Molar enthalpy. Units: J/kmol.
 
double cp_mole () const override
 Molar heat capacity at constant pressure.
 
double entropy_mole () const override
 Molar entropy.
 
double gibbs_mole () const override
 Molar Gibbs function. Units: J/kmol.
 
double intEnergy_mole () const override
 Molar internal energy. Units: J/kmol.
 
void getEntropy_R (double *sr) const override
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
 
void getGibbs_RT (double *grt) const override
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
 
void getGibbs_ref (double *g) const override
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getStandardVolumes_ref (double *vol) const override
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
void getChemPotentials (double *mu) const override
 Get the species chemical potentials. Units: J/kmol.
 
void getStandardChemPotentials (double *muStar) const override
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
 
void getPartialMolarEnthalpies (double *hbar) const override
 Returns an array of partial molar enthalpies for the species in the mixture.
 
void getPartialMolarEntropies (double *sbar) const override
 Returns an array of partial molar entropies of the species in the solution.
 
void getPartialMolarIntEnergies (double *ubar) const override
 Return an array of partial molar internal energies for the species in the mixture.
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) override
 Set equation of state parameters from an AnyMap phase description.
 
- Public Member Functions inherited from IdealGasPhase
 IdealGasPhase (const string &inputFile="", const string &id="")
 Construct and initialize an IdealGasPhase ThermoPhase object directly from an input file.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
bool isIdeal () const override
 Boolean indicating whether phase is ideal.
 
string phaseOfMatter () const override
 String indicating the mechanical phase of the matter in this Phase.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void setToEquilState (const double *mu_RT) override
 This method is used by the ChemEquil equilibrium solver.
 
double cv_mole () const override
 Molar heat capacity at constant volume.
 
double pressure () const override
 Pressure.
 
void setPressure (double p) override
 Set the pressure at constant temperature and composition.
 
void setState_DP (double rho, double p) override
 Set the density and pressure at constant composition.
 
double isothermalCompressibility () const override
 Returns the isothermal compressibility. Units: 1/Pa.
 
double thermalExpansionCoeff () const override
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
double soundSpeed () const override
 Return the speed of sound. Units: m/s.
 
void getActivityConcentrations (double *c) const override
 This method returns the array of generalized concentrations.
 
double standardConcentration (size_t k=0) const override
 Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.
 
void getActivityCoefficients (double *ac) const override
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getPartialMolarCp (double *cpbar) const override
 Return an array of partial molar heat capacities for the species in the mixture.
 
void getPartialMolarVolumes (double *vbar) const override
 Return an array of partial molar volumes for the species in the mixture.
 
void getEnthalpy_RT (double *hrt) const override
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
void getPureGibbs (double *gpure) const override
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
 
void getIntEnergy_RT (double *urt) const override
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
void getCp_R (double *cpr) const override
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
 
void getStandardVolumes (double *vol) const override
 Get the molar volumes of the species standard states at the current T and P of the solution.
 
void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getIntEnergy_RT_ref (double *urt) const override
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getCp_R_ref (double *cprt) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
const vector< double > & enthalpy_RT_ref () const
 Returns a reference to the dimensionless reference state enthalpy vector.
 
const vector< double > & gibbs_RT_ref () const
 Returns a reference to the dimensionless reference state Gibbs free energy vector.
 
const vector< double > & entropy_R_ref () const
 Returns a reference to the dimensionless reference state Entropy vector.
 
const vector< double > & cp_R_ref () const
 Returns a reference to the dimensionless reference state Heat Capacity vector.
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor.
 
double RT () const
 Return the Gas Constant multiplied by the current temperature.
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
virtual double refPressure () const
 Returns the reference pressure in Pa.
 
virtual double minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species.
 
virtual double maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V).
 
double electricPotential () const
 Returns the electric potential of this phase (V).
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase.
 
virtual double logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species.
 
virtual void getActivities (double *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
virtual void getChemPotentials_RT (double *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies.
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials.
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg.
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg.
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K.
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg.
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K.
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K.
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa)
 
virtual void setState_PX (double p, double *x)
 Set the pressure (Pa) and mole fractions.
 
