Cantera 2.6.0
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
IdealSolidSolnPhase Class Reference

Class IdealSolidSolnPhase represents a condensed phase ideal solution compound. More...

#include <IdealSolidSolnPhase.h>

Inheritance diagram for IdealSolidSolnPhase:
[legend]
Collaboration diagram for IdealSolidSolnPhase:
[legend]

Public Member Functions

 IdealSolidSolnPhase (int formCG=-1)
 Constructor for IdealSolidSolnPhase. More...
 
 IdealSolidSolnPhase (const std::string &infile, const std::string &id="", int formCG=-1)
 Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an ASCII input file. More...
 
 IdealSolidSolnPhase (XML_Node &root, const std::string &id="", int formCG=-1)
 Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal. More...
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal enthalpy_mole () const
 Molar enthalpy of the solution. More...
 
virtual doublereal entropy_mole () const
 Molar entropy of the solution. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs free energy of the solution. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure of the solution. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume of the solution. More...
 
Mechanical Equation of State Properties

In this equation of state implementation, the density is a function only of the mole fractions.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() will cause an exception to be thrown.

virtual doublereal pressure () const
 Pressure. More...
 
virtual void setPressure (doublereal p)
 Set the pressure at constant temperature. More...
 
virtual void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 
Chemical Potentials and Activities

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k(T,P,X_k) = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the standard state chemical potential at unit activity. It may depend on the pressure and the temperature. However, it may not depend on the mole fractions of the species in the solid solution.

The activities are related to the generalized concentrations, \(\tilde C_k\), and standard concentrations, \(C^0_k\), by the following formula:

\[ a_k = \frac{\tilde C_k}{C^0_k} \]

The generalized concentrations are used in the kinetics classes to describe the rates of progress of reactions involving the species. Their formulation depends upon the specification of the rate constants for reaction, especially the units used in specifying the rate constants. The bridge between the thermodynamic equilibrium expressions that use a_k and the kinetics expressions which use the generalized concentrations is provided by the multiplicative factor of the standard concentrations.

virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns the array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k) const
 The standard concentration \( C^0_k \) used to normalize the generalized concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of species activity coefficients. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species solution chemical potentials at the current T and P \(\mu_k / \hat R T \). More...
 
Partial Molar Properties of the Solution
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 returns an array of partial molar volumes of the species in the solution. More...
 
Properties of the Standard State of the Species in the Solution
virtual void getStandardChemPotentials (doublereal *mu0) const
 Get the standard state chemical potentials of the species. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the nondimensional Entropies for the species standard states at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs function for the species standard states at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the pure species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference States
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
const vector_fpenthalpy_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More...
 
const vector_fpgibbs_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More...
 
const vector_fpentropy_R_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More...
 
const vector_fpcp_R_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More...
 
virtual std::string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More...
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality). More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description. More...
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More...
 
const AnyMapinput () const
 Access input data associated with the phase description. More...
 
AnyMapinput ()
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance. More...
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions. More...
 
virtual std::map< std::string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance. More...
 
virtual std::vector< std::string > fullStates () const
 Return a vector containing full states defining a phase. More...
 
virtual std::vector< std::string > partialStates () const
 Return a vector of settable partial property sets within a phase. More...
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
virtual void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
virtual void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const double * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced. More...
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More...
 
virtual void setRoot (std::shared_ptr< Solution > root)
 Set root Solution holding all phase information. More...
 
vector_fp getCompositionFromMap (const compositionMap &comp) const
 Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More...
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions. More...
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
double moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
double massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
double massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values. More...
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (double *const y) const
 Get the species mass fractions. More...
 
const double * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3). More...
 
double concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual double electronTemperature () const
 Electron Temperature (K) More...
 
virtual double density () const
 Density (kg/m^3). More...
 
double molarDensity () const
 Molar density (kmol/m^3). More...
 
double molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const double molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K). More...
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addSpeciesAlias (const std::string &name, const std::string &alias)
 Add a species alias (that is, a user-defined alternative species name). More...
 
virtual std::vector< std::string > findIsomers (const compositionMap &compMap) const
 Return a vector with isomers names matching a given composition map. More...
 
virtual std::vector< std::string > findIsomers (const std::string &comp) const
 Return a vector with isomers names matching a given composition string. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Protected Member Functions

virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 
- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void assertCompressible (const std::string &setter) const
 Ensure that phase is compressible. More...
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase. More...
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Protected Attributes

int m_formGC
 The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'molar_volume', 2 = 'solvent_volume'. More...
 
doublereal m_Pref
 Value of the reference pressure for all species in this phase. More...
 
doublereal m_Pcurrent
 m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure. More...
 
vector_fp m_speciesMolarVolume
 Vector of molar volumes for each species in the solution. More...
 
vector_fp m_h0_RT
 Vector containing the species reference enthalpies at T = m_tlast. More...
 
vector_fp m_cp0_R
 Vector containing the species reference constant pressure heat capacities at T = m_tlast. More...
 
vector_fp m_g0_RT
 Vector containing the species reference Gibbs functions at T = m_tlast. More...
 
vector_fp m_s0_R
 Vector containing the species reference entropies at T = m_tlast. More...
 
vector_fp m_expg0_RT
 Vector containing the species reference exp(-G/RT) functions at T = m_tlast. More...
 
vector_fp m_pp
 Temporary array used in equilibrium calculations. More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
AnyMap m_input
 Data supplied via setParameters. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 
bool m_caseSensitiveSpecies
 Flag determining whether case sensitive species names are enforced. More...
 

Utility Functions

virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More...
 
virtual void getSpeciesParameters (const std::string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void setToEquilState (const doublereal *mu_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
void setStandardConcentrationModel (const std::string &model)
 Set the form for the standard and generalized concentrations. More...
 
double speciesMolarVolume (int k) const
 Report the molar volume of species k. More...
 
void getSpeciesMolarVolumes (doublereal *smv) const
 Fill in a return vector containing the species molar volumes. More...
 
virtual void _updateThermo () const
 This function gets called for every call to functions in this class. More...
 

Detailed Description

Class IdealSolidSolnPhase represents a condensed phase ideal solution compound.

The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for ideal solution mixtures.

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and in the input file. The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.

Definition at line 39 of file IdealSolidSolnPhase.h.

Constructor & Destructor Documentation

◆ IdealSolidSolnPhase() [1/3]

IdealSolidSolnPhase ( int  formCG = -1)

Constructor for IdealSolidSolnPhase.

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the input file.

Parameters
formCGThis parameter initializes the m_formGC variable.
Deprecated:
the formGC argument is deprecated and will be removed after Cantera 2.6. Use the setStandardConcentrationModel method instead.

Definition at line 23 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, and Cantera::warn_deprecated().

◆ IdealSolidSolnPhase() [2/3]

IdealSolidSolnPhase ( const std::string &  infile,
const std::string &  id = "",
int  formCG = -1 
)
explicit

Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an ASCII input file.

This constructor will also fully initialize the object. The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the input file.

Parameters
infileFile name for the input file containing information for this phase. If blank, an empty phase will be created.
idThe name of this phase. This is used to look up the phase in the input file.
formCGThis parameter initializes the m_formGC variable.
Deprecated:
the formGC argument is deprecated and will be removed after Cantera 2.6. Use the setStandardConcentrationModel method instead.

Definition at line 46 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::initThermoFile(), IdealSolidSolnPhase::m_formGC, and Cantera::warn_deprecated().

◆ IdealSolidSolnPhase() [3/3]

IdealSolidSolnPhase ( XML_Node root,
const std::string &  id = "",
int  formCG = -1 
)

Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database.

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and/or read from the data file.

Parameters
rootXML tree containing a description of the phase. The tree must be positioned at the XML element named phase with id, "id", on input to this routine.
idThe name of this phase. This is used to look up the phase in the XML datafile.
formCGThis parameter initializes the m_formGC variable.
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Definition at line 68 of file IdealSolidSolnPhase.cpp.

References Cantera::importPhase(), IdealSolidSolnPhase::m_formGC, and Cantera::warn_deprecated().

Member Function Documentation

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from ThermoPhase.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 93 of file IdealSolidSolnPhase.h.

◆ isIdeal()

virtual bool isIdeal ( ) const
inlinevirtual

Boolean indicating whether phase is ideal.

Reimplemented from ThermoPhase.

Definition at line 97 of file IdealSolidSolnPhase.h.

◆ isCompressible()

virtual bool isCompressible ( ) const
inlinevirtual

Return whether phase represents a compressible substance.

Reimplemented from Phase.

Definition at line 101 of file IdealSolidSolnPhase.h.

◆ enthalpy_mole()

doublereal enthalpy_mole ( ) const
virtual

Molar enthalpy of the solution.

Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:

\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T) + (P - P_{ref}) (\sum_k X_k \hat V^0_k) \]

The reference-state pure-species enthalpies at the reference pressure Pref \( \hat h^0_k(T) \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 92 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), IdealSolidSolnPhase::m_Pref, Phase::mean_X(), Phase::molarDensity(), IdealSolidSolnPhase::pressure(), and ThermoPhase::RT().

◆ entropy_mole()

doublereal entropy_mole ( ) const
virtual

Molar entropy of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]

The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of pressure since the volume expansivities are equal to zero.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 98 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, Phase::mean_X(), and Phase::sum_xlogx().

◆ gibbs_mole()

doublereal gibbs_mole ( ) const
virtual

Molar Gibbs free energy of the solution.

Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k log(X_k) \]

The reference-state pure-species Gibbs free energies \( \hat g^0_k(T) \) are computed by the species thermodynamic property manager, while the standard state Gibbs free energies \( \hat g^0_k(T,P) \) are computed by the member function, gibbs_RT().

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 103 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::mean_X(), ThermoPhase::RT(), and Phase::sum_xlogx().

◆ cp_mole()

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_p(T,P) = \sum_k X_k \hat c^0_{p,k}(T) . \]

The heat capacity is independent of pressure. The reference-state pure- species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 108 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::cp_R_ref(), Cantera::GasConstant, and Phase::mean_X().

Referenced by IdealSolidSolnPhase::cv_mole().

◆ cv_mole()

virtual doublereal cv_mole ( ) const
inlinevirtual

Molar heat capacity at constant volume of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_v(T,P) = \hat c_p(T,P) \]

The two heat capacities are equal.

Reimplemented from ThermoPhase.

Definition at line 174 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::cp_mole().

◆ pressure()

virtual doublereal pressure ( ) const
inlinevirtual

Pressure.

Units: Pa. For this incompressible system, we return the internally stored independent value of the pressure.

Reimplemented from Phase.

Definition at line 193 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::m_Pcurrent.

Referenced by IdealSolidSolnPhase::enthalpy_mole().

◆ setPressure()

void setPressure ( doublereal  p)
virtual

Set the pressure at constant temperature.

Units: Pa. This method sets a constant within the object. The mass density is not a function of pressure.

Parameters
pInput Pressure (Pa)

Reimplemented from Phase.

Definition at line 127 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::m_Pcurrent.

◆ calcDensity()

void calcDensity ( )
virtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 115 of file IdealSolidSolnPhase.cpp.

References Phase::assignDensity(), Cantera::dot(), IdealSolidSolnPhase::m_speciesMolarVolume, and Phase::moleFractdivMMW().

Referenced by IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::compositionChanged(), and IdealSolidSolnPhase::setPressure().

◆ standardConcentrationUnits()

Units standardConcentrationUnits ( ) const
virtual

Returns the units of the "standard concentration" for this phase.

These are the units of the values returned by the functions getActivityConcentrations() and standardConcentration(), which can vary between different ThermoPhase-derived classes, or change within a single class depending on input options. See the documentation for standardConcentration() for the derived class for specific details.

Reimplemented from ThermoPhase.

Definition at line 141 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, and Phase::nDim().

◆ getActivityConcentrations()

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns the array of generalized concentrations.

The generalized concentrations are used in the evaluation of the rates of progress for reactions involving species in this phase. The generalized concentration divided by the standard concentration is also equal to the activity of species.

For this implementation the activity is defined to be the mole fraction of the species. The generalized concentration is defined to be equal to the mole fraction divided by the partial molar volume. The generalized concentrations for species in this phase therefore have units of kmol/m^3. Rate constants must reflect this fact.

On a general note, the following must be true. For an ideal solution, the generalized concentration must consist of the mole fraction multiplied by a constant. The constant may be fairly arbitrarily chosen, with differences adsorbed into the reaction rate expression. 1/V_N, 1/V_k, or 1 are equally good, as long as the standard concentration is adjusted accordingly. However, it must be a constant (and not the concentration, btw, which is a function of the mole fractions) in order for the ideal solution properties to hold at the same time having the standard concentration to be independent of the mole fractions.

In this implementation the form of the generalized concentrations depend upon the member attribute, m_formGC.

HKM Note: We have absorbed the pressure dependence of the pure species state into the thermodynamics functions. Therefore the standard state on which the activities are based depend on both temperature and pressure. If we hadn't, it would have appeared in this function in a very awkward exp[] format.

Parameters
cPointer to array of doubles of length m_kk, which on exit will contain the generalized concentrations.

Reimplemented from ThermoPhase.

Definition at line 151 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::meanMolecularWeight(), and Phase::moleFractdivMMW().

◆ standardConcentration()

doublereal standardConcentration ( size_t  k) const
virtual

The standard concentration \( C^0_k \) used to normalize the generalized concentration.

In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. This is the inverse of the species molar volume. Units for the standard concentration are kmol/m^3.

Parameters
kSpecies number: this is a require parameter, a change from the ThermoPhase base class, where it was an optional parameter.

Reimplemented from ThermoPhase.

Definition at line 175 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.

Referenced by BinarySolutionTabulatedThermo::_updateThermo().

◆ getActivityCoefficients()

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of species activity coefficients.

Parameters
acoutput vector of activity coefficients. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 188 of file IdealSolidSolnPhase.cpp.

References Phase::m_kk.

◆ getChemPotentials()

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials.

Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution.

\[ \mu_k = \mu^{ref}_k(T) + V_k * (p - p_o) + R T ln(X_k) \]

or another way to phrase this is

\[ \mu_k = \mu^o_k(T,p) + R T ln(X_k) \]

where \( \mu^o_k(T,p) = \mu^{ref}_k(T) + V_k * (p - p_o)\)

Parameters
muOutput vector of chemical potentials.

Reimplemented from ThermoPhase.

Definition at line 195 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFraction(), ThermoPhase::RT(), and Cantera::SmallNumber.

◆ getChemPotentials_RT()

void getChemPotentials_RT ( doublereal *  mu) const
virtual

Get the array of non-dimensional species solution chemical potentials at the current T and P \(\mu_k / \hat R T \).

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k + RT ln(X_k) \]

where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).

Parameters
muOutput vector of dimensionless chemical potentials. Length = m_kk.

Reimplemented from ThermoPhase.

Definition at line 206 of file IdealSolidSolnPhase.cpp.

References Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol). For this phase, the partial molar enthalpies are equal to the pure species enthalpies

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
hbarOutput vector containing partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 219 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.

\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]

The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
sbarOutput vector containing partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 229 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, Phase::m_kk, Phase::moleFraction(), and Cantera::SmallNumber.

◆ getPartialMolarCp()

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.

Parameters
cpbarOutput vector of partial heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 238 of file IdealSolidSolnPhase.cpp.

References Cantera::GasConstant, IdealSolidSolnPhase::getCp_R(), and Phase::m_kk.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

returns an array of partial molar volumes of the species in the solution.

Units: m^3 kmol-1.

For this solution, the partial molar volumes are equal to the constant species molar volumes.

Parameters
vbarOutput vector of partial molar volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 246 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::getStandardVolumes().

◆ getStandardChemPotentials()

virtual void getStandardChemPotentials ( doublereal *  mu0) const
inlinevirtual

Get the standard state chemical potentials of the species.

This is the array of chemical potentials at unit activity \( \mu^0_k(T,P) \). We define these here as the chemical potentials of the pure species at the temperature and pressure of the solution. This function is used in the evaluation of the equilibrium constant Kc. Therefore, Kc will also depend on T and P. This is the norm for liquid and solid systems.

units = J / kmol

Parameters
mu0Output vector of standard state chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 429 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::getPureGibbs().

◆ getEnthalpy_RT()

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.

We assume an incompressible constant partial molar volume here:

\[ h^0_k(T,P) = h^{ref}_k(T) + (P - P_{ref}) * V_k \]

where \(V_k\) is the molar volume of pure species k. \( h^{ref}_k(T)\) is the enthalpy of the pure species k at the reference pressure, \(P_{ref}\).

Parameters
hrtVector of length m_kk, which on return hrt[k] will contain the nondimensional standard state enthalpy of species k.

Reimplemented from ThermoPhase.

Definition at line 271 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().

◆ getEntropy_R()

void getEntropy_R ( doublereal *  sr) const
virtual

Get the nondimensional Entropies for the species standard states at the current T and P of the solution.

Note, this is equal to the reference state entropies due to the zero volume expansivity: that is, (dS/dP)_T = (dV/dT)_P = 0.0

Parameters
srVector of length m_kk, which on return sr[k] will contain the nondimensional standard state entropy for species k.

Reimplemented from ThermoPhase.

Definition at line 280 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::entropy_R_ref().

◆ getGibbs_RT()

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs function for the species standard states at the current T and P of the solution.

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]

where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).

Parameters
grtVector of length m_kk, which on return sr[k] will contain the nondimensional standard state Gibbs function for species k.

Reimplemented from ThermoPhase.

Definition at line 262 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().

◆ getPureGibbs()

void getPureGibbs ( doublereal *  gpure) const
virtual

Get the Gibbs functions for the pure species at the current T and P of the solution.

We assume an incompressible constant partial molar volume here:

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]

where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).

Parameters
gpureOutput vector of Gibbs functions for species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 253 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().

Referenced by IdealSolidSolnPhase::getStandardChemPotentials().

◆ getIntEnergy_RT()

void getIntEnergy_RT ( doublereal *  urt) const
virtual

Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.

Parameters
urtoutput vector of nondimensional standard state internal energies of the species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 286 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().

◆ getCp_R()

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.

\[ Cp^0_k(T,P) = Cp^{ref}_k(T) \]

where \(V_k\) is the molar volume of pure species k. \( Cp^{ref}_k(T)\) is the constant pressure heat capacity of species k at the reference pressure, \(p_{ref}\).

Parameters
cprVector of length m_kk, which on return cpr[k] will contain the nondimensional constant pressure heat capacity for species k.

Reimplemented from ThermoPhase.

Definition at line 295 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::cp_R_ref().

Referenced by IdealSolidSolnPhase::getPartialMolarCp().

◆ getStandardVolumes()

void getStandardVolumes ( doublereal *  vol) const
virtual

Get the molar volumes of the species standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 301 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

Referenced by IdealSolidSolnPhase::getPartialMolarVolumes().

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 308 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_h0_RT, and Phase::m_kk.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 316 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_g0_RT, and Phase::m_kk.

◆ getGibbs_ref()

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 324 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_g0_RT, Phase::m_kk, and ThermoPhase::RT().

◆ getEntropy_R_ref()

void getEntropy_R_ref ( doublereal *  er) const
virtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 342 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), Phase::m_kk, and IdealSolidSolnPhase::m_s0_R.

◆ getIntEnergy_RT_ref()

void getIntEnergy_RT_ref ( doublereal *  urt) const
virtual

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector of nondimensional reference state internal energies of the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 333 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().

◆ getCp_R_ref()

void getCp_R_ref ( doublereal *  cprt) const
virtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 350 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_cp0_R, and Phase::m_kk.

◆ enthalpy_RT_ref()

const vector_fp & enthalpy_RT_ref ( ) const

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 358 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_h0_RT.

Referenced by IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), and IdealSolidSolnPhase::getPartialMolarEnthalpies().

◆ gibbs_RT_ref()

const vector_fp & gibbs_RT_ref ( ) const
inline

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 535 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_g0_RT.

Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::gibbs_mole(), and IdealSolidSolnPhase::setToEquilState().

◆ entropy_R_ref()

const vector_fp & entropy_R_ref ( ) const

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 364 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_s0_R.

Referenced by IdealSolidSolnPhase::entropy_mole(), IdealSolidSolnPhase::getEntropy_R(), and IdealSolidSolnPhase::getPartialMolarEntropies().

◆ cp_R_ref()

const vector_fp & cp_R_ref ( ) const
inline

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 554 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_cp0_R.

Referenced by IdealSolidSolnPhase::cp_mole(), and IdealSolidSolnPhase::getCp_R().

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
virtual

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().

Reimplemented from ThermoPhase.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 372 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::addSpecies(), IdealSolidSolnPhase::calcDensity(), IdealSolidSolnPhase::m_cp0_R, IdealSolidSolnPhase::m_expg0_RT, IdealSolidSolnPhase::m_g0_RT, IdealSolidSolnPhase::m_h0_RT, Phase::m_kk, IdealSolidSolnPhase::m_pp, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_s0_R, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::molecularWeight(), Phase::ready(), and ThermoPhase::refPressure().

Referenced by BinarySolutionTabulatedThermo::addSpecies().

◆ initThermo()

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().

When importing from an AnyMap phase description (or from a YAML file), this method is responsible for setting model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 419 of file IdealSolidSolnPhase.cpp.

References AnyMap::hasKey(), ThermoPhase::initThermo(), ThermoPhase::m_input, and IdealSolidSolnPhase::setStandardConcentrationModel().

Referenced by BinarySolutionTabulatedThermo::initThermo().

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
virtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 427 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::getParameters(), and IdealSolidSolnPhase::m_formGC.

Referenced by BinarySolutionTabulatedThermo::getParameters().

◆ getSpeciesParameters()

void getSpeciesParameters ( const std::string &  name,
AnyMap speciesNode 
) const
virtual

Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.

Parameters
nameName of the species
speciesNodeMapping to be populated with parameters

Reimplemented from ThermoPhase.

Definition at line 437 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::getSpeciesParameters(), Phase::name(), and Phase::speciesIndex().

◆ initThermoXML()

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Reimplemented from ThermoPhase.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 464 of file IdealSolidSolnPhase.cpp.

References Cantera::caseInsensitiveEquals(), XML_Node::child(), XML_Node::hasChild(), XML_Node::id(), ThermoPhase::initThermoXML(), and IdealSolidSolnPhase::setStandardConcentrationModel().

◆ setToEquilState()

void setToEquilState ( const doublereal *  mu_RT)
virtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
mu_RTInput vector of dimensionless chemical potentials The length is equal to nSpecies().

Reimplemented from ThermoPhase.

Definition at line 500 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_pp, ThermoPhase::refPressure(), and ThermoPhase::setState_PX().

◆ setStandardConcentrationModel()

void setStandardConcentrationModel ( const std::string &  model)

Set the form for the standard and generalized concentrations.

Must be one of 'unity', 'species-molar-volume', or 'solvent-molar-volume'. The default is 'unity'.

m_formGC GeneralizedConc StandardConc
unity X_k 1.0
species-molar-volume X_k / V_k 1.0 / V_k
solvent-molar-volume X_k / V_N 1.0 / V_N

The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.

Definition at line 529 of file IdealSolidSolnPhase.cpp.

References Cantera::caseInsensitiveEquals(), and IdealSolidSolnPhase::m_formGC.

Referenced by IdealSolidSolnPhase::initThermo(), IdealSolidSolnPhase::initThermoXML(), and BinarySolutionTabulatedThermo::initThermoXML().

◆ speciesMolarVolume()

double speciesMolarVolume ( int  k) const

Report the molar volume of species k.

units - \( m^3 kmol^-1 \)

Parameters
kspecies index

Definition at line 545 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

◆ getSpeciesMolarVolumes()

void getSpeciesMolarVolumes ( doublereal *  smv) const

Fill in a return vector containing the species molar volumes.

units - \( m^3 kmol^-1 \)

Parameters
smvoutput vector containing species molar volumes. Length: m_kk.

Definition at line 550 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

◆ compositionChanged()

void compositionChanged ( )
protectedvirtual

Apply changes to the state which are needed after the composition changes.

This function is called after any call to setMassFractions(), setMoleFractions(), or similar. For phases which need to execute a callback after any change to the composition, it should be done by overriding this function rather than overriding all of the composition- setting functions. Derived class implementations of compositionChanged() should call the parent class method as well.

Reimplemented from Phase.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 133 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and Phase::compositionChanged().

Referenced by BinarySolutionTabulatedThermo::compositionChanged().

◆ _updateThermo()

void _updateThermo ( ) const
privatevirtual

This function gets called for every call to functions in this class.

It checks to see whether the temperature has changed and thus the reference thermodynamics functions for all of the species must be recalculated. If the temperature has changed, the species thermo manager is called to recalculate G, Cp, H, and S at the current temperature.

Reimplemented in BinarySolutionTabulatedThermo.

Definition at line 555 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_cp0_R, IdealSolidSolnPhase::m_g0_RT, IdealSolidSolnPhase::m_h0_RT, Phase::m_kk, IdealSolidSolnPhase::m_s0_R, ThermoPhase::m_spthermo, ThermoPhase::m_tlast, Phase::temperature(), and MultiSpeciesThermo::update().

Referenced by IdealSolidSolnPhase::cp_R_ref(), IdealSolidSolnPhase::enthalpy_RT_ref(), IdealSolidSolnPhase::entropy_R_ref(), IdealSolidSolnPhase::getCp_R_ref(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), IdealSolidSolnPhase::getEntropy_R_ref(), IdealSolidSolnPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_RT_ref(), and IdealSolidSolnPhase::gibbs_RT_ref().

Member Data Documentation

◆ m_formGC

int m_formGC
protected

◆ m_Pref

doublereal m_Pref
protected

Value of the reference pressure for all species in this phase.

The T dependent polynomials are evaluated at the reference pressure. Note, because this is a single value, all species are required to have the same reference pressure.

Definition at line 624 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), and IdealSolidSolnPhase::getPureGibbs().

◆ m_Pcurrent

doublereal m_Pcurrent
protected

m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure.

The density variable which is inherited as part of the State class, m_dens, is always kept current whenever T, P, or X[] change.

Definition at line 633 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::pressure(), and IdealSolidSolnPhase::setPressure().

◆ m_speciesMolarVolume

vector_fp m_speciesMolarVolume
protected

◆ m_h0_RT

vector_fp m_h0_RT
mutableprotected

◆ m_cp0_R

vector_fp m_cp0_R
mutableprotected

Vector containing the species reference constant pressure heat capacities at T = m_tlast.

Definition at line 646 of file IdealSolidSolnPhase.h.

Referenced by BinarySolutionTabulatedThermo::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::cp_R_ref(), and IdealSolidSolnPhase::getCp_R_ref().

◆ m_g0_RT

vector_fp m_g0_RT
mutableprotected

◆ m_s0_R

vector_fp m_s0_R
mutableprotected

◆ m_expg0_RT

vector_fp m_expg0_RT
mutableprotected

Vector containing the species reference exp(-G/RT) functions at T = m_tlast.

Definition at line 656 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::addSpecies().

◆ m_pp

vector_fp m_pp
mutableprotected

Temporary array used in equilibrium calculations.

Definition at line 659 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::addSpecies(), and IdealSolidSolnPhase::setToEquilState().


The documentation for this class was generated from the following files: