Cantera 2.6.0
IdealSolidSolnPhase.h
Go to the documentation of this file.
1/**
2 * @file IdealSolidSolnPhase.h Header file for an ideal solid solution model
3 * with incompressible thermodynamics (see \ref thermoprops and
4 * \link Cantera::IdealSolidSolnPhase IdealSolidSolnPhase\endlink).
5 *
6 * This class inherits from the Cantera class ThermoPhase and implements an
7 * ideal solid solution model with incompressible thermodynamics.
8 */
9
10// This file is part of Cantera. See License.txt in the top-level directory or
11// at https://cantera.org/license.txt for license and copyright information.
12
13#ifndef CT_IDEALSOLIDSOLNPHASE_H
14#define CT_IDEALSOLIDSOLNPHASE_H
15
16#include "ThermoPhase.h"
17
18namespace Cantera
19{
20
21/**
22 * Class IdealSolidSolnPhase represents a condensed phase ideal solution
23 * compound. The phase and the pure species phases which comprise the standard
24 * states of the species are assumed to have zero volume expansivity and zero
25 * isothermal compressibility. Each species does, however, have constant but
26 * distinct partial molar volumes equal to their pure species molar volumes. The
27 * class derives from class ThermoPhase, and overloads the virtual methods
28 * defined there with ones that use expressions appropriate for ideal solution
29 * mixtures.
30 *
31 * The generalized concentrations can have three different forms depending on
32 * the value of the member attribute #m_formGC, which is supplied in the
33 * constructor and in the input file. The value and form of the generalized
34 * concentration will affect reaction rate constants involving species in this
35 * phase.
36 *
37 * @ingroup thermoprops
38 */
40{
41public:
42 /**
43 * Constructor for IdealSolidSolnPhase.
44 * The generalized concentrations can have three different forms
45 * depending on the value of the member attribute #m_formGC, which
46 * is supplied in the constructor or read from the input file.
47 *
48 * @param formCG This parameter initializes the #m_formGC variable.
49 * @deprecated the formGC argument is deprecated and will be removed after
50 * Cantera 2.6. Use the setStandardConcentrationModel method instead.
51 */
52 IdealSolidSolnPhase(int formCG=-1);
53
54 //! Construct and initialize an IdealSolidSolnPhase ThermoPhase object
55 //! directly from an ASCII input file
56 /*!
57 * This constructor will also fully initialize the object.
58 * The generalized concentrations can have three different forms
59 * depending on the value of the member attribute #m_formGC, which
60 * is supplied in the constructor or read from the input file.
61 *
62 * @param infile File name for the input file containing information
63 * for this phase. If blank, an empty phase will be
64 * created.
65 * @param id The name of this phase. This is used to look up
66 * the phase in the input file.
67 * @param formCG This parameter initializes the #m_formGC variable.
68 * @deprecated the formGC argument is deprecated and will be removed after
69 * Cantera 2.6. Use the setStandardConcentrationModel method instead.
70 */
71 explicit IdealSolidSolnPhase(const std::string& infile,
72 const std::string& id="", int formCG=-1);
73
74 //! Construct and initialize an IdealSolidSolnPhase ThermoPhase object
75 //! directly from an XML database
76 /*!
77 * The generalized concentrations can have three different forms
78 * depending on the value of the member attribute #m_formGC, which
79 * is supplied in the constructor and/or read from the data file.
80 *
81 * @param root XML tree containing a description of the phase.
82 * The tree must be positioned at the XML element
83 * named phase with id, "id", on input to this routine.
84 * @param id The name of this phase. This is used to look up
85 * the phase in the XML datafile.
86 * @param formCG This parameter initializes the #m_formGC variable.
87 *
88 * @deprecated The XML input format is deprecated and will be removed in
89 * Cantera 3.0.
90 */
91 IdealSolidSolnPhase(XML_Node& root, const std::string& id="", int formCG=-1);
92
93 virtual std::string type() const {
94 return "IdealSolidSoln";
95 }
96
97 virtual bool isIdeal() const {
98 return true;
99 }
100
101 virtual bool isCompressible() const {
102 return false;
103 }
104
105 //! @name Molar Thermodynamic Properties of the Solution
106 //! @{
107
108 /**
109 * Molar enthalpy of the solution. Units: J/kmol. For an ideal, constant
110 * partial molar volume solution mixture with pure species phases which
111 * exhibit zero volume expansivity and zero isothermal compressibility:
112 * \f[
113 * \hat h(T,P) = \sum_k X_k \hat h^0_k(T) + (P - P_{ref}) (\sum_k X_k \hat V^0_k)
114 * \f]
115 * The reference-state pure-species enthalpies at the reference pressure Pref
116 * \f$ \hat h^0_k(T) \f$, are computed by the species thermodynamic
117 * property manager. They are polynomial functions of temperature.
118 * @see MultiSpeciesThermo
119 */
120 virtual doublereal enthalpy_mole() const;
121
122 /**
123 * Molar entropy of the solution. Units: J/kmol/K. For an ideal, constant
124 * partial molar volume solution mixture with pure species phases which
125 * exhibit zero volume expansivity:
126 * \f[
127 * \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k)
128 * \f]
129 * The reference-state pure-species entropies
130 * \f$ \hat s^0_k(T,p_{ref}) \f$ are computed by the species thermodynamic
131 * property manager. The pure species entropies are independent of
132 * pressure since the volume expansivities are equal to zero.
133 * @see MultiSpeciesThermo
134 */
135 virtual doublereal entropy_mole() const;
136
137 /**
138 * Molar Gibbs free energy of the solution. Units: J/kmol. For an ideal,
139 * constant partial molar volume solution mixture with pure species phases
140 * which exhibit zero volume expansivity:
141 * \f[
142 * \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k log(X_k)
143 * \f]
144 * The reference-state pure-species Gibbs free energies
145 * \f$ \hat g^0_k(T) \f$ are computed by the species thermodynamic
146 * property manager, while the standard state Gibbs free energies
147 * \f$ \hat g^0_k(T,P) \f$ are computed by the member function, gibbs_RT().
148 * @see MultiSpeciesThermo
149 */
150 virtual doublereal gibbs_mole() const;
151
152 /**
153 * Molar heat capacity at constant pressure of the solution.
154 * Units: J/kmol/K.
155 * For an ideal, constant partial molar volume solution mixture with
156 * pure species phases which exhibit zero volume expansivity:
157 * \f[
158 * \hat c_p(T,P) = \sum_k X_k \hat c^0_{p,k}(T) .
159 * \f]
160 * The heat capacity is independent of pressure. The reference-state pure-
161 * species heat capacities \f$ \hat c^0_{p,k}(T) \f$ are computed by the
162 * species thermodynamic property manager.
163 * @see MultiSpeciesThermo
164 */
165 virtual doublereal cp_mole() const;
166
167 /**
168 * Molar heat capacity at constant volume of the solution. Units: J/kmol/K.
169 * For an ideal, constant partial molar volume solution mixture with pure
170 * species phases which exhibit zero volume expansivity:
171 * \f[ \hat c_v(T,P) = \hat c_p(T,P) \f]
172 * The two heat capacities are equal.
173 */
174 virtual doublereal cv_mole() const {
175 return cp_mole();
176 }
177
178 //! @}
179 /** @name Mechanical Equation of State Properties
180 *
181 * In this equation of state implementation, the density is a function only
182 * of the mole fractions. Therefore, it can't be an independent variable.
183 * Instead, the pressure is used as the independent variable. Functions
184 * which try to set the thermodynamic state by calling setDensity() will
185 * cause an exception to be thrown.
186 */
187 //! @{
188
189 /**
190 * Pressure. Units: Pa. For this incompressible system, we return the
191 * internally stored independent value of the pressure.
192 */
193 virtual doublereal pressure() const {
194 return m_Pcurrent;
195 }
196
197 /**
198 * Set the pressure at constant temperature. Units: Pa. This method sets a
199 * constant within the object. The mass density is not a function of
200 * pressure.
201 *
202 * @param p Input Pressure (Pa)
203 */
204 virtual void setPressure(doublereal p);
205
206 /**
207 * Calculate the density of the mixture using the partial molar volumes and
208 * mole fractions as input
209 *
210 * The formula for this is
211 *
212 * \f[
213 * \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}}
214 * \f]
215 *
216 * where \f$X_k\f$ are the mole fractions, \f$W_k\f$ are the molecular
217 * weights, and \f$V_k\f$ are the pure species molar volumes.
218 *
219 * Note, the basis behind this formula is that in an ideal solution the
220 * partial molar volumes are equal to the pure species molar volumes. We
221 * have additionally specified in this class that the pure species molar
222 * volumes are independent of temperature and pressure.
223 */
224 virtual void calcDensity();
225
226 //! @}
227
228 /**
229 * @name Chemical Potentials and Activities
230 *
231 * The activity \f$a_k\f$ of a species in solution is related to the
232 * chemical potential by
233 * \f[
234 * \mu_k(T,P,X_k) = \mu_k^0(T,P)
235 * + \hat R T \log a_k.
236 * \f]
237 * The quantity \f$\mu_k^0(T,P)\f$ is the standard state chemical potential
238 * at unit activity. It may depend on the pressure and the temperature.
239 * However, it may not depend on the mole fractions of the species in the
240 * solid solution.
241 *
242 * The activities are related to the generalized concentrations, \f$\tilde
243 * C_k\f$, and standard concentrations, \f$C^0_k\f$, by the following
244 * formula:
245 *
246 * \f[
247 * a_k = \frac{\tilde C_k}{C^0_k}
248 * \f]
249 * The generalized concentrations are used in the kinetics classes to
250 * describe the rates of progress of reactions involving the species. Their
251 * formulation depends upon the specification of the rate constants for
252 * reaction, especially the units used in specifying the rate constants. The
253 * bridge between the thermodynamic equilibrium expressions that use a_k and
254 * the kinetics expressions which use the generalized concentrations is
255 * provided by the multiplicative factor of the standard concentrations.
256 * @{
257 */
258
259 virtual Units standardConcentrationUnits() const;
260
261 /**
262 * This method returns the array of generalized concentrations. The
263 * generalized concentrations are used in the evaluation of the rates of
264 * progress for reactions involving species in this phase. The generalized
265 * concentration divided by the standard concentration is also equal to the
266 * activity of species.
267 *
268 * For this implementation the activity is defined to be the mole fraction
269 * of the species. The generalized concentration is defined to be equal to
270 * the mole fraction divided by the partial molar volume. The generalized
271 * concentrations for species in this phase therefore have units of
272 * kmol/m^3. Rate constants must reflect this fact.
273 *
274 * On a general note, the following must be true. For an ideal solution, the
275 * generalized concentration must consist of the mole fraction multiplied by
276 * a constant. The constant may be fairly arbitrarily chosen, with
277 * differences adsorbed into the reaction rate expression. 1/V_N, 1/V_k, or
278 * 1 are equally good, as long as the standard concentration is adjusted
279 * accordingly. However, it must be a constant (and not the concentration,
280 * btw, which is a function of the mole fractions) in order for the ideal
281 * solution properties to hold at the same time having the standard
282 * concentration to be independent of the mole fractions.
283 *
284 * In this implementation the form of the generalized concentrations
285 * depend upon the member attribute, #m_formGC.
286 *
287 * HKM Note: We have absorbed the pressure dependence of the pure species
288 * state into the thermodynamics functions. Therefore the standard
289 * state on which the activities are based depend on both temperature
290 * and pressure. If we hadn't, it would have appeared in this
291 * function in a very awkward exp[] format.
292 *
293 * @param c Pointer to array of doubles of length m_kk, which on exit
294 * will contain the generalized concentrations.
295 */
296 virtual void getActivityConcentrations(doublereal* c) const;
297
298 /**
299 * The standard concentration \f$ C^0_k \f$ used to normalize the
300 * generalized concentration. In many cases, this quantity will be the
301 * same for all species in a phase. However, for this case, we will return
302 * a distinct concentration for each species. This is the inverse of the
303 * species molar volume. Units for the standard concentration are kmol/m^3.
304 *
305 * @param k Species number: this is a require parameter, a change from the
306 * ThermoPhase base class, where it was an optional parameter.
307 */
308 virtual doublereal standardConcentration(size_t k) const;
309
310 //! Get the array of species activity coefficients
311 /*!
312 * @param ac output vector of activity coefficients. Length: m_kk
313 */
314 virtual void getActivityCoefficients(doublereal* ac) const;
315
316 /**
317 * Get the species chemical potentials. Units: J/kmol.
318 *
319 * This function returns a vector of chemical potentials of the
320 * species in solution.
321 * \f[
322 * \mu_k = \mu^{ref}_k(T) + V_k * (p - p_o) + R T ln(X_k)
323 * \f]
324 * or another way to phrase this is
325 * \f[
326 * \mu_k = \mu^o_k(T,p) + R T ln(X_k)
327 * \f]
328 * where \f$ \mu^o_k(T,p) = \mu^{ref}_k(T) + V_k * (p - p_o)\f$
329 *
330 * @param mu Output vector of chemical potentials.
331 */
332 virtual void getChemPotentials(doublereal* mu) const;
333
334 /**
335 * Get the array of non-dimensional species solution
336 * chemical potentials at the current T and P
337 * \f$\mu_k / \hat R T \f$.
338 * \f[
339 * \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k + RT ln(X_k)
340 * \f]
341 * where \f$V_k\f$ is the molar volume of pure species *k*.
342 * \f$ \mu^{ref}_k(T)\f$ is the chemical potential of pure
343 * species *k* at the reference pressure, \f$P_{ref}\f$.
344 *
345 * @param mu Output vector of dimensionless chemical potentials.
346 * Length = m_kk.
347 */
348 virtual void getChemPotentials_RT(doublereal* mu) const;
349
350 //! @}
351 /// @name Partial Molar Properties of the Solution
352 //! @{
353
354 //! Returns an array of partial molar enthalpies for the species in the
355 //! mixture.
356 /*!
357 * Units (J/kmol). For this phase, the partial molar enthalpies are equal to
358 * the pure species enthalpies
359 * \f[
360 * \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k
361 * \f]
362 * The reference-state pure-species enthalpies, \f$ \hat h^{ref}_k(T) \f$,
363 * at the reference pressure,\f$ P_{ref} \f$, are computed by the species
364 * thermodynamic property manager. They are polynomial functions of
365 * temperature.
366 * @see MultiSpeciesThermo
367 *
368 * @param hbar Output vector containing partial molar enthalpies.
369 * Length: m_kk.
370 */
371 virtual void getPartialMolarEnthalpies(doublereal* hbar) const;
372
373 /**
374 * Returns an array of partial molar entropies of the species in the
375 * solution. Units: J/kmol/K. For this phase, the partial molar entropies
376 * are equal to the pure species entropies plus the ideal solution
377 * contribution.
378 * \f[
379 * \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k)
380 * \f]
381 * The reference-state pure-species entropies,\f$ \hat s^{ref}_k(T) \f$, at
382 * the reference pressure, \f$ P_{ref} \f$, are computed by the species
383 * thermodynamic property manager. They are polynomial functions of
384 * temperature.
385 * @see MultiSpeciesThermo
386 *
387 * @param sbar Output vector containing partial molar entropies.
388 * Length: m_kk.
389 */
390 virtual void getPartialMolarEntropies(doublereal* sbar) const;
391
392 /**
393 * Returns an array of partial molar Heat Capacities at constant pressure of
394 * the species in the solution. Units: J/kmol/K. For this phase, the partial
395 * molar heat capacities are equal to the standard state heat capacities.
396 *
397 * @param cpbar Output vector of partial heat capacities. Length: m_kk.
398 */
399 virtual void getPartialMolarCp(doublereal* cpbar) const;
400
401 /**
402 * returns an array of partial molar volumes of the species
403 * in the solution. Units: m^3 kmol-1.
404 *
405 * For this solution, the partial molar volumes are equal to the
406 * constant species molar volumes.
407 *
408 * @param vbar Output vector of partial molar volumes. Length: m_kk.
409 */
410 virtual void getPartialMolarVolumes(doublereal* vbar) const;
411
412 //! @}
413 /// @name Properties of the Standard State of the Species in the Solution
414 //! @{
415
416 /**
417 * Get the standard state chemical potentials of the species. This is the
418 * array of chemical potentials at unit activity \f$ \mu^0_k(T,P) \f$. We
419 * define these here as the chemical potentials of the pure species at the
420 * temperature and pressure of the solution. This function is used in the
421 * evaluation of the equilibrium constant Kc. Therefore, Kc will also depend
422 * on T and P. This is the norm for liquid and solid systems.
423 *
424 * units = J / kmol
425 *
426 * @param mu0 Output vector of standard state chemical potentials.
427 * Length: m_kk.
428 */
429 virtual void getStandardChemPotentials(doublereal* mu0) const {
430 getPureGibbs(mu0);
431 }
432
433 //! Get the array of nondimensional Enthalpy functions for the standard
434 //! state species at the current *T* and *P* of the solution.
435 /*!
436 * We assume an incompressible constant partial molar volume here:
437 * \f[
438 * h^0_k(T,P) = h^{ref}_k(T) + (P - P_{ref}) * V_k
439 * \f]
440 * where \f$V_k\f$ is the molar volume of pure species *k*.
441 * \f$ h^{ref}_k(T)\f$ is the enthalpy of the pure species *k* at the
442 * reference pressure, \f$P_{ref}\f$.
443 *
444 * @param hrt Vector of length m_kk, which on return hrt[k] will contain the
445 * nondimensional standard state enthalpy of species k.
446 */
447 virtual void getEnthalpy_RT(doublereal* hrt) const;
448
449 //! Get the nondimensional Entropies for the species standard states at the
450 //! current T and P of the solution.
451 /*!
452 * Note, this is equal to the reference state entropies due to the zero
453 * volume expansivity: that is, (dS/dP)_T = (dV/dT)_P = 0.0
454 *
455 * @param sr Vector of length m_kk, which on return sr[k] will contain the
456 * nondimensional standard state entropy for species k.
457 */
458 virtual void getEntropy_R(doublereal* sr) const;
459
460 /**
461 * Get the nondimensional Gibbs function for the species standard states at
462 * the current T and P of the solution.
463 *
464 * \f[
465 * \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k
466 * \f]
467 * where \f$V_k\f$ is the molar volume of pure species *k*.
468 * \f$ \mu^{ref}_k(T)\f$ is the chemical potential of pure species *k*
469 * at the reference pressure, \f$P_{ref}\f$.
470 *
471 * @param grt Vector of length m_kk, which on return sr[k] will contain the
472 * nondimensional standard state Gibbs function for species k.
473 */
474 virtual void getGibbs_RT(doublereal* grt) const;
475
476 /**
477 * Get the Gibbs functions for the pure species at the current *T* and *P*
478 * of the solution. We assume an incompressible constant partial molar
479 * volume here:
480 * \f[
481 * \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k
482 * \f]
483 * where \f$V_k\f$ is the molar volume of pure species *k*.
484 * \f$ \mu^{ref}_k(T)\f$ is the chemical potential of pure species *k* at
485 * the reference pressure, \f$P_{ref}\f$.
486 *
487 * @param gpure Output vector of Gibbs functions for species. Length: m_kk.
488 */
489 virtual void getPureGibbs(doublereal* gpure) const;
490
491 virtual void getIntEnergy_RT(doublereal* urt) const;
492
493 /**
494 * Get the nondimensional heat capacity at constant pressure function for
495 * the species standard states at the current T and P of the solution.
496 * \f[
497 * Cp^0_k(T,P) = Cp^{ref}_k(T)
498 * \f]
499 * where \f$V_k\f$ is the molar volume of pure species *k*.
500 * \f$ Cp^{ref}_k(T)\f$ is the constant pressure heat capacity of species
501 * *k* at the reference pressure, \f$p_{ref}\f$.
502 *
503 * @param cpr Vector of length m_kk, which on return cpr[k] will contain the
504 * nondimensional constant pressure heat capacity for species k.
505 */
506 virtual void getCp_R(doublereal* cpr) const;
507
508 virtual void getStandardVolumes(doublereal* vol) const;
509
510 //! @}
511 /// @name Thermodynamic Values for the Species Reference States
512 //! @{
513
514 virtual void getEnthalpy_RT_ref(doublereal* hrt) const;
515 virtual void getGibbs_RT_ref(doublereal* grt) const;
516 virtual void getGibbs_ref(doublereal* g) const;
517 virtual void getEntropy_R_ref(doublereal* er) const;
518 virtual void getIntEnergy_RT_ref(doublereal* urt) const;
519 virtual void getCp_R_ref(doublereal* cprt) const;
520
521 /**
522 * Returns a reference to the vector of nondimensional enthalpies of the
523 * reference state at the current temperature. Real reason for its existence
524 * is that it also checks to see if a recalculation of the reference
525 * thermodynamics functions needs to be done.
526 */
527 const vector_fp& enthalpy_RT_ref() const;
528
529 /**
530 * Returns a reference to the vector of nondimensional enthalpies of the
531 * reference state at the current temperature. Real reason for its existence
532 * is that it also checks to see if a recalculation of the reference
533 * thermodynamics functions needs to be done.
534 */
535 const vector_fp& gibbs_RT_ref() const {
537 return m_g0_RT;
538 }
539
540 /**
541 * Returns a reference to the vector of nondimensional enthalpies of the
542 * reference state at the current temperature. Real reason for its existence
543 * is that it also checks to see if a recalculation of the reference
544 * thermodynamics functions needs to be done.
545 */
546 const vector_fp& entropy_R_ref() const;
547
548 /**
549 * Returns a reference to the vector of nondimensional enthalpies of the
550 * reference state at the current temperature. Real reason for its existence
551 * is that it also checks to see if a recalculation of the reference
552 * thermodynamics functions needs to be done.
553 */
554 const vector_fp& cp_R_ref() const {
556 return m_cp0_R;
557 }
558
559 //! @}
560 //! @name Utility Functions
561 //! @{
562
563 virtual bool addSpecies(shared_ptr<Species> spec);
564 virtual void initThermo();
565 virtual void getParameters(AnyMap& phaseNode) const;
566 virtual void getSpeciesParameters(const std::string& name,
567 AnyMap& speciesNode) const;
568 virtual void initThermoXML(XML_Node& phaseNode, const std::string& id);
569 virtual void setToEquilState(const doublereal* mu_RT);
570
571 //! Set the form for the standard and generalized concentrations
572 /*!
573 * Must be one of 'unity', 'species-molar-volume', or
574 * 'solvent-molar-volume'. The default is 'unity'.
575 *
576 * | m_formGC | GeneralizedConc | StandardConc |
577 * | -------------------- | --------------- | ------------ |
578 * | unity | X_k | 1.0 |
579 * | species-molar-volume | X_k / V_k | 1.0 / V_k |
580 * | solvent-molar-volume | X_k / V_N | 1.0 / V_N |
581 *
582 * The value and form of the generalized concentration will affect
583 * reaction rate constants involving species in this phase.
584 */
585 void setStandardConcentrationModel(const std::string& model);
586
587 /**
588 * Report the molar volume of species k
589 *
590 * units - \f$ m^3 kmol^-1 \f$
591 *
592 * @param k species index
593 */
594 double speciesMolarVolume(int k) const;
595
596 /**
597 * Fill in a return vector containing the species molar volumes.
598 *
599 * units - \f$ m^3 kmol^-1 \f$
600 *
601 * @param smv output vector containing species molar volumes.
602 * Length: m_kk.
603 */
604 void getSpeciesMolarVolumes(doublereal* smv) const;
605
606 //! @}
607
608protected:
609 virtual void compositionChanged();
610
611 /**
612 * The standard concentrations can have one of three different forms:
613 * 0 = 'unity', 1 = 'molar_volume', 2 = 'solvent_volume'. See
614 * setStandardConcentrationModel().
615 */
617
618 /**
619 * Value of the reference pressure for all species in this phase. The T
620 * dependent polynomials are evaluated at the reference pressure. Note,
621 * because this is a single value, all species are required to have the same
622 * reference pressure.
623 */
624 doublereal m_Pref;
625
626 /**
627 * m_Pcurrent = The current pressure
628 * Since the density isn't a function of pressure, but only of the
629 * mole fractions, we need to independently specify the pressure.
630 * The density variable which is inherited as part of the State class,
631 * m_dens, is always kept current whenever T, P, or X[] change.
632 */
633 doublereal m_Pcurrent;
634
635 //! Vector of molar volumes for each species in the solution
636 /**
637 * Species molar volumes \f$ m^3 kmol^-1 \f$
638 */
640
641 //! Vector containing the species reference enthalpies at T = m_tlast
643
644 //! Vector containing the species reference constant pressure heat
645 //! capacities at T = m_tlast
647
648 //! Vector containing the species reference Gibbs functions at T = m_tlast
650
651 //! Vector containing the species reference entropies at T = m_tlast
653
654 //! Vector containing the species reference exp(-G/RT) functions at
655 //! T = m_tlast
657
658 //! Temporary array used in equilibrium calculations
660
661private:
662 //! @name Utility Functions
663 //! @{
664 /**
665 * This function gets called for every call to functions in this class. It
666 * checks to see whether the temperature has changed and thus the reference
667 * thermodynamics functions for all of the species must be recalculated. If
668 * the temperature has changed, the species thermo manager is called to
669 * recalculate G, Cp, H, and S at the current temperature.
670 */
671 virtual void _updateThermo() const;
672
673 //! @}
674};
675}
676
677#endif
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
A map of string keys to values whose type can vary at runtime.
Definition: AnyMap.h:399
Class IdealSolidSolnPhase represents a condensed phase ideal solution compound.
vector_fp m_g0_RT
Vector containing the species reference Gibbs functions at T = m_tlast.
vector_fp m_cp0_R
Vector containing the species reference constant pressure heat capacities at T = m_tlast.
virtual bool addSpecies(shared_ptr< Species > spec)
virtual void getGibbs_RT_ref(doublereal *grt) const
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
virtual void getParameters(AnyMap &phaseNode) const
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
virtual void getActivityCoefficients(doublereal *ac) const
Get the array of species activity coefficients.
vector_fp m_expg0_RT
Vector containing the species reference exp(-G/RT) functions at T = m_tlast.
virtual void getGibbs_RT(doublereal *grt) const
Get the nondimensional Gibbs function for the species standard states at the current T and P of the s...
virtual doublereal cp_mole() const
Molar heat capacity at constant pressure of the solution.
vector_fp m_h0_RT
Vector containing the species reference enthalpies at T = m_tlast.
virtual void getPartialMolarEnthalpies(doublereal *hbar) const
Returns an array of partial molar enthalpies for the species in the mixture.
double speciesMolarVolume(int k) const
Report the molar volume of species k.
virtual void getPartialMolarEntropies(doublereal *sbar) const
Returns an array of partial molar entropies of the species in the solution.
virtual void initThermoXML(XML_Node &phaseNode, const std::string &id)
Import and initialize a ThermoPhase object using an XML tree.
virtual doublereal enthalpy_mole() const
Molar enthalpy of the solution.
virtual void setToEquilState(const doublereal *mu_RT)
This method is used by the ChemEquil equilibrium solver.
virtual void getPartialMolarVolumes(doublereal *vbar) const
returns an array of partial molar volumes of the species in the solution.
vector_fp m_pp
Temporary array used in equilibrium calculations.
virtual void getStandardVolumes(doublereal *vol) const
Get the molar volumes of the species standard states at the current T and P of the solution.
vector_fp m_s0_R
Vector containing the species reference entropies at T = m_tlast.
virtual void getActivityConcentrations(doublereal *c) const
This method returns the array of generalized concentrations.
const vector_fp & cp_R_ref() const
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current ...
virtual void getCp_R(doublereal *cpr) const
Get the nondimensional heat capacity at constant pressure function for the species standard states at...
virtual void getStandardChemPotentials(doublereal *mu0) const
Get the standard state chemical potentials of the species.
IdealSolidSolnPhase(int formCG=-1)
Constructor for IdealSolidSolnPhase.
virtual void getPartialMolarCp(doublereal *cpbar) const
Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution...
void getSpeciesMolarVolumes(doublereal *smv) const
Fill in a return vector containing the species molar volumes.
const vector_fp & enthalpy_RT_ref() const
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current ...
virtual bool isCompressible() const
Return whether phase represents a compressible substance.
virtual void getEntropy_R(doublereal *sr) const
Get the nondimensional Entropies for the species standard states at the current T and P of the soluti...
virtual doublereal cv_mole() const
Molar heat capacity at constant volume of the solution.
virtual void setPressure(doublereal p)
Set the pressure at constant temperature.
vector_fp m_speciesMolarVolume
Vector of molar volumes for each species in the solution.
virtual doublereal entropy_mole() const
Molar entropy of the solution.
const vector_fp & entropy_R_ref() const
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current ...
virtual void initThermo()
Initialize the ThermoPhase object after all species have been set up.
virtual doublereal standardConcentration(size_t k) const
The standard concentration used to normalize the generalized concentration.
const vector_fp & gibbs_RT_ref() const
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current ...
virtual void getEntropy_R_ref(doublereal *er) const
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
int m_formGC
The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'molar_volume',...
virtual std::string type() const
String indicating the thermodynamic model implemented.
virtual void getIntEnergy_RT_ref(doublereal *urt) const
Returns the vector of nondimensional internal Energies of the reference state at the current temperat...
virtual void getIntEnergy_RT(doublereal *urt) const
Returns the vector of nondimensional Internal Energies of the standard state species at the current T...
virtual doublereal gibbs_mole() const
Molar Gibbs free energy of the solution.
doublereal m_Pcurrent
m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mol...
virtual doublereal pressure() const
Pressure.
virtual void getCp_R_ref(doublereal *cprt) const
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
virtual Units standardConcentrationUnits() const
Returns the units of the "standard concentration" for this phase.
virtual void getSpeciesParameters(const std::string &name, AnyMap &speciesNode) const
Get phase-specific parameters of a Species object such that an identical one could be reconstructed a...
virtual void compositionChanged()
Apply changes to the state which are needed after the composition changes.
virtual bool isIdeal() const
Boolean indicating whether phase is ideal.
virtual void getChemPotentials_RT(doublereal *mu) const
Get the array of non-dimensional species solution chemical potentials at the current T and P .
void setStandardConcentrationModel(const std::string &model)
Set the form for the standard and generalized concentrations.
virtual void _updateThermo() const
This function gets called for every call to functions in this class.
virtual void getChemPotentials(doublereal *mu) const
Get the species chemical potentials.
virtual void getGibbs_ref(doublereal *g) const
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
doublereal m_Pref
Value of the reference pressure for all species in this phase.
virtual void getEnthalpy_RT(doublereal *hrt) const
Get the array of nondimensional Enthalpy functions for the standard state species at the current T an...
virtual void getPureGibbs(doublereal *gpure) const
Get the Gibbs functions for the pure species at the current T and P of the solution.
virtual void getEnthalpy_RT_ref(doublereal *hrt) const
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
virtual void calcDensity()
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
std::string name() const
Return the name of the phase.
Definition: Phase.cpp:70
Base class for a phase with thermodynamic properties.
Definition: ThermoPhase.h:102
A representation of the units associated with a dimensional quantity.
Definition: Units.h:30
Class XML_Node is a tree-based representation of the contents of an XML file.
Definition: xml.h:103
Namespace for the Cantera kernel.
Definition: AnyMap.h:29
std::vector< double > vector_fp
Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.
Definition: ct_defs.h:184