virtual void setState_PY (double p, double *y)
 Set the internally stored pressure (Pa) and mass fractions.
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K).
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg).
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg).
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa).
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg)
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
 
void setState_RP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
virtual void setState_RPX (double rho, double p, const double *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPX (double rho, double p, const Composition &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPX (double rho, double p, const string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPY (double rho, double p, const double *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState_RPY (double rho, double p, const Composition &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState_RPY (double rho, double p, const string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object.
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
 
virtual double critTemperature () const
 Critical temperature (K).
 
virtual double critPressure () const
 Critical pressure (Pa).
 
virtual double critVolume () const
 Critical volume (m3/kmol).
 
virtual double critCompressibility () const
 Critical compressibility (unitless).
 
virtual double critDensity () const
 Critical density (kg/m3).
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure.
 
virtual double satPressure (double t)
 Return the saturation pressure given the temperature.
 
virtual double vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure.
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality).
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species.
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file.
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
virtual void getSpeciesParameters (const string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
 
const AnyMapinput () const
 Access input data associated with the phase description.
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
virtual string report (bool show_thermo=true, double threshold=-1e-14) const
 returns a summary of the state of the phase as a string
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file.
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor.
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance.
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions.
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance.
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance.
 
string nativeMode () const
 Return string acronym representing the native state of a Phase.
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase.
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase.
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase.
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase.
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState.
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector.
 
double molecularWeight (size_t k) const
 Molecular weight of species k.
 
void getMolecularWeights (vector< double > &weights) const
 Copy the vector of molecular weights into vector weights.
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges.
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol].
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m.
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m.
 
const double * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array.
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
double chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use.
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced.
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex.
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector.
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions.
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions.
 
string name () const
 Return the name of the phase.
 
void setName (const string &nm)
 Sets the string name for the phase.
 
string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'.
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
double atomicWeight (size_t m) const
 Atomic weight of element m.
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements().
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k.
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object.
 
string speciesName (size_t k) const
 Name of the species with index k.
 
string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies().
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name.
 
void setState_TRX (double t, double dens, const double *x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRX (double t, double dens, const Composition &x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRY (double t, double dens, const double *y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TRY (double t, double dens, const Composition &y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TNX (double t, double n, const double *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
 
void setState_TR (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
void setState_TX (double t, double *x)
 Set the internally stored temperature (K) and mole fractions.
 
void setState_TY (double t, double *y)
 Set the internally stored temperature (K) and mass fractions.
 
void setState_RX (double rho, double *x)
 Set the density (kg/m^3) and mole fractions.
 
void setState_RY (double rho, double *y)
 Set the density (kg/m^3) and mass fractions.
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name.
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species.
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name.
 
double massFraction (size_t k) const
 Return the mass fraction of a single species.
 
double massFraction (const string &name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values.
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (double *const y) const
 Get the species mass fractions.
 
const double * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them.
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing.
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3).
 
virtual double concentration (const size_t k) const
 Concentration of species k.
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase.
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations.
 
double temperature () const
 Temperature (K).
 
virtual double density () const
 Density (kg/m^3).
 
virtual double molarDensity () const
 Molar density (kmol/m^3).
 
virtual double molarVolume () const
 Molar volume (m^3/kmol).
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase.
 
virtual void setMolarDensity (const double molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase.
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K).
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \).
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element.
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name).
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map.
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string.
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species.
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k.
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species.
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase.
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception.
 

Protected Member Functions

void updateThermo () const override
 Update the species reference state thermodynamic functions.
 
void checkElectronEnergyLevels () const
 Check the electron energy levels.
 
void checkElectronEnergyDistribution () const
 Check the electron energy distribution.
 
void updateElectronEnergyDistribution ()
 Update electron energy distribution.
 
void setIsotropicElectronEnergyDistribution ()
 Set isotropic electron energy distribution.
 
void updateElectronTemperatureFromEnergyDist ()
 Update electron temperature (K) From energy distribution.
 
void normalizeElectronEnergyDistribution ()
 Electron energy distribution norm.
 
virtual void updateThermo () const
 Update the species reference state thermodynamic functions.
 
- Protected Member Functions inherited from ThermoPhase
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
virtual void getCsvReportData (vector< string > &names, vector< vector< double > > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method.
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible.
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase.
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes.
 

Protected Attributes

double m_isotropicShapeFactor = 2.0
 
size_t m_nPoints = 1001
 Number of points of electron energy levels.
 
Eigen::ArrayXd m_electronEnergyLevels
 electron energy levels [ev]. Length: m_nPoints
 
Eigen::ArrayXd m_electronEnergyDist
 Normalized electron energy distribution vector [-] Length: m_nPoints.
 
size_t m_electronSpeciesIndex = npos
 Index of electron species.
 
double m_electronTemp
 Electron temperature [K].
 
string m_distributionType = "isotropic"
 Electron energy distribution type.
 
string m_quadratureMethod = "simpson"
 Numerical quadrature method for electron energy distribution.
 
bool m_do_normalizeElectronEnergyDist = true
 Flag of normalizing electron energy distribution.
 
- Protected Attributes inherited from IdealGasPhase
double m_p0 = -1.0
 Reference state pressure.
 
vector< double > m_h0_RT
 Temporary storage for dimensionless reference state enthalpies.
 
vector< double > m_cp0_R
 Temporary storage for dimensionless reference state heat capacities.
 
vector< double > m_g0_RT
 Temporary storage for dimensionless reference state Gibbs energies.
 
vector< double > m_s0_R
 Temporary storage for dimensionless reference state entropies.
 
vector< double > m_expg0_RT
 
vector< double > m_pp
 Temporary array containing internally calculated partial pressures.
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
AnyMap m_input
 Data supplied via setParameters.
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts.
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention.
 
double m_tlast = 0.0
 last value of the temperature processed by reference state
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase.
 
size_t m_kk = 0
 Number of species in the phase.
 
size_t m_ndim = 3
 Dimensionality of the phase.
 
vector< double > m_speciesComp
 Atomic composition of the species.
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk.
 
map< string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element.
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced.
 

Constructor & Destructor Documentation

◆ PlasmaPhase()

PlasmaPhase ( const string &  inputFile = "",
const string &  id = "" 
)
explicit

Construct and initialize a PlasmaPhase object directly from an input file.

The constructor initializes the electron energy distribution to be Druyvesteyn distribution (m_x = 2.0). The initial electron energy grid is set to a linear space which starts at 0.01 eV and ends at 1 eV with 1000 points.

Parameters
inputFileName of the input file containing the phase definition to set up the object. If blank, an empty phase will be created.
idID of the phase in the input file. Defaults to the empty string.

Definition at line 14 of file PlasmaPhase.cpp.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from IdealGasPhase.

Definition at line 74 of file PlasmaPhase.h.

◆ initThermo()

void initThermo ( )
overridevirtual

Initialize the ThermoPhase object after all species have been set up.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 235 of file PlasmaPhase.cpp.

◆ setElectronEnergyLevels()

void setElectronEnergyLevels ( const double *  levels,
size_t  length 
)

Set electron energy levels.

Parameters
levelsThe vector of electron energy levels (eV). Length: m_nPoints.
lengthThe length of the levels.

Definition at line 84 of file PlasmaPhase.cpp.

◆ getElectronEnergyLevels()

void getElectronEnergyLevels ( double *  levels) const
inline

Get electron energy levels.

Parameters
levelsThe vector of electron energy levels (eV). Length: m_nPoints

Definition at line 88 of file PlasmaPhase.h.

◆ setDiscretizedElectronEnergyDist()

void setDiscretizedElectronEnergyDist ( const double *  levels,
const double *  distrb,
size_t  length 
)

Set discretized electron energy distribution.

Parameters
levelsThe vector of electron energy levels (eV). Length: m_nPoints.
distrbThe vector of electron energy distribution. Length: m_nPoints.
lengthThe length of the vectors, which equals m_nPoints.

Definition at line 120 of file PlasmaPhase.cpp.

◆ getElectronEnergyDistribution()

void getElectronEnergyDistribution ( double *  distrb) const
inline

Get electron energy distribution.

Parameters
distrbThe vector of electron energy distribution. Length: m_nPoints.

Definition at line 105 of file PlasmaPhase.h.

◆ setIsotropicShapeFactor()

void setIsotropicShapeFactor ( double  x)

Set the shape factor of isotropic electron energy distribution.

Note that \( x = 1 \) and \( x = 2 \) correspond to the Maxwellian and Druyvesteyn distribution, respectively.

Parameters
xThe shape factor

Definition at line 147 of file PlasmaPhase.cpp.

◆ isotropicShapeFactor()

double isotropicShapeFactor ( ) const
inline

The shape factor of isotropic electron energy distribution.

Definition at line 116 of file PlasmaPhase.h.

◆ setElectronTemperature()

void setElectronTemperature ( double  Te)
overridevirtual

Set the internally stored electron temperature of the phase (K).

Parameters
TeElectron temperature in Kelvin

Reimplemented from Phase.

Definition at line 74 of file PlasmaPhase.cpp.

◆ setMeanElectronEnergy()

void setMeanElectronEnergy ( double  energy)

Set mean electron energy [eV].

This method also sets electron temperature accordingly.

Definition at line 79 of file PlasmaPhase.cpp.

◆ electronEnergyDistributionType()

string electronEnergyDistributionType ( ) const
inline

Get electron energy distribution type.

Definition at line 129 of file PlasmaPhase.h.

◆ setElectronEnergyDistributionType()

void setElectronEnergyDistributionType ( const string &  type)

Set electron energy distribution type.

Definition at line 47 of file PlasmaPhase.cpp.

◆ quadratureMethod()

string quadratureMethod ( ) const
inline

Numerical quadrature method. Method: m_quadratureMethod.

Definition at line 137 of file PlasmaPhase.h.

◆ setQuadratureMethod()

void setQuadratureMethod ( const string &  method)
inline

Set numerical quadrature method for integrating electron energy distribution function.

Method: m_quadratureMethod

Definition at line 143 of file PlasmaPhase.h.

◆ meanElectronEnergy()

double meanElectronEnergy ( ) const
inline

Mean electron energy [eV].

Definition at line 148 of file PlasmaPhase.h.

◆ enableNormalizeElectronEnergyDist()

void enableNormalizeElectronEnergyDist ( bool  enable)
inline

Set flag of automatically normalize electron energy distribution Flag: m_do_normalizeElectronEnergyDist.

Definition at line 154 of file PlasmaPhase.h.

◆ normalizeElectronEnergyDistEnabled()

bool normalizeElectronEnergyDistEnabled ( ) const
inline

Flag of automatically normalize electron energy distribution.

Flag: m_do_normalizeElectronEnergyDist

Definition at line 160 of file PlasmaPhase.h.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
overridevirtual

Add a Species to this Phase.

Returns true if the species was successfully added, or false if the species was ignored.

Derived classes which need to size arrays according to the number of species should overload this method. The derived class implementation should call the base class method, and, if this returns true (indicating that the species has been added), adjust their array sizes accordingly.

See also
ignoreUndefinedElements addUndefinedElements throwUndefinedElements

Reimplemented from IdealGasPhase.

Definition at line 216 of file PlasmaPhase.cpp.

◆ electronTemperature()

double electronTemperature ( ) const
inlineoverridevirtual

Electron Temperature (K)

Returns
The electron temperature of the phase

Reimplemented from Phase.

Definition at line 168 of file PlasmaPhase.h.

◆ RTe()

double RTe ( ) const
inline

Return the Gas Constant multiplied by the current electron temperature.

The units are Joules kmol-1

Definition at line 176 of file PlasmaPhase.h.

◆ electronPressure()

virtual double electronPressure ( ) const
inlinevirtual

Electron pressure.

Units: Pa.

\[P = n_{k_e} R T_e \]

Definition at line 184 of file PlasmaPhase.h.

◆ nElectronEnergyLevels()

size_t nElectronEnergyLevels ( ) const
inline

Number of electron levels.

Definition at line 190 of file PlasmaPhase.h.

◆ electronSpeciesIndex()

size_t electronSpeciesIndex ( ) const
inline

Electron Species Index.

Definition at line 195 of file PlasmaPhase.h.

◆ enthalpy_mole()

double enthalpy_mole ( ) const
overridevirtual

Return the Molar enthalpy. Units: J/kmol.

For an ideal gas mixture with additional electron,

\[ \hat h(T) = \sum_{k \neq k_e} X_k \hat h^0_k(T) + X_{k_e} \hat h^0_{k_e}(T_e), \]

and is a function only of temperature. The standard-state pure-species enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from IdealGasPhase.

Definition at line 265 of file PlasmaPhase.cpp.

◆ cp_mole()

double cp_mole ( ) const
inlineoverridevirtual

Molar heat capacity at constant pressure.

Units: J/kmol/K. For an ideal gas mixture,

\[ \hat c_p(t) = \sum_k \hat c^0_{p,k}(T). \]

The reference-state pure-species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from IdealGasPhase.

Definition at line 213 of file PlasmaPhase.h.

◆ entropy_mole()

double entropy_mole ( ) const
inlineoverridevirtual

Molar entropy.

Units: J/kmol/K. For an ideal gas mixture,

\[ \hat s(T, P) = \sum_k X_k \hat s^0_k(T) - \hat R \ln \frac{P}{P^0}. \]

The reference-state pure-species entropies \( \hat s^0_k(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from IdealGasPhase.

Definition at line 217 of file PlasmaPhase.h.

◆ gibbs_mole()

double gibbs_mole ( ) const
inlineoverridevirtual

Molar Gibbs function. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 221 of file PlasmaPhase.h.

◆ intEnergy_mole()

double intEnergy_mole ( ) const
inlineoverridevirtual

Molar internal energy. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 225 of file PlasmaPhase.h.

◆ getEntropy_R()

void getEntropy_R ( double *  sr) const
overridevirtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from IdealGasPhase.

Definition at line 325 of file PlasmaPhase.cpp.

◆ getGibbs_RT()

void getGibbs_RT ( double *  grt) const
overridevirtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from IdealGasPhase.

Definition at line 339 of file PlasmaPhase.cpp.

◆ getGibbs_ref()

void getGibbs_ref ( double *  g) const
overridevirtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from IdealGasPhase.

Definition at line 273 of file PlasmaPhase.cpp.

◆ getStandardVolumes_ref()

void getStandardVolumes_ref ( double *  vol) const
overridevirtual

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from IdealGasPhase.

Definition at line 279 of file PlasmaPhase.cpp.

◆ getChemPotentials()

void getChemPotentials ( double *  mu) const
overridevirtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from IdealGasPhase.

Definition at line 309 of file PlasmaPhase.cpp.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( double *  mu) const
overridevirtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from IdealGasPhase.

Definition at line 317 of file PlasmaPhase.cpp.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( double *  hbar) const
overridevirtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from IdealGasPhase.

Definition at line 285 of file PlasmaPhase.cpp.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( double *  sbar) const
overridevirtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from IdealGasPhase.

Definition at line 291 of file PlasmaPhase.cpp.

◆ getPartialMolarIntEnergies()

void getPartialMolarIntEnergies ( double *  ubar) const
overridevirtual

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented from IdealGasPhase.

Definition at line 299 of file PlasmaPhase.cpp.

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
overridevirtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Definition at line 152 of file PlasmaPhase.cpp.

◆ setParameters()

void setParameters ( const AnyMap phaseNode,
const AnyMap rootNode = AnyMap() 
)
overridevirtual

Set equation of state parameters from an AnyMap phase description.

Phases that need additional parameters from the root node should override this method.

Reimplemented from ThermoPhase.

Definition at line 172 of file PlasmaPhase.cpp.

◆ updateThermo()

void updateThermo ( ) const
overrideprotectedvirtual

Update the species reference state thermodynamic functions.

This method is called each time a thermodynamic property is requested, to check whether the internal species properties within the object need to be updated. Currently, this updates the species thermo polynomial values for the current value of the temperature. A check is made to see if the temperature has changed since the last evaluation. This object does not contain any persistent data that depends on the concentration, that needs to be updated. The state object modifies its concentration dependent information at the time the setMoleFractions() (or equivalent) call is made.

Reimplemented from IdealGasPhase.

Definition at line 245 of file PlasmaPhase.cpp.

◆ checkElectronEnergyLevels()

void checkElectronEnergyLevels ( ) const
protected

Check the electron energy levels.

The values of electron energy levels need to be positive and monotonically increasing.

Definition at line 92 of file PlasmaPhase.cpp.

◆ checkElectronEnergyDistribution()

void checkElectronEnergyDistribution ( ) const
protected

Check the electron energy distribution.

This method check the electron energy distribution for the criteria below.

  1. The values of electron energy distribution cannot be negative.
  2. If the last value of electron energy distribution is larger than 0.01, it will raise a warning to suggest using a higher electron energy levels.

Definition at line 103 of file PlasmaPhase.cpp.

◆ updateElectronEnergyDistribution()

void updateElectronEnergyDistribution ( )
protected

Update electron energy distribution.

Definition at line 25 of file PlasmaPhase.cpp.

◆ setIsotropicElectronEnergyDistribution()

void setIsotropicElectronEnergyDistribution ( )
protected

Set isotropic electron energy distribution.

Definition at line 58 of file PlasmaPhase.cpp.

◆ updateElectronTemperatureFromEnergyDist()

void updateElectronTemperatureFromEnergyDist ( )
protected

Update electron temperature (K) From energy distribution.

m_electronTemp

Definition at line 138 of file PlasmaPhase.cpp.

◆ normalizeElectronEnergyDistribution()

void normalizeElectronEnergyDistribution ( )
protected

Electron energy distribution norm.

Definition at line 35 of file PlasmaPhase.cpp.

Member Data Documentation

◆ m_isotropicShapeFactor

double m_isotropicShapeFactor = 2.0
protected

Definition at line 289 of file PlasmaPhase.h.

◆ m_nPoints

size_t m_nPoints = 1001
protected

Number of points of electron energy levels.

Definition at line 292 of file PlasmaPhase.h.

◆ m_electronEnergyLevels

Eigen::ArrayXd m_electronEnergyLevels
protected

electron energy levels [ev]. Length: m_nPoints

Definition at line 295 of file PlasmaPhase.h.

◆ m_electronEnergyDist

Eigen::ArrayXd m_electronEnergyDist
protected

Normalized electron energy distribution vector [-] Length: m_nPoints.

Definition at line 299 of file PlasmaPhase.h.

◆ m_electronSpeciesIndex

size_t m_electronSpeciesIndex = npos
protected

Index of electron species.

Definition at line 302 of file PlasmaPhase.h.

◆ m_electronTemp

double m_electronTemp
protected

Electron temperature [K].

Definition at line 305 of file PlasmaPhase.h.

◆ m_distributionType

string m_distributionType = "isotropic"
protected

Electron energy distribution type.

Definition at line 308 of file PlasmaPhase.h.

◆ m_quadratureMethod

string m_quadratureMethod = "simpson"
protected

Numerical quadrature method for electron energy distribution.

Definition at line 311 of file PlasmaPhase.h.

◆ m_do_normalizeElectronEnergyDist

bool m_do_normalizeElectronEnergyDist = true
protected

Flag of normalizing electron energy distribution.

Definition at line 314 of file PlasmaPhase.h.


The documentation for this class was generated from the following files: