Cantera 2.6.0
|
Base class for a phase with plasma properties. More...
#include <PlasmaPhase.h>
Public Member Functions | |
PlasmaPhase (const std::string &inputFile="", const std::string &id="") | |
Construct and initialize a PlasmaPhase object directly from an input file. More... | |
virtual std::string | type () const |
String indicating the thermodynamic model implemented. More... | |
virtual void | initThermo () |
Initialize the ThermoPhase object after all species have been set up. More... | |
void | setElectronEnergyLevels (const double *levels, size_t length) |
Set electron energy levels. More... | |
void | getElectronEnergyLevels (double *levels) const |
Get electron energy levels. More... | |
void | setDiscretizedElectronEnergyDist (const double *levels, const double *distrb, size_t length) |
Set discretized electron energy distribution. More... | |
void | getElectronEnergyDistribution (double *distrb) const |
Get electron energy distribution. More... | |
void | setIsotropicShapeFactor (double x) |
Set the shape factor of isotropic electron energy distribution. More... | |
double | isotropicShapeFactor () const |
The shape factor of isotropic electron energy distribution. More... | |
virtual void | setElectronTemperature (double Te) |
Set the internally stored electron temperature of the phase (K). More... | |
void | setMeanElectronEnergy (double energy) |
Set mean electron energy [eV]. More... | |
std::string | electronEnergyDistributionType () const |
Get electron energy distribution type. More... | |
void | setElectronEnergyDistributionType (const std::string &type) |
Set electron energy distribution type. More... | |
std::string | quadratureMethod () const |
Numerical quadrature method. Method: m_quadratureMethod. More... | |
void | setQuadratureMethod (const std::string &method) |
Set numerical quadrature method for intergating electron energy distribution function. More... | |
double | meanElectronEnergy () const |
Mean electron energy [eV]. More... | |
void | enableNormalizeElectronEnergyDist (bool enable) |
Set flag of automatically normalize electron energy distribution Flag: m_do_normalizeElectronEnergyDist. More... | |
bool | normalizeElectronEnergyDistEnabled () const |
Flag of automatically normalize electron energy distribution. More... | |
virtual bool | addSpecies (shared_ptr< Species > spec) |
virtual double | electronTemperature () const |
Electron Temperature (K) More... | |
size_t | nElectronEnergyLevels () const |
Number of electron levels. More... | |
virtual void | getParameters (AnyMap &phaseNode) const |
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More... | |
virtual void | setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) |
Set equation of state parameters from an AnyMap phase description. More... | |
Public Member Functions inherited from IdealGasPhase | |
IdealGasPhase (const std::string &inputFile="", const std::string &id="") | |
Construct and initialize an IdealGasPhase ThermoPhase object directly from an ASCII input file. More... | |
IdealGasPhase (XML_Node &phaseRef, const std::string &id="") | |
Construct and initialize an IdealGasPhase ThermoPhase object directly from an XML database. More... | |
virtual bool | isIdeal () const |
Boolean indicating whether phase is ideal. More... | |
virtual std::string | phaseOfMatter () const |
String indicating the mechanical phase of the matter in this Phase. More... | |
virtual void | setToEquilState (const doublereal *mu_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
virtual doublereal | enthalpy_mole () const |
Return the Molar enthalpy. Units: J/kmol. More... | |
virtual doublereal | entropy_mole () const |
Molar entropy. More... | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure. More... | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. More... | |
virtual doublereal | pressure () const |
Pressure. More... | |
virtual void | setPressure (doublereal p) |
Set the pressure at constant temperature and composition. More... | |
virtual void | setState_RP (doublereal rho, doublereal p) |
Set the density and pressure at constant composition. More... | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns the array of generalized concentrations. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration. More... | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. More... | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Return an array of partial molar heat capacities for the species in the mixture. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
Return an array of partial molar volumes for the species in the mixture. More... | |
virtual void | getStandardChemPotentials (doublereal *mu) const |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More... | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of the species standard states at the current T and P of the solution. More... | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More... | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
const vector_fp & | enthalpy_RT_ref () const |
Returns a reference to the dimensionless reference state enthalpy vector. More... | |
const vector_fp & | gibbs_RT_ref () const |
Returns a reference to the dimensionless reference state Gibbs free energy vector. More... | |
const vector_fp & | entropy_R_ref () const |
Returns a reference to the dimensionless reference state Entropy vector. More... | |
const vector_fp & | cp_R_ref () const |
Returns a reference to the dimensionless reference state Heat Capacity vector. More... | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
doublereal | RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
double | equivalenceRatio () const |
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
doublereal | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const size_t k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. More... | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy. Units: J/kmol. More... | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs function. Units: J/kmol. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual Units | standardConcentrationUnits () const |
Returns the units of the "standard concentration" for this phase. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. Units: J/kg. More... | |
doublereal | entropy_mass () const |
Specific entropy. Units: J/kg/K. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (double h, double p, double tol=1e-9) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (double u, double v, double tol=1e-9) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (double s, double p, double tol=1e-9) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (double s, double v, double tol=1e-9) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). More... | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). More... | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). More... | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). More... | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More... | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const doublereal *x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const compositionMap &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const std::string &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const doublereal *y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const compositionMap &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const std::string &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState (const AnyMap &state) |
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More... | |
void | setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
double | mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
void | setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
double | equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
void | equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. More... | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More... | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critVolume () const |
Critical volume (m3/kmol). More... | |
virtual doublereal | critCompressibility () const |
Critical compressibility (unitless). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | satPressure (doublereal t) |
Return the saturation pressure given the temperature. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
void | setState_TPQ (double T, double P, double Q) |
Set the temperature, pressure, and vapor fraction (quality). More... | |
virtual void | modifySpecies (size_t k, shared_ptr< Species > spec) |
Modify the thermodynamic data associated with a species. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual const MultiSpeciesThermo & | speciesThermo (int k=-1) const |
void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object using an XML tree. More... | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
AnyMap | parameters (bool withInput=true) const |
Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More... | |
virtual void | getSpeciesParameters (const std::string &name, AnyMap &speciesNode) const |
Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More... | |
const AnyMap & | input () const |
Access input data associated with the phase description. More... | |
AnyMap & | input () |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. More... | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. More... | |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true, doublereal threshold=-1e-14) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
Phase (const Phase &)=delete | |
Phase & | operator= (const Phase &)=delete |
XML_Node & | xml () const |
Returns a const reference to the XML_Node that describes the phase. More... | |
void | setXMLdata (XML_Node &xmlPhase) |
Stores the XML tree information for the current phase. More... | |
virtual bool | isPure () const |
Return whether phase represents a pure (single species) substance. More... | |
virtual bool | hasPhaseTransition () const |
Return whether phase represents a substance with phase transitions. More... | |
virtual bool | isCompressible () const |
Return whether phase represents a compressible substance. More... | |
virtual std::map< std::string, size_t > | nativeState () const |
Return a map of properties defining the native state of a substance. More... | |
virtual std::vector< std::string > | fullStates () const |
Return a vector containing full states defining a phase. More... | |
virtual std::vector< std::string > | partialStates () const |
Return a vector of settable partial property sets within a phase. More... | |
virtual size_t | stateSize () const |
Return size of vector defining internal state of the phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase. More... | |
virtual void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
virtual void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
void | getCharges (double *charges) const |
Copy the vector of species charges into array charges. More... | |
doublereal | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. More... | |
doublereal | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. More... | |
const double * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. More... | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
bool | caseSensitiveSpecies () const |
Returns true if case sensitive species names are enforced. More... | |
void | setCaseSensitiveSpecies (bool cflag=true) |
Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More... | |
virtual void | setRoot (std::shared_ptr< Solution > root) |
Set root Solution holding all phase information. More... | |
vector_fp | getCompositionFromMap (const compositionMap &comp) const |
Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More... | |
void | massFractionsToMoleFractions (const double *Y, double *X) const |
Converts a mixture composition from mole fractions to mass fractions. More... | |
void | moleFractionsToMassFractions (const double *X, double *Y) const |
Converts a mixture composition from mass fractions to mole fractions. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
void | setMoleFractionsByName (const compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (const compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, const compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
compositionMap | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. More... | |
double | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
double | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
compositionMap | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. More... | |
double | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
double | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (double *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions (const double *const x) |
Set the mole fractions to the specified values. More... | |
virtual void | setMoleFractions_NoNorm (const double *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (double *const y) const |
Get the species mass fractions. More... | |
const double * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
virtual void | setMassFractions (const double *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const double *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
void | getConcentrations (double *const c) const |
Get the species concentrations (kmol/m^3). More... | |
double | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrations (const double *const conc) |
Set the concentrations to the specified values within the phase. More... | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual double | density () const |
Density (kg/m^3). More... | |
double | molarDensity () const |
Molar density (kmol/m^3). More... | |
double | molarVolume () const |
Molar volume (m^3/kmol). More... | |
virtual void | setDensity (const double density_) |
Set the internally stored density (kg/m^3) of the phase. More... | |
virtual void | setMolarDensity (const double molarDensity) |
Set the internally stored molar density (kmol/m^3) of the phase. More... | |
virtual void | setTemperature (double temp) |
Set the internally stored temperature of the phase (K). More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_X (const vector_fp &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
size_t | addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. More... | |
void | addSpeciesAlias (const std::string &name, const std::string &alias) |
Add a species alias (that is, a user-defined alternative species name). More... | |
virtual std::vector< std::string > | findIsomers (const compositionMap &compMap) const |
Return a vector with isomers names matching a given composition map. More... | |
virtual std::vector< std::string > | findIsomers (const std::string &comp) const |
Return a vector with isomers names matching a given composition string. More... | |
shared_ptr< Species > | species (const std::string &name) const |
Return the Species object for the named species. More... | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. More... | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. More... | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. More... | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. More... | |
Protected Member Functions | |
virtual void | updateThermo () const |
void | checkElectronEnergyLevels () const |
Check the electron energy levels. More... | |
void | checkElectronEnergyDistribution () const |
Check the electron energy distribution. More... | |
void | updateElectronEnergyDistribution () |
Update electron energy distribution. More... | |
void | setIsotropicElectronEnergyDistribution () |
Set isotropic electron energy distribution. More... | |
void | updateElectronTemperatureFromEnergyDist () |
Update electron temperature (K) From energy distribution. More... | |
void | normalizeElectronEnergyDistribution () |
Electron energy distribution norm. More... | |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | assertCompressible (const std::string &setter) const |
Ensure that phase is compressible. More... | |
void | assignDensity (const double density_) |
Set the internally stored constant density (kg/m^3) of the phase. More... | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. More... | |
Protected Attributes | |
double | m_isotropicShapeFactor |
size_t | m_nPoints |
Number of points of electron energy levels. More... | |
Eigen::ArrayXd | m_electronEnergyLevels |
electron energy levels [ev]. Length: m_nPoints More... | |
Eigen::ArrayXd | m_electronEnergyDist |
Normalized electron energy distribution vector [-] Length: m_nPoints. More... | |
size_t | m_electronSpeciesIndex |
Index of electron species. More... | |
double | m_electronTemp |
Electron temperature [K]. More... | |
std::string | m_distributionType |
Electron energy distribution type. More... | |
std::string | m_quadratureMethod |
Numerical quadrature method for electron energy distribution. More... | |
bool | m_do_normalizeElectronEnergyDist |
Flag of normalizing electron energy distribution. More... | |
Protected Attributes inherited from IdealGasPhase | |
doublereal | m_p0 |
Reference state pressure. More... | |
vector_fp | m_h0_RT |
Temporary storage for dimensionless reference state enthalpies. More... | |
vector_fp | m_cp0_R |
Temporary storage for dimensionless reference state heat capacities. More... | |
vector_fp | m_g0_RT |
Temporary storage for dimensionless reference state Gibbs energies. More... | |
vector_fp | m_s0_R |
Temporary storage for dimensionless reference state entropies. More... | |
vector_fp | m_expg0_RT |
vector_fp | m_pp |
Temporary array containing internally calculated partial pressures. More... | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
AnyMap | m_input |
Data supplied via setParameters. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. Units are Volts. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
doublereal | m_tlast |
last value of the temperature processed by reference state More... | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. More... | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
std::map< std::string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior |
Flag determining behavior when adding species with an undefined element. More... | |
bool | m_caseSensitiveSpecies |
Flag determining whether case sensitive species names are enforced. More... | |
Base class for a phase with plasma properties.
This class manages the plasma properties such as electron energy distribution function (EEDF). There are two ways to define the electron distribution and electron temperature. The first method uses setElectronTemperature() to set the electron temperature which is used to calculate the electron energy distribution with isotropic-velocity model. The generalized electron energy distribution for isotropic-velocity distribution can be expressed as [1,2],
\[ f(\epsilon) = c_1 \frac{\sqrt{\epsilon}}{\epsilon_m^{3/2}} \exp(-c_2 (\frac{\epsilon}{\epsilon_m})^x), \]
where \( x = 1 \) and \( x = 2 \) correspond to the Maxwellian and Druyvesteyn (default) electron energy distribution, respectively. \( \epsilon_m = 3/2 T_e \) [eV] (mean electron energy). The second method uses setDiscretizedElectronEnergyDist() to manually set electron energy distribution and calculate electron temperature from mean electron energy, which is calculated as [3],
\[ \epsilon_m = \int_0^{\infty} \epsilon^{3/2} f(\epsilon) d\epsilon, \]
which can be calculated using trapezoidal rule,
\[ \epsilon_m = \sum_i (\epsilon^{5/2}_{i+1} - \epsilon^{5/2}_i) (f(\epsilon_{i+1}) + f(\epsilon_i)) / 2, \]
where \( i \) is the index of energy levels.
References:
[1] J. T. Gudmundsson. On the effect of the electron energy distribution on the plasma parameters of an argon discharge: a global (volume-averaged) model study. Plasma Sources Science and Technology, 10.1 (2001): 76. doi: https://doi.org/10.1088/0963-0252/10/1/310
[2] H. Khalilpour and G. Foroutan. The effects of electron energy distribution function on the plasma sheath structure in the presence of charged nanoparticles Journal of Plasma Physics 86.2 (2020). doi: https://doi.org/10.1017/S0022377820000161
[3] G. J. M. Hagelaar and L. C. Pitchford "Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models." Plasma Sources Science and Technology 14.4 (2005): 722. doi: https://doi.org/10.1088/0963-0252/14/4/011
[4] A. Luque, "BOLOS: An open source solver for the Boltzmann equation," https://github.com/aluque/bolos.
Definition at line 74 of file PlasmaPhase.h.
|
explicit |
Construct and initialize a PlasmaPhase object directly from an input file.
The constructor initializes the electron energy distribution to be Druyvesteyn distribution (m_x = 2.0). The initial electron energy grid is set to a linear space which starts at 0.01 eV and ends at 1 eV with 1000 points.
inputFile | Name of the input file containing the phase definition to set up the object. If blank, an empty phase will be created. |
id | ID of the phase in the input file. Defaults to the empty string. |
Definition at line 14 of file PlasmaPhase.cpp.
References ThermoPhase::initThermoFile(), PlasmaPhase::m_electronEnergyLevels, PlasmaPhase::m_nPoints, PlasmaPhase::setElectronTemperature(), and Phase::temperature().
|
inlinevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from IdealGasPhase.
Definition at line 92 of file PlasmaPhase.h.
|
virtual |
Initialize the ThermoPhase object after all species have been set up.
Initialize.
This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.
When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().
When importing from an AnyMap phase description (or from a YAML file), this method is responsible for setting model parameters from the data stored in m_input.
Reimplemented from ThermoPhase.
Definition at line 241 of file PlasmaPhase.cpp.
References ThermoPhase::initThermo(), PlasmaPhase::m_electronSpeciesIndex, and Cantera::npos.
void setElectronEnergyLevels | ( | const double * | levels, |
size_t | length | ||
) |
Set electron energy levels.
levels | The vector of electron energy levels (eV). Length: m_nPoints. |
length | The length of the levels . |
Definition at line 90 of file PlasmaPhase.cpp.
References PlasmaPhase::checkElectronEnergyLevels(), PlasmaPhase::m_electronEnergyLevels, PlasmaPhase::m_nPoints, and PlasmaPhase::updateElectronEnergyDistribution().
Referenced by PlasmaPhase::setParameters().
|
inline |
Get electron energy levels.
levels | The vector of electron energy levels (eV). Length: m_nPoints |
Definition at line 106 of file PlasmaPhase.h.
References PlasmaPhase::m_electronEnergyLevels, and PlasmaPhase::m_nPoints.
void setDiscretizedElectronEnergyDist | ( | const double * | levels, |
const double * | distrb, | ||
size_t | length | ||
) |
Set discretized electron energy distribution.
levels | The vector of electron energy levels (eV). Length: m_nPoints. |
distrb | The vector of electron energy distribution. Length: m_nPoints. |
length | The length of the vectors, which equals m_nPoints. |
Definition at line 126 of file PlasmaPhase.cpp.
References PlasmaPhase::checkElectronEnergyDistribution(), PlasmaPhase::checkElectronEnergyLevels(), PlasmaPhase::m_distributionType, PlasmaPhase::m_do_normalizeElectronEnergyDist, PlasmaPhase::m_electronEnergyDist, PlasmaPhase::m_electronEnergyLevels, PlasmaPhase::m_nPoints, PlasmaPhase::normalizeElectronEnergyDistribution(), and PlasmaPhase::updateElectronTemperatureFromEnergyDist().
Referenced by PlasmaPhase::setParameters().
|
inline |
Get electron energy distribution.
distrb | The vector of electron energy distribution. Length: m_nPoints. |
Definition at line 123 of file PlasmaPhase.h.
References PlasmaPhase::m_electronEnergyDist, and PlasmaPhase::m_nPoints.
void setIsotropicShapeFactor | ( | double | x | ) |
Set the shape factor of isotropic electron energy distribution.
Note that \( x = 1 \) and \( x = 2 \) correspond to the Maxwellian and Druyvesteyn distribution, respectively.
x | The shape factor |
Definition at line 153 of file PlasmaPhase.cpp.
References PlasmaPhase::setIsotropicElectronEnergyDistribution().
Referenced by PlasmaPhase::setParameters().
|
inline |
The shape factor of isotropic electron energy distribution.
Definition at line 134 of file PlasmaPhase.h.
|
virtual |
Set the internally stored electron temperature of the phase (K).
Te | Electron temperature in Kelvin |
Reimplemented from Phase.
Definition at line 80 of file PlasmaPhase.cpp.
References PlasmaPhase::m_electronTemp, and PlasmaPhase::updateElectronEnergyDistribution().
Referenced by PlasmaPhase::PlasmaPhase().
void setMeanElectronEnergy | ( | double | energy | ) |
Set mean electron energy [eV].
This method also sets electron temperature accordingly.
Definition at line 85 of file PlasmaPhase.cpp.
References Cantera::Boltzmann, Cantera::ElectronCharge, PlasmaPhase::m_electronTemp, and PlasmaPhase::updateElectronEnergyDistribution().
Referenced by PlasmaPhase::setParameters().
|
inline |
Get electron energy distribution type.
Definition at line 147 of file PlasmaPhase.h.
References PlasmaPhase::m_distributionType.
void setElectronEnergyDistributionType | ( | const std::string & | type | ) |
Set electron energy distribution type.
Definition at line 53 of file PlasmaPhase.cpp.
|
inline |
Numerical quadrature method. Method: m_quadratureMethod.
Definition at line 155 of file PlasmaPhase.h.
References PlasmaPhase::m_quadratureMethod.
|
inline |
Set numerical quadrature method for intergating electron energy distribution function.
Method: m_quadratureMethod
Definition at line 161 of file PlasmaPhase.h.
References PlasmaPhase::m_quadratureMethod.
|
inline |
Mean electron energy [eV].
Definition at line 166 of file PlasmaPhase.h.
References Cantera::Boltzmann, Cantera::ElectronCharge, and PlasmaPhase::electronTemperature().
Referenced by PlasmaPhase::checkElectronEnergyDistribution(), PlasmaPhase::getParameters(), and PlasmaPhase::setIsotropicElectronEnergyDistribution().
|
inline |
Set flag of automatically normalize electron energy distribution Flag: m_do_normalizeElectronEnergyDist.
Definition at line 172 of file PlasmaPhase.h.
References PlasmaPhase::m_do_normalizeElectronEnergyDist.
Referenced by PlasmaPhase::setParameters().
|
inline |
Flag of automatically normalize electron energy distribution.
Flag: m_do_normalizeElectronEnergyDist
Definition at line 178 of file PlasmaPhase.h.
References PlasmaPhase::m_do_normalizeElectronEnergyDist.
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from IdealGasPhase.
Definition at line 222 of file PlasmaPhase.cpp.
References IdealGasPhase::addSpecies(), PlasmaPhase::m_electronSpeciesIndex, Phase::m_kk, and Cantera::npos.
|
inlinevirtual |
Electron Temperature (K)
Reimplemented from Phase.
Definition at line 186 of file PlasmaPhase.h.
References PlasmaPhase::m_electronTemp.
Referenced by PlasmaPhase::meanElectronEnergy(), and PlasmaPhase::updateThermo().
|
inline |
Number of electron levels.
Definition at line 191 of file PlasmaPhase.h.
References PlasmaPhase::m_nPoints.
|
virtual |
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function.
This does not include user-defined fields available in input().
Reimplemented from ThermoPhase.
Definition at line 158 of file PlasmaPhase.cpp.
References ThermoPhase::getParameters(), PlasmaPhase::m_distributionType, PlasmaPhase::m_do_normalizeElectronEnergyDist, PlasmaPhase::m_electronEnergyDist, PlasmaPhase::m_electronEnergyLevels, PlasmaPhase::m_nPoints, and PlasmaPhase::meanElectronEnergy().
Set equation of state parameters from an AnyMap phase description.
Phases that need additional parameters from the root node should override this method.
Reimplemented from ThermoPhase.
Definition at line 178 of file PlasmaPhase.cpp.
References AnyMap::convert(), PlasmaPhase::enableNormalizeElectronEnergyDist(), AnyMap::hasKey(), PlasmaPhase::m_distributionType, PlasmaPhase::setDiscretizedElectronEnergyDist(), PlasmaPhase::setElectronEnergyLevels(), PlasmaPhase::setIsotropicElectronEnergyDistribution(), PlasmaPhase::setIsotropicShapeFactor(), PlasmaPhase::setMeanElectronEnergy(), and ThermoPhase::setParameters().
|
protectedvirtual |
Update the species reference state thermodynamic functions
This method is called each time a thermodynamic property is requested, to check whether the internal species properties within the object need to be updated. Currently, this updates the species thermo polynomial values for the current value of the temperature. A check is made to see if the temperature has changed since the last evaluation. This object does not contain any persistent data that depends on the concentration, that needs to be updated. The state object modifies its concentration dependent information at the time the setMoleFractions() (or equivalent) call is made.
Reimplemented from IdealGasPhase.
Definition at line 251 of file PlasmaPhase.cpp.
References PlasmaPhase::electronTemperature(), ValueCache::getId(), ValueCache::getScalar(), Phase::m_cache, IdealGasPhase::m_cp0_R, PlasmaPhase::m_electronSpeciesIndex, IdealGasPhase::m_g0_RT, IdealGasPhase::m_h0_RT, IdealGasPhase::m_s0_R, ThermoPhase::m_spthermo, CachedValue< T >::state1, CachedValue< T >::state2, Phase::temperature(), MultiSpeciesThermo::update_single(), and IdealGasPhase::updateThermo().
|
protected |
Check the electron energy levels.
The values of electron energy levels need to be positive and monotonically increasing.
Definition at line 98 of file PlasmaPhase.cpp.
References PlasmaPhase::m_electronEnergyLevels, and PlasmaPhase::m_nPoints.
Referenced by PlasmaPhase::setDiscretizedElectronEnergyDist(), and PlasmaPhase::setElectronEnergyLevels().
|
protected |
Check the electron energy distribution.
This method check the electron energy distribution for the criteria below.
Definition at line 109 of file PlasmaPhase.cpp.
References PlasmaPhase::m_electronEnergyDist, PlasmaPhase::m_electronEnergyLevels, PlasmaPhase::m_nPoints, PlasmaPhase::meanElectronEnergy(), and Cantera::warn_user().
Referenced by PlasmaPhase::setDiscretizedElectronEnergyDist(), and PlasmaPhase::setIsotropicElectronEnergyDistribution().
|
protected |
Update electron energy distribution.
Definition at line 31 of file PlasmaPhase.cpp.
References PlasmaPhase::m_distributionType, and PlasmaPhase::setIsotropicElectronEnergyDistribution().
Referenced by PlasmaPhase::setElectronEnergyLevels(), PlasmaPhase::setElectronTemperature(), and PlasmaPhase::setMeanElectronEnergy().
|
protected |
Set isotropic electron energy distribution.
Definition at line 64 of file PlasmaPhase.cpp.
References PlasmaPhase::checkElectronEnergyDistribution(), PlasmaPhase::m_electronEnergyDist, PlasmaPhase::m_electronEnergyLevels, PlasmaPhase::m_nPoints, and PlasmaPhase::meanElectronEnergy().
Referenced by PlasmaPhase::setIsotropicShapeFactor(), PlasmaPhase::setParameters(), and PlasmaPhase::updateElectronEnergyDistribution().
|
protected |
Update electron temperature (K) From energy distribution.
Definition at line 144 of file PlasmaPhase.cpp.
References Cantera::Boltzmann, Cantera::ElectronCharge, PlasmaPhase::m_electronEnergyDist, PlasmaPhase::m_electronEnergyLevels, PlasmaPhase::m_electronTemp, PlasmaPhase::m_quadratureMethod, and Cantera::numericalQuadrature().
Referenced by PlasmaPhase::setDiscretizedElectronEnergyDist().
|
protected |
Electron energy distribution norm.
Definition at line 41 of file PlasmaPhase.cpp.
References PlasmaPhase::m_electronEnergyDist, PlasmaPhase::m_electronEnergyLevels, PlasmaPhase::m_quadratureMethod, and Cantera::numericalQuadrature().
Referenced by PlasmaPhase::setDiscretizedElectronEnergyDist().
|
protected |
Definition at line 237 of file PlasmaPhase.h.
|
protected |
Number of points of electron energy levels.
Definition at line 240 of file PlasmaPhase.h.
Referenced by PlasmaPhase::checkElectronEnergyDistribution(), PlasmaPhase::checkElectronEnergyLevels(), PlasmaPhase::getElectronEnergyDistribution(), PlasmaPhase::getElectronEnergyLevels(), PlasmaPhase::getParameters(), PlasmaPhase::nElectronEnergyLevels(), PlasmaPhase::PlasmaPhase(), PlasmaPhase::setDiscretizedElectronEnergyDist(), PlasmaPhase::setElectronEnergyLevels(), and PlasmaPhase::setIsotropicElectronEnergyDistribution().
|
protected |
electron energy levels [ev]. Length: m_nPoints
Definition at line 243 of file PlasmaPhase.h.
Referenced by PlasmaPhase::checkElectronEnergyDistribution(), PlasmaPhase::checkElectronEnergyLevels(), PlasmaPhase::getElectronEnergyLevels(), PlasmaPhase::getParameters(), PlasmaPhase::normalizeElectronEnergyDistribution(), PlasmaPhase::PlasmaPhase(), PlasmaPhase::setDiscretizedElectronEnergyDist(), PlasmaPhase::setElectronEnergyLevels(), PlasmaPhase::setIsotropicElectronEnergyDistribution(), and PlasmaPhase::updateElectronTemperatureFromEnergyDist().
|
protected |
Normalized electron energy distribution vector [-] Length: m_nPoints.
Definition at line 247 of file PlasmaPhase.h.
Referenced by PlasmaPhase::checkElectronEnergyDistribution(), PlasmaPhase::getElectronEnergyDistribution(), PlasmaPhase::getParameters(), PlasmaPhase::normalizeElectronEnergyDistribution(), PlasmaPhase::setDiscretizedElectronEnergyDist(), PlasmaPhase::setIsotropicElectronEnergyDistribution(), and PlasmaPhase::updateElectronTemperatureFromEnergyDist().
|
protected |
Index of electron species.
Definition at line 250 of file PlasmaPhase.h.
Referenced by PlasmaPhase::addSpecies(), PlasmaPhase::initThermo(), and PlasmaPhase::updateThermo().
|
protected |
Electron temperature [K].
Definition at line 253 of file PlasmaPhase.h.
Referenced by PlasmaPhase::electronTemperature(), PlasmaPhase::setElectronTemperature(), PlasmaPhase::setMeanElectronEnergy(), and PlasmaPhase::updateElectronTemperatureFromEnergyDist().
|
protected |
Electron energy distribution type.
Definition at line 256 of file PlasmaPhase.h.
Referenced by PlasmaPhase::electronEnergyDistributionType(), PlasmaPhase::getParameters(), PlasmaPhase::setDiscretizedElectronEnergyDist(), PlasmaPhase::setParameters(), and PlasmaPhase::updateElectronEnergyDistribution().
|
protected |
Numerical quadrature method for electron energy distribution.
Definition at line 259 of file PlasmaPhase.h.
Referenced by PlasmaPhase::normalizeElectronEnergyDistribution(), PlasmaPhase::quadratureMethod(), PlasmaPhase::setQuadratureMethod(), and PlasmaPhase::updateElectronTemperatureFromEnergyDist().
|
protected |
Flag of normalizing electron energy distribution.
Definition at line 262 of file PlasmaPhase.h.
Referenced by PlasmaPhase::enableNormalizeElectronEnergyDist(), PlasmaPhase::getParameters(), PlasmaPhase::normalizeElectronEnergyDistEnabled(), and PlasmaPhase::setDiscretizedElectronEnergyDist().