Cantera 2.6.0
Public Member Functions | Public Attributes | Protected Attributes | Private Member Functions | Private Attributes | List of all members
IdealMolalSoln Class Reference

This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one. More...

#include <IdealMolalSoln.h>

Inheritance diagram for IdealMolalSoln:
[legend]
Collaboration diagram for IdealMolalSoln:
[legend]

Public Member Functions

 IdealMolalSoln (const std::string &inputFile="", const std::string &id="")
 Constructor for phase initialization. More...
 
 IdealMolalSoln (XML_Node &phaseRef, const std::string &id="")
 Constructor for phase initialization. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal. More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id="")
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void initThermo ()
 
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More...
 
void setStandardConcentrationModel (const std::string &model)
 Set the standard concentration model. More...
 
void setCutoffModel (const std::string &model)
 Set cutoff model. Must be one of 'none', 'poly', or 'polyExp'. More...
 
double speciesMolarVolume (int k) const
 Report the molar volume of species k. More...
 
void getSpeciesMolarVolumes (double *smv) const
 
Molar Thermodynamic Properties of the Solution
virtual doublereal enthalpy_mole () const
 Molar enthalpy of the solution. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy of the solution: Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy of the solution. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function for the solution: Units J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity of the solution at constant pressure. Units: J/kmol/K. More...
 
Activities and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T)\) is the chemical potential at unit activity, which depends only on temperature and the pressure.

virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual void getActivities (doublereal *ac) const
 
virtual void getMolalityActivityCoefficients (doublereal *acMolality) const
 
Partial Molar Properties of the Solution
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials: Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Partial molar heat capacity of the solution:. UnitsL J/kmol/K. More...
 
- Public Member Functions inherited from MolalityVPSSTP
 MolalityVPSSTP ()
 Default Constructor. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set equation of state parameter values from XML entries. More...
 
void setState_TPM (doublereal t, doublereal p, const doublereal *const molalities)
 Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes. More...
 
void setState_TPM (doublereal t, doublereal p, const compositionMap &m)
 Set the temperature (K), pressure (Pa), and molalities. More...
 
void setState_TPM (doublereal t, doublereal p, const std::string &m)
 Set the temperature (K), pressure (Pa), and molalities. More...
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual std::string report (bool show_thermo=true, doublereal threshold=1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual std::string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase. More...
 
void setpHScale (const int pHscaleType)
 Set the pH scale, which determines the scale for single-ion activity coefficients. More...
 
int pHScale () const
 Reports the pH scale, which determines the scale for single-ion activity coefficients. More...
 
void setMoleFSolventMin (doublereal xmolSolventMIN)
 Sets the minimum mole fraction in the molality formulation. More...
 
doublereal moleFSolventMin () const
 Returns the minimum mole fraction in the molality formulation. More...
 
void calcMolalities () const
 Calculates the molality of all species and stores the result internally. More...
 
void getMolalities (doublereal *const molal) const
 This function will return the molalities of the species. More...
 
void setMolalities (const doublereal *const molal)
 Set the molalities of the solutes in a phase. More...
 
void setMolalitiesByName (const compositionMap &xMap)
 Set the molalities of a phase. More...
 
void setMolalitiesByName (const std::string &name)
 Set the molalities of a phase. More...
 
int activityConvention () const
 We set the convention to molality here. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual double osmoticCoefficient () const
 Calculate the osmotic coefficient. More...
 
- Public Member Functions inherited from VPStandardStateTP
virtual void setTemperature (const doublereal temp)
 Set the temperature of the phase. More...
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual void setState_TP (doublereal T, doublereal pres)
 Set the temperature and pressure at the same time. More...
 
virtual doublereal pressure () const
 Returns the current pressure of the phase. More...
 
virtual void updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
virtual double minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
virtual double maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
PDSSprovidePDSS (size_t k)
 
const PDSSprovidePDSS (size_t k) const
 
 VPStandardStateTP ()
 Constructor. More...
 
virtual ~VPStandardStateTP ()
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
virtual const vector_fpgetStandardVolumes () const
 
virtual void getSpeciesParameters (const std::string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More...
 
void installPDSS (size_t k, std::unique_ptr< PDSS > &&pdss)
 Install a PDSS object for species k More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 Add a Species to this Phase. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const doublereal *mu_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality). More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description. More...
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More...
 
const AnyMapinput () const
 Access input data associated with the phase description. More...
 
AnyMapinput ()
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance. More...
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions. More...
 
virtual std::map< std::string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance. More...
 
virtual std::vector< std::string > fullStates () const
 Return a vector containing full states defining a phase. More...
 
virtual std::vector< std::string > partialStates () const
 Return a vector of settable partial property sets within a phase. More...
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
virtual void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
virtual void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const double * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced. More...
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More...
 
virtual void setRoot (std::shared_ptr< Solution > root)
 Set root Solution holding all phase information. More...
 
vector_fp getCompositionFromMap (const compositionMap &comp) const
 Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More...
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions. More...
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
double moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
double massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
double massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values. More...
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (double *const y) const
 Get the species mass fractions. More...
 
const double * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3). More...
 
double concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual double electronTemperature () const
 Electron Temperature (K) More...
 
virtual double density () const
 Density (kg/m^3). More...
 
double molarDensity () const
 Molar density (kmol/m^3). More...
 
double molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const double molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addSpeciesAlias (const std::string &name, const std::string &alias)
 Add a species alias (that is, a user-defined alternative species name). More...
 
virtual std::vector< std::string > findIsomers (const compositionMap &compMap) const
 Return a vector with isomers names matching a given composition map. More...
 
virtual std::vector< std::string > findIsomers (const std::string &comp) const
 Return a vector with isomers names matching a given composition string. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Public Attributes

doublereal IMS_X_o_cutoff_
 value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process; More...
 
doublereal IMS_gamma_o_min_
 gamma_o value for the cutoff process at the zero solvent point More...
 
doublereal IMS_gamma_k_min_
 gamma_k minimum for the cutoff process at the zero solvent point More...
 
doublereal IMS_slopefCut_
 Parameter in the polyExp cutoff treatment. More...
 
doublereal IMS_slopegCut_
 Parameter in the polyExp cutoff treatment. More...
 
Parameters in the polyExp cutoff treatment having to do with rate

of exp decay

doublereal IMS_cCut_
 
doublereal IMS_dfCut_
 
doublereal IMS_efCut_
 
doublereal IMS_afCut_
 
doublereal IMS_bfCut_
 
doublereal IMS_dgCut_
 
doublereal IMS_egCut_
 
doublereal IMS_agCut_
 
doublereal IMS_bgCut_
 

Protected Attributes

vector_fp m_speciesMolarVolume
 Species molar volume \( m^3 kmol^{-1} \). More...
 
int m_formGC
 The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'molar_volume', 2 = 'solvent_volume'. More...
 
int IMS_typeCutoff_
 Cutoff type. More...
 
- Protected Attributes inherited from MolalityVPSSTP
int m_pHScalingType
 Scaling to be used for output of single-ion species activity coefficients. More...
 
size_t m_indexCLM
 Index of the phScale species. More...
 
doublereal m_weightSolvent
 Molecular weight of the Solvent. More...
 
doublereal m_xmolSolventMIN
 
doublereal m_Mnaught
 This is the multiplication factor that goes inside log expressions involving the molalities of species. More...
 
vector_fp m_molalities
 Current value of the molalities of the species in the phase. More...
 
- Protected Attributes inherited from VPStandardStateTP
doublereal m_Pcurrent
 Current value of the pressure - state variable. More...
 
double m_minTemp
 The minimum temperature at which data for all species is valid. More...
 
double m_maxTemp
 The maximum temperature at which data for all species is valid. More...
 
doublereal m_Tlast_ss
 The last temperature at which the standard state thermodynamic properties were calculated at. More...
 
doublereal m_Plast_ss
 The last pressure at which the Standard State thermodynamic properties were calculated at. More...
 
std::vector< std::unique_ptr< PDSS > > m_PDSS_storage
 Storage for the PDSS objects for the species. More...
 
vector_fp m_h0_RT
 Vector containing the species reference enthalpies at T = m_tlast and P = p_ref. More...
 
vector_fp m_cp0_R
 Vector containing the species reference constant pressure heat capacities at T = m_tlast and P = p_ref. More...
 
vector_fp m_g0_RT
 Vector containing the species reference Gibbs functions at T = m_tlast and P = p_ref. More...
 
vector_fp m_s0_R
 Vector containing the species reference entropies at T = m_tlast and P = p_ref. More...
 
vector_fp m_V0
 Vector containing the species reference molar volumes. More...
 
vector_fp m_hss_RT
 Vector containing the species Standard State enthalpies at T = m_tlast and P = m_plast. More...
 
vector_fp m_cpss_R
 Vector containing the species Standard State constant pressure heat capacities at T = m_tlast and P = m_plast. More...
 
vector_fp m_gss_RT
 Vector containing the species Standard State Gibbs functions at T = m_tlast and P = m_plast. More...
 
vector_fp m_sss_R
 Vector containing the species Standard State entropies at T = m_tlast and P = m_plast. More...
 
vector_fp m_Vss
 Vector containing the species standard state volumes at T = m_tlast and P = m_plast. More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
AnyMap m_input
 Data supplied via setParameters. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 
bool m_caseSensitiveSpecies
 Flag determining whether case sensitive species names are enforced. More...
 

Private Member Functions

void s_updateIMS_lnMolalityActCoeff () const
 This function will be called to update the internally stored natural logarithm of the molality activity coefficients. More...
 
void calcIMSCutoffParams_ ()
 Calculate parameters for cutoff treatments of activity coefficients. More...
 

Private Attributes

vector_fp m_tmpV
 vector of size m_kk, used as a temporary holding area. More...
 
vector_fp IMS_lnActCoeffMolal_
 Logarithm of the molal activity coefficients. More...
 

Mechanical Equation of State Properties

In this equation of state implementation, the density is a function only of the mole fractions.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() will cause an exception to be thrown.

virtual doublereal isothermalCompressibility () const
 The isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 The thermal expansion coefficient. Units: 1/K. More...
 
void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 

Additional Inherited Members

- Protected Member Functions inherited from MolalityVPSSTP
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
virtual void getUnscaledMolalityActivityCoefficients (doublereal *acMolality) const
 Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void applyphScale (doublereal *acMolality) const
 Apply the current phScale to a set of activity Coefficients or activities. More...
 
- Protected Member Functions inherited from VPStandardStateTP
virtual void _updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
const vector_fpGibbs_RT_ref () const
 
- Protected Member Functions inherited from Phase
void assertCompressible (const std::string &setter) const
 Ensure that phase is compressible. More...
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase. More...
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 

Detailed Description

This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one.

This is a full instantiation of a ThermoPhase object. The assumption is that the molality-based activity coefficient is equal to one. This also implies that the osmotic coefficient is equal to one.

Note, this does not mean that the solution is an ideal solution. In fact, there is a singularity in the formulation as the solvent concentration goes to zero.

The mechanical equation of state is currently assumed to be that of an incompressible solution. This may change in the future. Each species has its own molar volume. The molar volume is a constant.

Class IdealMolalSoln represents a condensed phase. The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for incompressible mixtures.

The standard concentrations can have three different forms. See setStandardConcentrationModel().

\( V^0_0 \) is the solvent standard molar volume. \( m^{\Delta} \) is a constant equal to a molality of \( 1.0 \quad\mbox{gm kmol}^{-1} \).

The current default is to have mformGC = 2.

The value and form of the activity concentration will affect reaction rate constants involving species in this phase.

Note: The XML input format is deprecated and will be removed in Cantera 3.0

 <thermo model="IdealMolalSoln">
    <standardConc model="solvent_volume" />
    <solvent> H2O(l) </solvent>
    <activityCoefficients model="IdealMolalSoln" >
        <idealMolalSolnCutoff model="polyExp">
            <gamma_O_limit> 1.0E-5  </gamma_O_limit>
            <gamma_k_limit> 1.0E-5  <gamma_k_limit>
            <X_o_cutoff>    0.20    </X_o_cutoff>
            <C_0_param>     0.05    </C_0_param>
            <slope_f_limit> 0.6     </slope_f_limit>
            <slope_g_limit> 0.0     </slope_g_limit>
        </idealMolalSolnCutoff>
     </activityCoefficients>
 </thermo>

Definition at line 80 of file IdealMolalSoln.h.

Constructor & Destructor Documentation

◆ IdealMolalSoln() [1/2]

IdealMolalSoln ( const std::string &  inputFile = "",
const std::string &  id = "" 
)
explicit

Constructor for phase initialization.

This constructor will initialize a phase, by reading the required information from an input file.

Parameters
inputFileName of the Input file that contains information about the phase. If blank, an empty phase will be created.
idid of the phase within the input file

Definition at line 38 of file IdealMolalSoln.cpp.

References ThermoPhase::initThermoFile().

◆ IdealMolalSoln() [2/2]

IdealMolalSoln ( XML_Node phaseRef,
const std::string &  id = "" 
)

Constructor for phase initialization.

This constructor will initialize a phase, by reading the required information from XML_Node tree.

Parameters
phaseRefreference for an XML_Node tree that contains the information necessary to initialize the phase.
idid of the phase within the input file
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Definition at line 61 of file IdealMolalSoln.cpp.

References Cantera::importPhase().

Member Function Documentation

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from ThermoPhase.

Definition at line 109 of file IdealMolalSoln.h.

◆ isIdeal()

virtual bool isIdeal ( ) const
inlinevirtual

Boolean indicating whether phase is ideal.

Reimplemented from ThermoPhase.

Definition at line 113 of file IdealMolalSoln.h.

◆ enthalpy_mole()

doublereal enthalpy_mole ( ) const
virtual

Molar enthalpy of the solution. Units: J/kmol.

Returns the amount of enthalpy per mole of solution. For an ideal molal solution,

\[ \bar{h}(T, P, X_k) = \sum_k X_k \bar{h}_k(T) \]

The formula is written in terms of the partial molar enthalpies. \( \bar{h}_k(T, p, m_k) \). See the partial molar enthalpy function, getPartialMolarEnthalpies(), for details.

Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 83 of file IdealMolalSoln.cpp.

References IdealMolalSoln::getPartialMolarEnthalpies(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

◆ intEnergy_mole()

doublereal intEnergy_mole ( ) const
virtual

Molar internal energy of the solution: Units: J/kmol.

Returns the amount of internal energy per mole of solution. For an ideal molal solution,

\[ \bar{u}(T, P, X_k) = \sum_k X_k \bar{u}_k(T) \]

The formula is written in terms of the partial molar internal energy. \( \bar{u}_k(T, p, m_k) \).

Reimplemented from ThermoPhase.

Definition at line 89 of file IdealMolalSoln.cpp.

References IdealMolalSoln::getPartialMolarEnthalpies(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

◆ entropy_mole()

doublereal entropy_mole ( ) const
virtual

Molar entropy of the solution. Units: J/kmol/K.

Returns the amount of entropy per mole of solution. For an ideal molal solution,

\[ \bar{s}(T, P, X_k) = \sum_k X_k \bar{s}_k(T) \]

The formula is written in terms of the partial molar entropies. \( \bar{s}_k(T, p, m_k) \). See the partial molar entropies function, getPartialMolarEntropies(), for details.

Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 95 of file IdealMolalSoln.cpp.

References IdealMolalSoln::getPartialMolarEntropies(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

◆ gibbs_mole()

doublereal gibbs_mole ( ) const
virtual

Molar Gibbs function for the solution: Units J/kmol.

Returns the Gibbs free energy of the solution per mole of the solution.

\[ \bar{g}(T, P, X_k) = \sum_k X_k \mu_k(T) \]

Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 101 of file IdealMolalSoln.cpp.

References IdealMolalSoln::getChemPotentials(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

◆ cp_mole()

doublereal cp_mole ( ) const
virtual

Molar heat capacity of the solution at constant pressure. Units: J/kmol/K.

\[ \bar{c}_p(T, P, X_k) = \sum_k X_k \bar{c}_{p,k}(T) \]

Units: J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 107 of file IdealMolalSoln.cpp.

References IdealMolalSoln::getPartialMolarCp(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

◆ calcDensity()

void calcDensity ( )
protectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

Reimplemented from VPStandardStateTP.

Definition at line 115 of file IdealMolalSoln.cpp.

References Phase::assignDensity(), IdealMolalSoln::getPartialMolarVolumes(), IdealMolalSoln::m_tmpV, Phase::mean_X(), and Phase::meanMolecularWeight().

◆ isothermalCompressibility()

doublereal isothermalCompressibility ( ) const
virtual

The isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

It's equal to zero for this model, since the molar volume doesn't change with pressure or temperature.

Reimplemented from ThermoPhase.

Definition at line 122 of file IdealMolalSoln.cpp.

◆ thermalExpansionCoeff()

doublereal thermalExpansionCoeff ( ) const
virtual

The thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

It's equal to zero for this model, since the molar volume doesn't change with pressure or temperature.

Reimplemented from ThermoPhase.

Definition at line 127 of file IdealMolalSoln.cpp.

◆ standardConcentrationUnits()

Units standardConcentrationUnits ( ) const
virtual

Returns the units of the "standard concentration" for this phase.

These are the units of the values returned by the functions getActivityConcentrations() and standardConcentration(), which can vary between different ThermoPhase-derived classes, or change within a single class depending on input options. See the documentation for standardConcentration() for the derived class for specific details.

Reimplemented from ThermoPhase.

Definition at line 134 of file IdealMolalSoln.cpp.

References IdealMolalSoln::m_formGC, and Phase::nDim().

◆ getActivityConcentrations()

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from MolalityVPSSTP.

Definition at line 144 of file IdealMolalSoln.cpp.

References IdealMolalSoln::getActivities(), IdealMolalSoln::m_formGC, Phase::m_kk, and IdealMolalSoln::standardConcentration().

◆ standardConcentration()

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (that is, generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (such as surface species of different sizes), this method may be called with an optional parameter indicating the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard concentration. The units are by definition dependent on the ThermoPhase and kinetics manager representation.

Reimplemented from MolalityVPSSTP.

Definition at line 161 of file IdealMolalSoln.cpp.

References IdealMolalSoln::m_formGC, and IdealMolalSoln::m_speciesMolarVolume.

Referenced by IdealMolalSoln::getActivityConcentrations().

◆ getActivities()

void getActivities ( doublereal *  ac) const
virtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

(note solvent is on molar scale)

Parameters
acOutput activity coefficients. Length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 177 of file IdealMolalSoln.cpp.

References VPStandardStateTP::_updateStandardStateThermo(), MolalityVPSSTP::calcMolalities(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, Phase::m_kk, MolalityVPSSTP::m_molalities, MolalityVPSSTP::m_xmolSolventMIN, Phase::moleFraction(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

Referenced by IdealMolalSoln::getActivityConcentrations().

◆ getMolalityActivityCoefficients()

void getMolalityActivityCoefficients ( doublereal *  acMolality) const
virtual

Get the array of non-dimensional molality-based activity coefficients at the current solution temperature, pressure, and solution concentration.

(note solvent is on molar scale. The solvent molar based activity coefficient is returned).

Parameters
acMolalityOutput Molality-based activity coefficients. Length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 206 of file IdealMolalSoln.cpp.

References IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, Phase::m_kk, MolalityVPSSTP::m_xmolSolventMIN, Phase::moleFraction(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

◆ getChemPotentials()

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials: Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution.

\[ \mu_k = \mu^{o}_k(T,P) + R T \ln(\frac{m_k}{m^\Delta}) \]

\[ \mu_w = \mu^{o}_w(T,P) + R T ((X_w - 1.0) / X_w) \]

\( w \) refers to the solvent species. \( X_w \) is the mole fraction of the solvent. \( m_k \) is the molality of the kth solute. \( m^\Delta \) is 1 gmol solute per kg solvent.

Units: J/kmol.

Parameters
muOutput vector of species chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 228 of file IdealMolalSoln.cpp.

References MolalityVPSSTP::calcMolalities(), VPStandardStateTP::getStandardChemPotentials(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, Phase::m_kk, MolalityVPSSTP::m_molalities, Phase::moleFraction(), ThermoPhase::RT(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), and Cantera::SmallNumber.

Referenced by IdealMolalSoln::gibbs_mole().

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol). For this phase, the partial molar enthalpies are equal to the species standard state enthalpies.

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
hbarOutput vector of partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 266 of file IdealMolalSoln.cpp.

References VPStandardStateTP::getEnthalpy_RT(), Phase::m_kk, and ThermoPhase::RT().

Referenced by IdealMolalSoln::enthalpy_mole(), and IdealMolalSoln::intEnergy_mole().

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol.

Maxwell's equations provide an insight in how to calculate this (p.215 Smith and Van Ness)

\[ \frac{d(\mu_k)}{dT} = -\bar{s}_i \]

For this phase, the partial molar entropies are equal to the standard state species entropies plus the ideal molal solution contribution.

\[ \bar{s}_k(T,P) = s^0_k(T) - R \ln( \frac{m_k}{m^{\triangle}} ) \]

\[ \bar{s}_w(T,P) = s^0_w(T) - R ((X_w - 1.0) / X_w) \]

The subscript, w, refers to the solvent species. \( X_w \) is the mole fraction of solvent. The reference-state pure-species entropies, \( s^0_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
sbarOutput vector of partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 274 of file IdealMolalSoln.cpp.

References MolalityVPSSTP::calcMolalities(), Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, Phase::m_kk, MolalityVPSSTP::m_molalities, Phase::moleFraction(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), and Cantera::SmallNumber.

Referenced by IdealMolalSoln::entropy_mole().

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

For this solution, the partial molar volumes are equal to the constant species molar volumes.

Units: m^3 kmol-1.

Parameters
vbarOutput vector of partial molar volumes.

Reimplemented from ThermoPhase.

Definition at line 303 of file IdealMolalSoln.cpp.

References VPStandardStateTP::getStandardVolumes().

Referenced by IdealMolalSoln::calcDensity().

◆ getPartialMolarCp()

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Partial molar heat capacity of the solution:. UnitsL J/kmol/K.

The kth partial molar heat capacity is equal to the temperature derivative of the partial molar enthalpy of the kth species in the solution at constant P and composition (p. 220 Smith and Van Ness).

\[ \bar{Cp}_k(T,P) = {Cp}^0_k(T) \]

For this solution, this is equal to the reference state heat capacities.

Units: J/kmol/K

Parameters
cpbarOutput vector of partial molar heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 308 of file IdealMolalSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getCp_R(), and Phase::m_kk.

Referenced by IdealMolalSoln::cp_mole().

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
virtual

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().

Reimplemented from MolalityVPSSTP.

Definition at line 320 of file IdealMolalSoln.cpp.

References MolalityVPSSTP::addSpecies(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::m_speciesMolarVolume, and IdealMolalSoln::m_tmpV.

◆ initThermoXML()

void initThermoXML ( XML_Node phaseNode,
const std::string &  id = "" 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Reimplemented from ThermoPhase.

Definition at line 331 of file IdealMolalSoln.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::getFloat(), XML_Node::hasChild(), XML_Node::id(), IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_slopefCut_, IdealMolalSoln::IMS_slopegCut_, IdealMolalSoln::IMS_X_o_cutoff_, ThermoPhase::initThermoXML(), IdealMolalSoln::setCutoffModel(), and IdealMolalSoln::setStandardConcentrationModel().

◆ initThermo()

void initThermo ( )
virtual

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
virtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Definition at line 417 of file IdealMolalSoln.cpp.

References ThermoPhase::getParameters(), IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_slopefCut_, IdealMolalSoln::IMS_slopegCut_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, IdealMolalSoln::m_formGC, and AnyMap::size().

◆ setStandardConcentrationModel()

void setStandardConcentrationModel ( const std::string &  model)

Set the standard concentration model.

Must be one of 'unity', 'molar_volume', or 'solvent_volume'. The default is 'solvent_volume'.

model ActivityConc StandardConc
unity \( {m_k}/ { m^{\Delta}}\) \( 1.0 \)
molar_volume \( m_k / (m^{\Delta} V_k)\) \( 1.0 / V_k \)
solvent_volume \( m_k / (m^{\Delta} V^0_0)\) \( 1.0 / V^0_0\)

Definition at line 459 of file IdealMolalSoln.cpp.

References Cantera::caseInsensitiveEquals(), and IdealMolalSoln::m_formGC.

Referenced by IdealMolalSoln::initThermo(), and IdealMolalSoln::initThermoXML().

◆ setCutoffModel()

void setCutoffModel ( const std::string &  model)

Set cutoff model. Must be one of 'none', 'poly', or 'polyExp'.

Definition at line 475 of file IdealMolalSoln.cpp.

References Cantera::caseInsensitiveEquals(), and IdealMolalSoln::IMS_typeCutoff_.

Referenced by IdealMolalSoln::initThermo(), and IdealMolalSoln::initThermoXML().

◆ speciesMolarVolume()

double speciesMolarVolume ( int  k) const

Report the molar volume of species k.

units - \( m^3 kmol^{-1} \)

Parameters
kSpecies index.

◆ getSpeciesMolarVolumes()

void getSpeciesMolarVolumes ( double *  smv) const

Fill in a return vector containing the species molar volumes units - \( m^3 kmol^{-1} \)

Parameters
smvOutput vector of species molar volumes.

◆ s_updateIMS_lnMolalityActCoeff()

void s_updateIMS_lnMolalityActCoeff ( ) const
private

This function will be called to update the internally stored natural logarithm of the molality activity coefficients.

Normally the solutes are all zero. However, sometimes they are not, due to stability schemes.

gamma_k_molar = gamma_k_molal / Xmol_solvent

gamma_o_molar = gamma_o_molal

Definition at line 491 of file IdealMolalSoln.cpp.

References MolalityVPSSTP::calcMolalities(), IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, Phase::m_kk, MolalityVPSSTP::m_xmolSolventMIN, and Phase::moleFraction().

Referenced by IdealMolalSoln::getActivities(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::getMolalityActivityCoefficients(), and IdealMolalSoln::getPartialMolarEntropies().

◆ calcIMSCutoffParams_()

void calcIMSCutoffParams_ ( )
private

Calculate parameters for cutoff treatments of activity coefficients.

Some cutoff treatments for the activity coefficients actually require some calculations to create a consistent treatment.

This routine is called during the setup to calculate these parameters

Definition at line 592 of file IdealMolalSoln.cpp.

References IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_slopefCut_, IdealMolalSoln::IMS_slopegCut_, and IdealMolalSoln::IMS_X_o_cutoff_.

Referenced by IdealMolalSoln::initThermo().

Member Data Documentation

◆ m_speciesMolarVolume

vector_fp m_speciesMolarVolume
protected

Species molar volume \( m^3 kmol^{-1} \).

Definition at line 432 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::addSpecies(), IdealMolalSoln::initThermo(), and IdealMolalSoln::standardConcentration().

◆ m_formGC

int m_formGC
protected

The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'molar_volume', 2 = 'solvent_volume'.

See setStandardConcentrationModel().

Definition at line 439 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::getActivityConcentrations(), IdealMolalSoln::getParameters(), IdealMolalSoln::setStandardConcentrationModel(), IdealMolalSoln::standardConcentration(), and IdealMolalSoln::standardConcentrationUnits().

◆ IMS_typeCutoff_

int IMS_typeCutoff_
protected

◆ m_tmpV

vector_fp m_tmpV
mutableprivate

◆ IMS_lnActCoeffMolal_

vector_fp IMS_lnActCoeffMolal_
mutableprivate

Logarithm of the molal activity coefficients.

Normally these are all one. However, stability schemes will change that

Definition at line 452 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::addSpecies(), IdealMolalSoln::getActivities(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::getMolalityActivityCoefficients(), IdealMolalSoln::getPartialMolarEntropies(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

◆ IMS_X_o_cutoff_

doublereal IMS_X_o_cutoff_

value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process;

Definition at line 456 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::getParameters(), IdealMolalSoln::initThermo(), IdealMolalSoln::initThermoXML(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

◆ IMS_gamma_o_min_

doublereal IMS_gamma_o_min_

◆ IMS_gamma_k_min_

doublereal IMS_gamma_k_min_

◆ IMS_slopefCut_

doublereal IMS_slopefCut_

Parameter in the polyExp cutoff treatment.

This is the slope of the f function at the zero solvent point. Default value is 0.6

Definition at line 466 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::getParameters(), IdealMolalSoln::initThermo(), and IdealMolalSoln::initThermoXML().

◆ IMS_slopegCut_

doublereal IMS_slopegCut_

Parameter in the polyExp cutoff treatment.

This is the slope of the g function at the zero solvent point. Default value is 0.0

Definition at line 470 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::getParameters(), IdealMolalSoln::initThermo(), and IdealMolalSoln::initThermoXML().

◆ IMS_cCut_

doublereal IMS_cCut_

Definition at line 475 of file IdealMolalSoln.h.

◆ IMS_dfCut_

doublereal IMS_dfCut_

Definition at line 476 of file IdealMolalSoln.h.

◆ IMS_efCut_

doublereal IMS_efCut_

Definition at line 477 of file IdealMolalSoln.h.

◆ IMS_afCut_

doublereal IMS_afCut_

Definition at line 478 of file IdealMolalSoln.h.

◆ IMS_bfCut_

doublereal IMS_bfCut_

Definition at line 479 of file IdealMolalSoln.h.

◆ IMS_dgCut_

doublereal IMS_dgCut_

Definition at line 480 of file IdealMolalSoln.h.

◆ IMS_egCut_

doublereal IMS_egCut_

Definition at line 481 of file IdealMolalSoln.h.

◆ IMS_agCut_

doublereal IMS_agCut_

Definition at line 482 of file IdealMolalSoln.h.

◆ IMS_bgCut_

doublereal IMS_bgCut_

Definition at line 483 of file IdealMolalSoln.h.


The documentation for this class was generated from the following files: