Cantera  2.4.0
GasTransport.h
Go to the documentation of this file.
1 /**
2  * @file GasTransport.h
3  */
4 
5 // This file is part of Cantera. See License.txt in the top-level directory or
6 // at http://www.cantera.org/license.txt for license and copyright information.
7 
8 #ifndef CT_GAS_TRANSPORT_H
9 #define CT_GAS_TRANSPORT_H
10 
11 #include "TransportBase.h"
13 
14 namespace Cantera
15 {
16 
17 class MMCollisionInt;
18 
19 //! Class GasTransport implements some functions and properties that are
20 //! shared by the MixTransport and MultiTransport classes.
21 //!
22 //! ### References
23 //!
24 //! * [Kee2003] R. J. Kee, M. E. Coltrin, and P. Glarborg. Chemically Reacting
25 //! Flow: Theory and Practice. 1st Ed. John Wiley and Sons, 2003.
26 //! * [Kee2017] R. J. Kee, M. E. Coltrin, P. Glarborg, and H. Zhu. Chemically
27 //! Reacting Flow: Theory and Practice. 2nd Ed. John Wiley and Sons, 2017.
28 //!
29 //! @ingroup tranprops
30 class GasTransport : public Transport
31 {
32 public:
33  //! Viscosity of the mixture (kg /m /s)
34  /*!
35  * The viscosity is computed using the Wilke mixture rule (kg /m /s)
36  *
37  * \f[
38  * \mu = \sum_k \frac{\mu_k X_k}{\sum_j \Phi_{k,j} X_j}.
39  * \f]
40  *
41  * Here \f$ \mu_k \f$ is the viscosity of pure species \e k, and
42  *
43  * \f[
44  * \Phi_{k,j} = \frac{\left[1
45  * + \sqrt{\left(\frac{\mu_k}{\mu_j}\sqrt{\frac{M_j}{M_k}}\right)}\right]^2}
46  * {\sqrt{8}\sqrt{1 + M_k/M_j}}
47  * \f]
48  *
49  * @returns the viscosity of the mixture (units = Pa s = kg /m /s)
50  *
51  * @see updateViscosity_T();
52  */
53  virtual doublereal viscosity();
54 
55  //! Get the pure-species viscosities
56  virtual void getSpeciesViscosities(doublereal* const visc) {
57  update_T();
59  std::copy(m_visc.begin(), m_visc.end(), visc);
60  }
61 
62  //! Returns the matrix of binary diffusion coefficients.
63  /*!
64  * d[ld*j + i] = rp * m_bdiff(i,j);
65  *
66  * @param ld offset of rows in the storage
67  * @param d output vector of diffusion coefficients. Units of m**2 / s
68  */
69  virtual void getBinaryDiffCoeffs(const size_t ld, doublereal* const d);
70 
71  //! Returns the Mixture-averaged diffusion coefficients [m^2/s].
72  /*!
73  * Returns the mixture averaged diffusion coefficients for a gas,
74  * appropriate for calculating the mass averaged diffusive flux with respect
75  * to the mass averaged velocity using gradients of the mole fraction.
76  * Note, for the single species case or the pure fluid case the routine
77  * returns the self-diffusion coefficient. This is needed to avoid a Nan
78  * result in the formula below.
79  *
80  * This is Eqn. 12.180 from "Chemically Reacting Flow"
81  *
82  * \f[
83  * D_{km}' = \frac{\left( \bar{M} - X_k M_k \right)}{ \bar{\qquad M \qquad } } {\left( \sum_{j \ne k} \frac{X_j}{D_{kj}} \right) }^{-1}
84  * \f]
85  *
86  * @param[out] d Vector of mixture diffusion coefficients, \f$ D_{km}' \f$ ,
87  * for each species (m^2/s). length m_nsp
88  */
89  virtual void getMixDiffCoeffs(doublereal* const d);
90 
91  //! Returns the mixture-averaged diffusion coefficients [m^2/s].
92  //! These are the coefficients for calculating the molar diffusive fluxes
93  //! from the species mole fraction gradients, computed according to
94  //! Eq. 12.176 in "Chemically Reacting Flow":
95  //!
96  //! \f[ D_{km}^* = \frac{1-X_k}{\sum_{j \ne k}^K X_j/\mathcal{D}_{kj}} \f]
97  //!
98  //! @param[out] d vector of mixture-averaged diffusion coefficients for
99  //! each species, length m_nsp.
100  virtual void getMixDiffCoeffsMole(doublereal* const d);
101 
102  //! Returns the mixture-averaged diffusion coefficients [m^2/s].
103  /*!
104  * These are the coefficients for calculating the diffusive mass fluxes
105  * from the species mass fraction gradients, computed according to
106  * Eq. 12.178 in "Chemically Reacting Flow":
107  *
108  * \f[
109  * \frac{1}{D_{km}} = \sum_{j \ne k}^K \frac{X_j}{\mathcal{D}_{kj}} +
110  * \frac{X_k}{1-Y_k} \sum_{j \ne k}^K \frac{Y_j}{\mathcal{D}_{kj}}
111  * \f]
112  *
113  * @param[out] d vector of mixture-averaged diffusion coefficients for
114  * each species, length m_nsp.
115  */
116  virtual void getMixDiffCoeffsMass(doublereal* const d);
117 
118  virtual void init(thermo_t* thermo, int mode=0, int log_level=0);
119 
120 protected:
122 
123  virtual void update_T();
124  virtual void update_C() = 0;
125 
126  //! Update the temperature-dependent viscosity terms.
127  /**
128  * Updates the array of pure species viscosities, and the weighting
129  * functions in the viscosity mixture rule. The flag m_visc_ok is set to true.
130  *
131  * The formula for the weighting function is from Poling and Prausnitz,
132  * Eq. (9-5.14):
133  * \f[
134  * \phi_{ij} = \frac{ \left[ 1 + \left( \mu_i / \mu_j \right)^{1/2} \left( M_j / M_i \right)^{1/4} \right]^2 }
135  * {\left[ 8 \left( 1 + M_i / M_j \right) \right]^{1/2}}
136  * \f]
137  */
138  virtual void updateViscosity_T();
139 
140  //! Update the pure-species viscosities. These are evaluated from the
141  //! polynomial fits of the temperature and are assumed to be independent
142  //! of pressure.
143  virtual void updateSpeciesViscosities();
144 
145  //! Update the binary diffusion coefficients
146  /*!
147  * These are evaluated from the polynomial fits of the temperature at the
148  * unit pressure of 1 Pa.
149  */
150  virtual void updateDiff_T();
151 
152  //! @name Initialization
153  //! @{
154 
155  //! Setup parameters for a new kinetic-theory-based transport manager for
156  //! low-density gases
157  virtual void setupCollisionParameters();
158 
159  //! Setup range for polynomial fits to collision integrals of
160  //! Monchick & Mason
161  void setupCollisionIntegral();
162 
163  //! Read the transport database
164  /*!
165  * Read transport property data from a file for a list of species. Given the
166  * name of a file containing transport property parameters and a list of
167  * species names.
168  */
169  void getTransportData();
170 
171  //! Corrections for polar-nonpolar binary diffusion coefficients
172  /*!
173  * Calculate corrections to the well depth parameter and the diameter for
174  * use in computing the binary diffusion coefficient of polar-nonpolar
175  * pairs. For more information about this correction, see Dixon-Lewis, Proc.
176  * Royal Society (1968).
177  *
178  * @param i Species one - this is a bimolecular correction routine
179  * @param j species two - this is a bimolecular correction routine
180  * @param f_eps Multiplicative correction factor to be applied to epsilon(i,j)
181  * @param f_sigma Multiplicative correction factor to be applied to diam(i,j)
182  */
183  void makePolarCorrections(size_t i, size_t j, doublereal& f_eps,
184  doublereal& f_sigma);
185 
186  //! Generate polynomial fits to collision integrals
187  /*!
188  * @param integrals interpolator for the collision integrals
189  */
190  void fitCollisionIntegrals(MMCollisionInt& integrals);
191 
192  //! Generate polynomial fits to the viscosity and conductivity
193  /*!
194  * If CK_mode, then the fits are of the form
195  * \f[
196  * \log(\eta(i)) = \sum_{n = 0}^3 a_n(i) (\log T)^n
197  * \f]
198  * Otherwise the fits are of the form
199  * \f[
200  * \eta(i)/sqrt(k_BT) = \sum_{n = 0}^4 a_n(i) (\log T)^n
201  * \f]
202  *
203  * @param integrals interpolator for the collision integrals
204  */
205  virtual void fitProperties(MMCollisionInt& integrals);
206 
207  //! Generate polynomial fits to the binary diffusion coefficients
208  /*!
209  * If CK_mode, then the fits are of the form
210  * \f[
211  * \log(D(i,j)) = \sum_{n = 0}^3 a_n(i,j) (\log T)^n
212  * \f]
213  * Otherwise the fits are of the form
214  * \f[
215  * D(i,j)/sqrt(k_BT)) = \sum_{n = 0}^4 a_n(i,j) (\log T)^n
216  * \f]
217  *
218  * @param integrals interpolator for the collision integrals
219  */
220  virtual void fitDiffCoeffs(MMCollisionInt& integrals);
221 
222  //! Second-order correction to the binary diffusion coefficients
223  /*!
224  * Calculate second-order corrections to binary diffusion coefficient pair
225  * (dkj, djk). At first order, the binary diffusion coefficients are
226  * independent of composition, and d(k,j) = d(j,k). But at second order,
227  * there is a weak dependence on composition, with the result that d(k,j) !=
228  * d(j,k). This method computes the multiplier by which the first-order
229  * binary diffusion coefficient should be multiplied to produce the value
230  * correct to second order. The expressions here are taken from Marerro and
231  * Mason, J. Phys. Chem. Ref. Data, vol. 1, p. 3 (1972).
232  *
233  * @param t Temperature (K)
234  * @param integrals interpolator for the collision integrals
235  * @param k index of first species
236  * @param j index of second species
237  * @param xk Mole fraction of species k
238  * @param xj Mole fraction of species j
239  * @param fkj multiplier for d(k,j)
240  * @param fjk multiplier for d(j,k)
241  *
242  * @note This method is not used currently.
243  */
244  void getBinDiffCorrection(doublereal t, MMCollisionInt& integrals, size_t k,
245  size_t j, doublereal xk, doublereal xj,
246  doublereal& fkj, doublereal& fjk);
247 
248  //! @}
249 
250  //! Vector of species mole fractions. These are processed so that all mole
251  //! fractions are >= *Tiny*. Length = m_kk.
253 
254  //! Internal storage for the viscosity of the mixture (kg /m /s)
255  doublereal m_viscmix;
256 
257  //! Update boolean for mixture rule for the mixture viscosity
258  bool m_visc_ok;
259 
260  //! Update boolean for the weighting factors for the mixture viscosity
262 
263  //! Update boolean for the species viscosities
265 
266  //! Update boolean for the binary diffusivities at unit pressure
268 
269  //! Type of the polynomial fits to temperature. CK_Mode means Chemkin mode.
270  //! Currently CA_Mode is used which are different types of fits to temperature.
271  int m_mode;
272 
273  //! m_phi is a Viscosity Weighting Function. size = m_nsp * n_nsp
275 
276  //! work space length = m_kk
278 
279  //! vector of species viscosities (kg /m /s). These are used in Wilke's
280  //! rule to calculate the viscosity of the solution. length = m_kk.
282 
283  //! Polynomial fits to the viscosity of each species. m_visccoeffs[k] is
284  //! the vector of polynomial coefficients for species k that fits the
285  //! viscosity as a function of temperature.
286  std::vector<vector_fp> m_visccoeffs;
287 
288  //! Local copy of the species molecular weights.
290 
291  //! Holds square roots of molecular weight ratios
292  /*!
293  * @code
294  * m_wratjk(j,k) = sqrt(mw[j]/mw[k]) j < k
295  * m_wratjk(k,j) = sqrt(sqrt(mw[j]/mw[k])) j < k
296  * @endcode
297  */
299 
300  //! Holds square roots of molecular weight ratios
301  /*!
302  * `m_wratjk1(j,k) = sqrt(1.0 + mw[k]/mw[j]) j < k`
303  */
305 
306  //! vector of square root of species viscosities sqrt(kg /m /s). These are
307  //! used in Wilke's rule to calculate the viscosity of the solution.
308  //! length = m_kk.
310 
311  //! Powers of the ln temperature, up to fourth order
313 
314  //! Current value of the temperature at which the properties in this object
315  //! are calculated (Kelvin).
316  doublereal m_temp;
317 
318  //! Current value of Boltzmann constant times the temperature (Joules)
319  doublereal m_kbt;
320 
321  //! current value of Boltzmann constant times the temperature.
322  //! (Joules) to 1/2 power
323  doublereal m_sqrt_kbt;
324 
325  //! current value of temperature to 1/2 power
326  doublereal m_sqrt_t;
327 
328  //! Current value of the log of the temperature
329  doublereal m_logt;
330 
331  //! Current value of temperature to 1/4 power
332  doublereal m_t14;
333 
334  //! Current value of temperature to the 3/2 power
335  doublereal m_t32;
336 
337  //! Polynomial fits to the binary diffusivity of each species
338  /*!
339  * m_diffcoeff[ic] is vector of polynomial coefficients for species i
340  * species j that fits the binary diffusion coefficient. The relationship
341  * between i j and ic is determined from the following algorithm:
342  *
343  * int ic = 0;
344  * for (i = 0; i < m_nsp; i++) {
345  * for (j = i; j < m_nsp; j++) {
346  * ic++;
347  * }
348  * }
349  */
350  std::vector<vector_fp> m_diffcoeffs;
351 
352  //! Matrix of binary diffusion coefficients at the reference pressure and
353  //! the current temperature Size is nsp x nsp.
355 
356  //! temperature fits of the heat conduction
357  /*!
358  * Dimensions are number of species (nsp) polynomial order of the collision
359  * integral fit (degree+1).
360  */
361  std::vector<vector_fp> m_condcoeffs;
362 
363  //! Indices for the (i,j) interaction in collision integral fits
364  /*!
365  * m_poly[i][j] contains the index for (i,j) interactions in
366  * #m_omega22_poly, #m_astar_poly, #m_bstar_poly, and #m_cstar_poly.
367  */
368  std::vector<vector_int> m_poly;
369 
370  //! Fit for omega22 collision integral
371  /*!
372  * m_omega22_poly[m_poly[i][j]] is the vector of polynomial coefficients
373  * (length degree+1) for the collision integral fit for the species pair
374  * (i,j).
375  */
376  std::vector<vector_fp> m_omega22_poly;
377 
378  //! Fit for astar collision integral
379  /*!
380  * m_astar_poly[m_poly[i][j]] is the vector of polynomial coefficients
381  * (length degree+1) for the collision integral fit for the species pair
382  * (i,j).
383  */
384  std::vector<vector_fp> m_astar_poly;
385 
386  //! Fit for bstar collision integral
387  /*!
388  * m_bstar_poly[m_poly[i][j]] is the vector of polynomial coefficients
389  * (length degree+1) for the collision integral fit for the species pair
390  * (i,j).
391  */
392  std::vector<vector_fp> m_bstar_poly;
393 
394  //! Fit for cstar collision integral
395  /*!
396  * m_bstar_poly[m_poly[i][j]] is the vector of polynomial coefficients
397  * (length degree+1) for the collision integral fit for the species pair
398  * (i,j).
399  */
400  std::vector<vector_fp> m_cstar_poly;
401 
402  //! Rotational relaxation number for each species
403  /*!
404  * length is the number of species in the phase. units are dimensionless
405  */
407 
408  //! Dimensionless rotational heat capacity of each species
409  /*!
410  * These values are 0, 1 and 1.5 for single-molecule, linear, and nonlinear
411  * species respectively length is the number of species in the phase.
412  * Dimensionless (Cr / R)
413  */
415 
416  //! Vector of booleans indicating whether a species is a polar molecule
417  /*!
418  * Length is nsp
419  */
420  std::vector<bool> m_polar;
421 
422  //! Polarizability of each species in the phase
423  /*!
424  * Length = nsp. Units = m^3
425  */
427 
428  //! Lennard-Jones well-depth of the species in the current phase
429  /*!
430  * length is the number of species in the phase. Units are Joules (Note this
431  * is not Joules/kmol) (note, no kmol -> this is a per molecule amount)
432  */
434 
435  //! Lennard-Jones diameter of the species in the current phase
436  /*!
437  * length is the number of species in the phase. units are in meters.
438  */
440 
441  //! This is the reduced mass of the interaction between species i and j
442  /*!
443  * reducedMass(i,j) = mw[i] * mw[j] / (Avogadro * (mw[i] + mw[j]));
444  *
445  * Units are kg (note, no kmol -> this is a per molecule amount)
446  *
447  * Length nsp * nsp. This is a symmetric matrix
448  */
450 
451  //! hard-sphere diameter for (i,j) collision
452  /*!
453  * diam(i,j) = 0.5*(sigma[i] + sigma[j]);
454  * Units are m (note, no kmol -> this is a per molecule amount)
455  *
456  * Length nsp * nsp. This is a symmetric matrix.
457  */
459 
460  //! The effective well depth for (i,j) collisions
461  /*!
462  * epsilon(i,j) = sqrt(eps[i]*eps[j]);
463  * Units are Joules (note, no kmol -> this is a per molecule amount)
464  *
465  * Length nsp * nsp. This is a symmetric matrix.
466  */
468 
469  //! The effective dipole moment for (i,j) collisions
470  /*!
471  * Given `dipoleMoment` in Debye (a Debye is 3.335e-30 C-m):
472  *
473  * dipole(i,i) = 1.e-21 / lightSpeed * dipoleMoment;
474  * dipole(i,j) = sqrt(dipole(i,i) * dipole(j,j));
475  * (note, no kmol -> this is a per molecule amount)
476  *
477  * Length nsp * nsp. This is a symmetric matrix.
478  */
480 
481  //! Reduced dipole moment of the interaction between two species
482  /*!
483  * This is the reduced dipole moment of the interaction between two species
484  * 0.5 * dipole(i,j)^2 / (4 * Pi * epsilon_0 * epsilon(i,j) * d^3);
485  *
486  * Length nsp * nsp .This is a symmetric matrix
487  */
489 
490  //! Pitzer acentric factor
491  /*!
492  * Length is the number of species in the phase. Dimensionless.
493  */
495 
496  //! Dispersion coefficient
498 
499  //! Quadrupole polarizability
501 
502  //! Level of verbose printing during initialization
504 };
505 
506 } // namespace Cantera
507 
508 #endif
virtual void updateSpeciesViscosities()
Update the pure-species viscosities.
virtual void fitProperties(MMCollisionInt &integrals)
Generate polynomial fits to the viscosity and conductivity.
DenseMatrix m_dipole
The effective dipole moment for (i,j) collisions.
Definition: GasTransport.h:479
bool m_visc_ok
Update boolean for mixture rule for the mixture viscosity.
Definition: GasTransport.h:258
std::vector< bool > m_polar
Vector of booleans indicating whether a species is a polar molecule.
Definition: GasTransport.h:420
std::vector< vector_fp > m_diffcoeffs
Polynomial fits to the binary diffusivity of each species.
Definition: GasTransport.h:350
virtual void getBinaryDiffCoeffs(const size_t ld, doublereal *const d)
Returns the matrix of binary diffusion coefficients.
virtual void fitDiffCoeffs(MMCollisionInt &integrals)
Generate polynomial fits to the binary diffusion coefficients.
Headers for the Transport object, which is the virtual base class for all transport property evaluato...
bool m_bindiff_ok
Update boolean for the binary diffusivities at unit pressure.
Definition: GasTransport.h:267
Base class for transport property managers.
DenseMatrix m_wratjk
Holds square roots of molecular weight ratios.
Definition: GasTransport.h:298
DenseMatrix m_bdiff
Matrix of binary diffusion coefficients at the reference pressure and the current temperature Size is...
Definition: GasTransport.h:354
doublereal m_temp
Current value of the temperature at which the properties in this object are calculated (Kelvin)...
Definition: GasTransport.h:316
std::vector< vector_fp > m_cstar_poly
Fit for cstar collision integral.
Definition: GasTransport.h:400
virtual void updateViscosity_T()
Update the temperature-dependent viscosity terms.
Base class for a phase with thermodynamic properties.
Definition: ThermoPhase.h:93
int m_mode
Type of the polynomial fits to temperature.
Definition: GasTransport.h:271
std::vector< vector_fp > m_omega22_poly
Fit for omega22 collision integral.
Definition: GasTransport.h:376
doublereal m_sqrt_kbt
current value of Boltzmann constant times the temperature.
Definition: GasTransport.h:323
virtual void updateDiff_T()
Update the binary diffusion coefficients.
virtual void init(thermo_t *thermo, int mode=0, int log_level=0)
Initialize a transport manager.
vector_fp m_visc
vector of species viscosities (kg /m /s).
Definition: GasTransport.h:281
vector_fp m_spwork
work space length = m_kk
Definition: GasTransport.h:277
vector_fp m_disp
Dispersion coefficient.
Definition: GasTransport.h:497
void setupCollisionIntegral()
Setup range for polynomial fits to collision integrals of Monchick & Mason.
virtual void getMixDiffCoeffs(doublereal *const d)
Returns the Mixture-averaged diffusion coefficients [m^2/s].
std::vector< vector_fp > m_bstar_poly
Fit for bstar collision integral.
Definition: GasTransport.h:392
vector_fp m_sigma
Lennard-Jones diameter of the species in the current phase.
Definition: GasTransport.h:439
std::vector< vector_fp > m_astar_poly
Fit for astar collision integral.
Definition: GasTransport.h:384
vector_fp m_eps
Lennard-Jones well-depth of the species in the current phase.
Definition: GasTransport.h:433
vector_fp m_polytempvec
Powers of the ln temperature, up to fourth order.
Definition: GasTransport.h:312
bool m_spvisc_ok
Update boolean for the species viscosities.
Definition: GasTransport.h:264
virtual void getMixDiffCoeffsMole(doublereal *const d)
Returns the mixture-averaged diffusion coefficients [m^2/s].
std::vector< vector_int > m_poly
Indices for the (i,j) interaction in collision integral fits.
Definition: GasTransport.h:368
bool m_viscwt_ok
Update boolean for the weighting factors for the mixture viscosity.
Definition: GasTransport.h:261
DenseMatrix m_phi
m_phi is a Viscosity Weighting Function. size = m_nsp * n_nsp
Definition: GasTransport.h:274
virtual void getSpeciesViscosities(doublereal *const visc)
Get the pure-species viscosities.
Definition: GasTransport.h:56
doublereal m_t14
Current value of temperature to 1/4 power.
Definition: GasTransport.h:332
virtual void getMixDiffCoeffsMass(doublereal *const d)
Returns the mixture-averaged diffusion coefficients [m^2/s].
thermo_t & thermo()
DenseMatrix m_reducedMass
This is the reduced mass of the interaction between species i and j.
Definition: GasTransport.h:449
void fitCollisionIntegrals(MMCollisionInt &integrals)
Generate polynomial fits to collision integrals.
vector_fp m_zrot
Rotational relaxation number for each species.
Definition: GasTransport.h:406
void getBinDiffCorrection(doublereal t, MMCollisionInt &integrals, size_t k, size_t j, doublereal xk, doublereal xj, doublereal &fkj, doublereal &fjk)
Second-order correction to the binary diffusion coefficients.
vector_fp m_sqvisc
vector of square root of species viscosities sqrt(kg /m /s).
Definition: GasTransport.h:309
DenseMatrix m_epsilon
The effective well depth for (i,j) collisions.
Definition: GasTransport.h:467
vector_fp m_crot
Dimensionless rotational heat capacity of each species.
Definition: GasTransport.h:414
std::vector< double > vector_fp
Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.
Definition: ct_defs.h:157
vector_fp m_w_ac
Pitzer acentric factor.
Definition: GasTransport.h:494
doublereal m_sqrt_t
current value of temperature to 1/2 power
Definition: GasTransport.h:326
DenseMatrix m_diam
hard-sphere diameter for (i,j) collision
Definition: GasTransport.h:458
Headers for the DenseMatrix object, which deals with dense rectangular matrices and description of th...
virtual void setupCollisionParameters()
Setup parameters for a new kinetic-theory-based transport manager for low-density gases...
doublereal m_logt
Current value of the log of the temperature.
Definition: GasTransport.h:329
DenseMatrix m_wratkj1
Holds square roots of molecular weight ratios.
Definition: GasTransport.h:304
void getTransportData()
Read the transport database.
void makePolarCorrections(size_t i, size_t j, doublereal &f_eps, doublereal &f_sigma)
Corrections for polar-nonpolar binary diffusion coefficients.
Calculation of Collision integrals.
DenseMatrix m_delta
Reduced dipole moment of the interaction between two species.
Definition: GasTransport.h:488
doublereal m_viscmix
Internal storage for the viscosity of the mixture (kg /m /s)
Definition: GasTransport.h:255
std::vector< vector_fp > m_condcoeffs
temperature fits of the heat conduction
Definition: GasTransport.h:361
doublereal m_kbt
Current value of Boltzmann constant times the temperature (Joules)
Definition: GasTransport.h:319
Namespace for the Cantera kernel.
Definition: AnyMap.cpp:8
doublereal m_t32
Current value of temperature to the 3/2 power.
Definition: GasTransport.h:335
virtual doublereal viscosity()
Viscosity of the mixture (kg /m /s)
std::vector< vector_fp > m_visccoeffs
Polynomial fits to the viscosity of each species.
Definition: GasTransport.h:286
int m_log_level
Level of verbose printing during initialization.
Definition: GasTransport.h:503
vector_fp m_quad_polar
Quadrupole polarizability.
Definition: GasTransport.h:500
A class for full (non-sparse) matrices with Fortran-compatible data storage, which adds matrix operat...
Definition: DenseMatrix.h:50
vector_fp m_molefracs
Vector of species mole fractions.
Definition: GasTransport.h:252
Class GasTransport implements some functions and properties that are shared by the MixTransport and M...
Definition: GasTransport.h:30
vector_fp m_alpha
Polarizability of each species in the phase.
Definition: GasTransport.h:426
vector_fp m_mw
Local copy of the species molecular weights.
Definition: GasTransport.h:289