Cantera  2.1.2
Public Member Functions | Public Attributes | Protected Attributes | Private Member Functions | Private Attributes | List of all members
IdealMolalSoln Class Reference

This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one. More...

#include <IdealMolalSoln.h>

Inheritance diagram for IdealMolalSoln:
[legend]
Collaboration diagram for IdealMolalSoln:
[legend]

Public Member Functions

 IdealMolalSoln ()
 Constructor. More...
 
 IdealMolalSoln (const IdealMolalSoln &)
 Copy Constructor. More...
 
IdealMolalSolnoperator= (const IdealMolalSoln &)
 Assignment operator. More...
 
 IdealMolalSoln (const std::string &inputFile, const std::string &id="")
 Constructor for phase initialization. More...
 
 IdealMolalSoln (XML_Node &phaseRef, const std::string &id="")
 Constructor for phase initialization. More...
 
ThermoPhaseduplMyselfAsThermoPhase () const
 Duplication function. More...
 
virtual void setParameters (int n, doublereal *const c)
 
virtual void getParameters (int &n, doublereal *const c) const
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 
virtual void initThermo ()
 Initialization routine for an IdealMolalSoln phase. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id="")
 Import and initialize an IdealMolalSoln phase specification in an XML tree into the current object. More...
 
double speciesMolarVolume (int k) const
 Report the molar volume of species k. More...
 
void getSpeciesMolarVolumes (double *smv) const
 
Utilities
virtual int eosType () const
 Equation of state type flag. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal enthalpy_mole () const
 Molar enthalpy of the solution. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy of the solution: Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy of the solution. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function for the solution: Units J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity of the solution at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity of the solution at constant volume. Units: J/kmol/K. More...
 
Potential Energy

Species may have an additional potential energy due to the presence of external gravitation or electric fields.

These methods allow specifying a potential energy for individual species.

virtual void setPotentialEnergy (int k, doublereal pe)
 Set the potential energy of species k to pe. More...
 
virtual doublereal potentialEnergy (int k) const
 Get the potential energy of species k. More...
 
Activities and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T)\) is the chemical potential at unit activity, which depends only on temperature and the pressure.

virtual void getActivityConcentrations (doublereal *c) const
 
virtual doublereal standardConcentration (size_t k=0) const
 The standard concentration \( C^0_k \) used to normalize the generalized concentration. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 
virtual void getActivities (doublereal *ac) const
 
virtual void getMolalityActivityCoefficients (doublereal *acMolality) const
 
Partial Molar Properties of the Solution
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials: Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. Units: J/kmol. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Partial molar heat capacity of the solution:. UnitsL J/kmol/K. More...
 
Chemical Equilibrium
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
Critical state properties.

These methods are only implemented by some subclasses.

virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
- Public Member Functions inherited from MolalityVPSSTP
 MolalityVPSSTP ()
 Default Constructor. More...
 
 MolalityVPSSTP (const MolalityVPSSTP &b)
 Copy constructor. More...
 
MolalityVPSSTPoperator= (const MolalityVPSSTP &b)
 Assignment operator. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set equation of state parameter values from XML entries. More...
 
void setState_TPM (doublereal t, doublereal p, const doublereal *const molalities)
 Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes. More...
 
void setState_TPM (doublereal t, doublereal p, compositionMap &m)
 Set the temperature (K), pressure (Pa), and molalities. More...
 
void setState_TPM (doublereal t, doublereal p, const std::string &m)
 Set the temperature (K), pressure (Pa), and molalities. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string More...
 
void setpHScale (const int pHscaleType)
 Set the pH scale, which determines the scale for single-ion activity coefficients. More...
 
int pHScale () const
 Reports the pH scale, which determines the scale for single-ion activity coefficients. More...
 
void setSolvent (size_t k)
 This routine sets the index number of the solvent for the phase. More...
 
size_t solventIndex () const
 Returns the solvent index. More...
 
void setMoleFSolventMin (doublereal xmolSolventMIN)
 Sets the minimum mole fraction in the molality formulation. More...
 
doublereal moleFSolventMin () const
 Returns the minimum mole fraction in the molality formulation. More...
 
void calcMolalities () const
 Calculates the molality of all species and stores the result internally. More...
 
void getMolalities (doublereal *const molal) const
 This function will return the molalities of the species. More...
 
void setMolalities (const doublereal *const molal)
 Set the molalities of the solutes in a phase. More...
 
void setMolalitiesByName (compositionMap &xMap)
 Set the molalities of a phase. More...
 
void setMolalitiesByName (const std::string &name)
 Set the molalities of a phase. More...
 
int activityConvention () const
 This method returns the activity convention. More...
 
void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual double osmoticCoefficient () const
 Calculate the osmotic coefficient. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object. More...
 
- Public Member Functions inherited from VPStandardStateTP
 VPStandardStateTP ()
 Constructor. More...
 
 VPStandardStateTP (const VPStandardStateTP &b)
 Copy Constructor. More...
 
VPStandardStateTPoperator= (const VPStandardStateTP &b)
 Assignment operator. More...
 
virtual ~VPStandardStateTP ()
 Destructor. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log concentration-like derivatives of the log activity coefficients. More...
 
void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution. More...
 
void getPureGibbs (doublereal *gpure) const
 Get the standard state Gibbs functions for each species at the current T and P. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
virtual const vector_fpgetStandardVolumes () const
 
virtual void setTemperature (const doublereal temp)
 Set the temperature of the phase. More...
 
doublereal pressure () const
 Returns the current pressure of the phase. More...
 
virtual void updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 
virtual void getEntropy_R_ref (doublereal *er) const
 
virtual void getCp_R_ref (doublereal *cprt) const
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
void setVPSSMgr (VPSSMgr *vp_ptr)
 set the VPSS Mgr More...
 
VPSSMgrprovideVPSSMgr ()
 Return a pointer to the VPSSMgr for this phase. More...
 
void createInstallPDSS (size_t k, const XML_Node &s, const XML_Node *phaseNode_ptr)
 
PDSSprovidePDSS (size_t k)
 
const PDSSprovidePDSS (size_t k) const
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual ~ThermoPhase ()
 Destructor. Deletes the species thermo manager. More...
 
 ThermoPhase (const ThermoPhase &right)
 Copy Constructor for the ThermoPhase object. More...
 
ThermoPhaseoperator= (const ThermoPhase &right)
 Assignment operator. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal cv_vib (int, double) const
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More...
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. More...
 
doublereal entropy_mass () const
 Specific entropy. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
virtual ~Phase ()
 Destructor. More...
 
 Phase (const Phase &right)
 Copy Constructor. More...
 
Phaseoperator= (const Phase &right)
 Assignment operator. More...
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual void freezeSpecies ()
 Call when finished adding species. More...
 
bool speciesFrozen ()
 True if freezeSpecies has been called. More...
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More...
 
void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \). More...
 
void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element. More...
 
void addElement (const XML_Node &e)
 Add an element from an XML specification. More...
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree. More...
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species. More...
 
bool elementsFrozen ()
 True if freezeElements has been called. More...
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More...
 

Public Attributes

int IMS_typeCutoff_
 Cutoff type. More...
 
doublereal IMS_X_o_cutoff_
 value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process; More...
 
doublereal IMS_gamma_o_min_
 gamma_o value for the cutoff process at the zero solvent point More...
 
doublereal IMS_gamma_k_min_
 gamma_k minimum for the cutoff process at the zero solvent point More...
 
doublereal IMS_slopefCut_
 Parameter in the polyExp cutoff treatment. More...
 
doublereal IMS_slopegCut_
 Parameter in the polyExp cutoff treatment. More...
 
Parameters in the polyExp cutoff treatment having to do with rate of exp decay
doublereal IMS_cCut_
 
doublereal IMS_dfCut_
 
doublereal IMS_efCut_
 
doublereal IMS_afCut_
 
doublereal IMS_bfCut_
 
doublereal IMS_dgCut_
 
doublereal IMS_egCut_
 
doublereal IMS_agCut_
 
doublereal IMS_bgCut_
 

Protected Attributes

vector_fp m_speciesMolarVolume
 Species molar volume \( m^3 kmol^{-1} \). More...
 
int m_formGC
 The standard concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the XML file. More...
 
- Protected Attributes inherited from MolalityVPSSTP
size_t m_indexSolvent
 Index of the solvent. More...
 
int m_pHScalingType
 Scaling to be used for output of single-ion species activity coefficients. More...
 
size_t m_indexCLM
 Index of the phScale species. More...
 
doublereal m_weightSolvent
 Molecular weight of the Solvent. More...
 
doublereal m_xmolSolventMIN
 
doublereal m_Mnaught
 This is the multiplication factor that goes inside log expressions involving the molalities of species. More...
 
vector_fp m_molalities
 Current value of the molalities of the species in the phase. More...
 
- Protected Attributes inherited from VPStandardStateTP
doublereal m_Pcurrent
 Current value of the pressure - state variable. More...
 
doublereal m_Tlast_ss
 The last temperature at which the standard statethermodynamic properties were calculated at. More...
 
doublereal m_Plast_ss
 The last pressure at which the Standard State thermodynamic properties were calculated at. More...
 
doublereal m_P0
 
VPSSMgrm_VPSS_ptr
 Pointer to the VPSS manager that calculates all of the standard state info efficiently. More...
 
std::vector< PDSS * > m_PDSS_storage
 Storage for the PDSS objects for the species. More...
 
- Protected Attributes inherited from ThermoPhase
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition. More...
 
- Protected Attributes inherited from Phase
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 

Private Member Functions

doublereal err (const std::string &msg) const
 Internal error message. More...
 
void s_updateIMS_lnMolalityActCoeff () const
 This function will be called to update the internally stored natural logarithm of the molality activity coefficients. More...
 
void initLengths ()
 This internal function adjusts the lengths of arrays. More...
 
void calcIMSCutoffParams_ ()
 Calculate parameters for cutoff treatments of activity coefficients. More...
 

Private Attributes

vector_fp m_pp
 Temporary array used in equilibrium calculations. More...
 
vector_fp m_tmpV
 vector of size m_kk, used as a temporary holding area. More...
 
vector_fp IMS_lnActCoeffMolal_
 Logarithm of the molal activity coefficients. More...
 

Mechanical Equation of State Properties

In this equation of state implementation, the density is a function only of the mole fractions.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown.

virtual void setPressure (doublereal p)
 Set the pressure at constant temperature. More...
 
void setDensity (const doublereal rho)
 Overwritten setDensity() function is necessary because the density is not an independent variable. More...
 
void setMolarDensity (const doublereal rho)
 Overwritten setMolarDensity() function is necessary because the density is not an independent variable. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual doublereal isothermalCompressibility () const
 The isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 The thermal expansion coefficient. Units: 1/K. More...
 
void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 

Additional Inherited Members

- Protected Member Functions inherited from MolalityVPSSTP
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
virtual void getUnscaledMolalityActivityCoefficients (doublereal *acMolality) const
 Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void applyphScale (doublereal *acMolality) const
 Apply the current phScale to a set of activity Coefficients or activities. More...
 
- Protected Member Functions inherited from VPStandardStateTP
virtual void _updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
const vector_fpGibbs_RT_ref () const
 
- Protected Member Functions inherited from Phase
void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Detailed Description

This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one.

This is a full instantiation of a ThermoPhase object. The assumption is that the molality-based activity coefficient is equal to one. This also implies that the osmotic coefficient is equal to one.

Note, this does not mean that the solution is an ideal solution. In fact, there is a singularity in the formulation as the solvent concentration goes to zero.

The mechanical equation of state is currently assumed to be that of an incompressible solution. This may change in the future. Each species has its own molar volume. The molar volume is a constant.

Class IdealMolalSoln represents a condensed phase. The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for incompressible mixtures.

The standard concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the XML file.

m_formGC ActivityConc StandardConc
0 \( {m_k}/ { m^{\Delta}}\) \( 1.0 \)
1 \( m_k / (m^{\Delta} V_k)\) \( 1.0 / V_k \)
2 \( m_k / (m^{\Delta} V^0_0)\)\( 1.0 / V^0_0\)

\( V^0_0 \) is the solvent standard molar volume. \( m^{\Delta} \) is a constant equal to a molality of \( 1.0 \quad\mbox{gm kmol}^{-1} \).

The current default is to have mformGC = 2.

The value and form of the activity concentration will affect reaction rate constants involving species in this phase.

 <thermo model="IdealMolalSoln">
    <standardConc model="solvent_volume" />
    <solvent> H2O(l) </solvent>
    <activityCoefficients model="IdealMolalSoln" >
        <idealMolalSolnCutoff model="polyExp">
            <gamma_O_limit> 1.0E-5  </gamma_O_limit>
            <gamma_k_limit> 1.0E-5  <gamma_k_limit>
            <X_o_cutoff>    0.20    </X_o_cutoff>
            <C_0_param>     0.05    </C_0_param>
            <slope_f_limit> 0.6     </slope_f_limit>
            <slope_g_limit> 0.0     </slope_g_limit>
        </idealMolalSolnCutoff>
     </activityCoefficients>
 </thermo>

Definition at line 97 of file IdealMolalSoln.h.

Constructor & Destructor Documentation

Constructor.

Definition at line 28 of file IdealMolalSoln.cpp.

Referenced by IdealMolalSoln::duplMyselfAsThermoPhase().

Copy Constructor.

Definition at line 49 of file IdealMolalSoln.cpp.

IdealMolalSoln ( const std::string &  inputFile,
const std::string &  id = "" 
)

Constructor for phase initialization.

This constructor will initialize a phase, by reading the required information from an input file.

Parameters
inputFileName of the Input file that contains information about the phase
idid of the phase within the input file

Definition at line 88 of file IdealMolalSoln.cpp.

References ThermoPhase::initThermoFile().

IdealMolalSoln ( XML_Node phaseRef,
const std::string &  id = "" 
)

Constructor for phase initialization.

This constructor will initialize a phase, by reading the required information from XML_Node tree.

Parameters
phaseRefreference for an XML_Node tree that contains the information necessary to initialize the phase.
idid of the phase within the input file

Definition at line 111 of file IdealMolalSoln.cpp.

References Cantera::findXMLPhase(), and Cantera::importPhase().

Member Function Documentation

IdealMolalSoln & operator= ( const IdealMolalSoln b)
ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplication function.

This virtual function is used to create a duplicate of the current phase. It's used to duplicate the phase when given a ThermoPhase pointer to the phase.

Returns
It returns a ThermoPhase pointer.

Reimplemented from MolalityVPSSTP.

Definition at line 133 of file IdealMolalSoln.cpp.

References IdealMolalSoln::IdealMolalSoln().

virtual int eosType ( ) const
inlinevirtual

Equation of state type flag.

The base class returns zero. Subclasses should define this to return a unique non-zero value. Constants defined for this purpose are listed in mix_defs.h.

Reimplemented from MolalityVPSSTP.

Definition at line 150 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::getUnitsStandardConc().

doublereal enthalpy_mole ( ) const
virtual

Molar enthalpy of the solution. Units: J/kmol.

Returns the amount of enthalpy per mole of solution. For an ideal molal solution,

\[ \bar{h}(T, P, X_k) = \sum_k X_k \bar{h}_k(T) \]

The formula is written in terms of the partial molar enthalpies. \( \bar{h}_k(T, p, m_k) \). See the partial molar enthalpy function, getPartialMolarEnthalpies(), for details.

Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 138 of file IdealMolalSoln.cpp.

References DATA_PTR, Phase::getMoleFractions(), IdealMolalSoln::getPartialMolarEnthalpies(), IdealMolalSoln::m_pp, IdealMolalSoln::m_tmpV, and Phase::mean_X().

doublereal intEnergy_mole ( ) const
virtual

Molar internal energy of the solution: Units: J/kmol.

Returns the amount of internal energy per mole of solution. For an ideal molal solution,

\[ \bar{u}(T, P, X_k) = \sum_k X_k \bar{u}_k(T) \]

The formula is written in terms of the partial molar internal energy. \( \bar{u}_k(T, p, m_k) \).

Reimplemented from ThermoPhase.

Definition at line 145 of file IdealMolalSoln.cpp.

References DATA_PTR, IdealMolalSoln::getPartialMolarEnthalpies(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

doublereal entropy_mole ( ) const
virtual

Molar entropy of the solution. Units: J/kmol/K.

Returns the amount of entropy per mole of solution. For an ideal molal solution,

\[ \bar{s}(T, P, X_k) = \sum_k X_k \bar{s}_k(T) \]

The formula is written in terms of the partial molar entropies. \( \bar{s}_k(T, p, m_k) \). See the partial molar entropies function, getPartialMolarEntropies(), for details.

Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 151 of file IdealMolalSoln.cpp.

References DATA_PTR, IdealMolalSoln::getPartialMolarEntropies(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

doublereal gibbs_mole ( ) const
virtual

Molar Gibbs function for the solution: Units J/kmol.

Returns the gibbs free energy of the solution per mole of the solution.

\[ \bar{g}(T, P, X_k) = \sum_k X_k \mu_k(T) \]

Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 157 of file IdealMolalSoln.cpp.

References DATA_PTR, IdealMolalSoln::getChemPotentials(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

doublereal cp_mole ( ) const
virtual

Molar heat capacity of the solution at constant pressure. Units: J/kmol/K.

\[ \bar{c}_p(T, P, X_k) = \sum_k X_k \bar{c}_{p,k}(T) \]

Units: J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 163 of file IdealMolalSoln.cpp.

References DATA_PTR, IdealMolalSoln::getPartialMolarCp(), IdealMolalSoln::m_tmpV, and Phase::mean_X().

doublereal cv_mole ( ) const
virtual

Molar heat capacity of the solution at constant volume. Units: J/kmol/K.

NOT IMPLEMENTED.

Reimplemented from ThermoPhase.

Definition at line 169 of file IdealMolalSoln.cpp.

References IdealMolalSoln::err().

void setPressure ( doublereal  p)
virtual

Set the pressure at constant temperature.

Units: Pa. This method sets a constant within the object. The mass density is not a function of pressure.

Parameters
pInput Pressure

Reimplemented from VPStandardStateTP.

Definition at line 178 of file IdealMolalSoln.cpp.

References IdealMolalSoln::setState_TP(), and Phase::temperature().

void calcDensity ( )
protectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

Reimplemented from VPStandardStateTP.

Definition at line 183 of file IdealMolalSoln.cpp.

References Phase::getMoleFractions(), IdealMolalSoln::getPartialMolarVolumes(), Phase::m_kk, IdealMolalSoln::m_pp, IdealMolalSoln::m_tmpV, Phase::meanMolecularWeight(), and Phase::setDensity().

Referenced by IdealMolalSoln::setState_TP().

void setDensity ( const doublereal  rho)
virtual

Overwritten setDensity() function is necessary because the density is not an independent variable.

This function will now throw an error condition

May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.

This function will now throw an error condition.

Parameters
rhoInput Density

Reimplemented from Phase.

Definition at line 207 of file IdealMolalSoln.cpp.

References Phase::density().

void setMolarDensity ( const doublereal  rho)
virtual

Overwritten setMolarDensity() function is necessary because the density is not an independent variable.

This function will now throw an error condition.

Parameters
rhoInput Density

Reimplemented from Phase.

Definition at line 216 of file IdealMolalSoln.cpp.

References Phase::molarDensity().

void setState_TP ( doublereal  t,
doublereal  p 
)
virtual

Set the temperature (K) and pressure (Pa)

Set the temperature and pressure.

Parameters
tTemperature (K)
pPressure (Pa)

Reimplemented from VPStandardStateTP.

Definition at line 225 of file IdealMolalSoln.cpp.

References IdealMolalSoln::calcDensity(), VPStandardStateTP::m_Pcurrent, Phase::setTemperature(), and VPStandardStateTP::updateStandardStateThermo().

Referenced by IdealMolalSoln::setPressure().

doublereal isothermalCompressibility ( ) const
virtual

The isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

It's equal to zero for this model, since the molar volume doesn't change with pressure or temperature.

Reimplemented from ThermoPhase.

Definition at line 197 of file IdealMolalSoln.cpp.

doublereal thermalExpansionCoeff ( ) const
virtual

The thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

It's equal to zero for this model, since the molar volume doesn't change with pressure or temperature.

Reimplemented from ThermoPhase.

Definition at line 202 of file IdealMolalSoln.cpp.

virtual void setPotentialEnergy ( int  k,
doublereal  pe 
)
inlinevirtual

Set the potential energy of species k to pe.

Units: J/kmol.

Parameters
kSpecies index
peInput potential energy.

Definition at line 354 of file IdealMolalSoln.h.

References IdealMolalSoln::err().

virtual doublereal potentialEnergy ( int  k) const
inlinevirtual

Get the potential energy of species k.

Units: J/kmol.

Parameters
kSpecies index

Definition at line 364 of file IdealMolalSoln.h.

References IdealMolalSoln::err().

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations \( C_k\) that are defined such that \( a_k = C_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below. These generalized concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions.

Parameters
cArray of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from MolalityVPSSTP.

Definition at line 238 of file IdealMolalSoln.cpp.

References IdealMolalSoln::getActivities(), IdealMolalSoln::m_formGC, Phase::m_kk, and IdealMolalSoln::standardConcentration().

doublereal standardConcentration ( size_t  k = 0) const
virtual

The standard concentration \( C^0_k \) used to normalize the generalized concentration.

In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (e.g. surface species of different sizes), this method may be called with an optional parameter indicating the species.

Parameters
kSpecies index

Reimplemented from MolalityVPSSTP.

Definition at line 255 of file IdealMolalSoln.cpp.

References IdealMolalSoln::m_formGC, MolalityVPSSTP::m_indexSolvent, and IdealMolalSoln::m_speciesMolarVolume.

Referenced by IdealMolalSoln::getActivityConcentrations(), and IdealMolalSoln::logStandardConc().

doublereal logStandardConc ( size_t  k = 0) const
virtual

Returns the natural logarithm of the standard concentration of the kth species

Parameters
kSpecies index

Reimplemented from MolalityVPSSTP.

Definition at line 272 of file IdealMolalSoln.cpp.

References IdealMolalSoln::standardConcentration().

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const
virtual

Returns the units of the standard and generalized concentrations Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

Parameters
uAOutput vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0
kspecies index. Defaults to 0.
sizeUAoutput int containing the size of the vector. Currently, this is equal to 6.
Deprecated:

Reimplemented from MolalityVPSSTP.

Definition at line 278 of file IdealMolalSoln.cpp.

References IdealMolalSoln::eosType(), and Phase::nDim().

void getActivities ( doublereal *  ac) const
virtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

(note solvent is on molar scale)

Parameters
acOutput activity coefficients. Length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 309 of file IdealMolalSoln.cpp.

References VPStandardStateTP::_updateStandardStateThermo(), MolalityVPSSTP::calcMolalities(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_molalities, MolalityVPSSTP::m_xmolSolventMIN, Phase::moleFraction(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

Referenced by IdealMolalSoln::getActivityConcentrations().

void getMolalityActivityCoefficients ( doublereal *  acMolality) const
virtual

Get the array of non-dimensional molality-based activity coefficients at the current solution temperature, pressure, and solution concentration.

(note solvent is on molar scale. The solvent molar based activity coefficient is returned).

Parameters
acMolalityOutput Molality-based activity coefficients. Length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 344 of file IdealMolalSoln.cpp.

References IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_xmolSolventMIN, Phase::moleFraction(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials: Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution.

\[ \mu_k = \mu^{o}_k(T,P) + R T \ln(\frac{m_k}{m^\Delta}) \]

\[ \mu_w = \mu^{o}_w(T,P) + R T ((X_w - 1.0) / X_w) \]

\( w \) refers to the solvent species. \( X_w \) is the mole fraction of the solvent. \( m_k \) is the molality of the kth solute. \( m^\Delta \) is 1 gmol solute per kg solvent.

Units: J/kmol.

Parameters
muOutput vector of species chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 369 of file IdealMolalSoln.cpp.

References AssertThrow, MolalityVPSSTP::calcMolalities(), Cantera::GasConstant, VPStandardStateTP::getStandardChemPotentials(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_molalities, Phase::moleFraction(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), Cantera::SmallNumber, and Phase::temperature().

Referenced by IdealMolalSoln::gibbs_mole().

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol) For this phase, the partial molar enthalpies are equal to the species standard state enthalpies.

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo
Parameters
hbarOutput vector of partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 427 of file IdealMolalSoln.cpp.

References ThermoPhase::_RT(), VPStandardStateTP::getEnthalpy_RT(), and Phase::m_kk.

Referenced by IdealMolalSoln::enthalpy_mole(), and IdealMolalSoln::intEnergy_mole().

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution. Units: J/kmol.

Maxwell's equations provide an insight in how to calculate this (p.215 Smith and Van Ness)

\[ \frac{d(\mu_k)}{dT} = -\bar{s}_i \]

For this phase, the partial molar entropies are equal to the standard state species entropies plus the ideal molal solution contribution.

\[ \bar{s}_k(T,P) = s^0_k(T) - R \ln( \frac{m_k}{m^{\triangle}} ) \]

\[ \bar{s}_w(T,P) = s^0_w(T) - R ((X_w - 1.0) / X_w) \]

The subscript, w, refers to the solvent species. \( X_w \) is the mole fraction of solvent. The reference-state pure-species entropies, \( s^0_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo
Parameters
sbarOutput vector of partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 436 of file IdealMolalSoln.cpp.

References MolalityVPSSTP::calcMolalities(), Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_molalities, Phase::moleFraction(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), and Cantera::SmallNumber.

Referenced by IdealMolalSoln::entropy_mole().

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

For this solution, the partial molar volumes are equal to the constant species molar volumes.

Units: m^3 kmol-1.

Parameters
vbarOutput vector of partial molar volumes.

Reimplemented from ThermoPhase.

Definition at line 474 of file IdealMolalSoln.cpp.

References VPStandardStateTP::getStandardVolumes().

Referenced by IdealMolalSoln::calcDensity().

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Partial molar heat capacity of the solution:. UnitsL J/kmol/K.

The kth partial molar heat capacity is equal to the temperature derivative of the partial molar enthalpy of the kth species in the solution at constant P and composition (p. 220 Smith and Van Ness).

\[ \bar{Cp}_k(T,P) = {Cp}^0_k(T) \]

For this solution, this is equal to the reference state heat capacities.

Units: J/kmol/K

Parameters
cpbarOutput vector of partial molar heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 479 of file IdealMolalSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getCp_R(), and Phase::m_kk.

Referenced by IdealMolalSoln::cp_mole().

virtual void setToEquilState ( const doublereal *  lambda_RT)
inlinevirtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Not implemented.

Parameters
lambda_RTvector of Nondimensional element potentials.

Reimplemented from MolalityVPSSTP.

Definition at line 600 of file IdealMolalSoln.h.

References IdealMolalSoln::err().

void setParameters ( int  n,
doublereal *const  c 
)
virtual

Set equation of state parameters. The number and meaning of these depends on the subclass.

Parameters
nnumber of parameters
carray of n coefficients
Deprecated:
Unimplemented

Reimplemented from ThermoPhase.

Definition at line 674 of file IdealMolalSoln.cpp.

References Cantera::warn_deprecated().

void getParameters ( int &  n,
doublereal *const  c 
) const
virtual

Get the parameters used to initialize the phase.

Parameters
nnumber of parameters (output)
carray of n coefficients
Deprecated:
Unimplemented

Reimplemented from ThermoPhase.

Definition at line 679 of file IdealMolalSoln.cpp.

References Cantera::warn_deprecated().

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries. This method is called by function importPhase in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model.

HKM -> Right now, the parameters are set elsewhere (initThermo) It just didn't seem to fit.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented from VPStandardStateTP.

Definition at line 684 of file IdealMolalSoln.cpp.

virtual doublereal critTemperature ( ) const
inlinevirtual

Critical temperature (K).

Not implemented for this phase type.

Reimplemented from ThermoPhase.

Definition at line 652 of file IdealMolalSoln.h.

References IdealMolalSoln::err().

virtual doublereal critPressure ( ) const
inlinevirtual

Critical pressure (Pa).

Not implemented for this phase type.

Reimplemented from ThermoPhase.

Definition at line 662 of file IdealMolalSoln.h.

References IdealMolalSoln::err().

virtual doublereal critDensity ( ) const
inlinevirtual

Critical density (kg/m3).

Not implemented for this phase type.

Reimplemented from ThermoPhase.

Definition at line 671 of file IdealMolalSoln.h.

References IdealMolalSoln::err().

void initThermo ( )
virtual

Initialization routine for an IdealMolalSoln phase.

This internal routine is responsible for setting up the internal storage. This is reimplemented from the ThermoPhase class.

Reimplemented from MolalityVPSSTP.

Definition at line 496 of file IdealMolalSoln.cpp.

References IdealMolalSoln::initLengths(), and MolalityVPSSTP::initThermo().

Referenced by IdealMolalSoln::initThermoXML().

void initThermoXML ( XML_Node phaseNode,
const std::string &  id = "" 
)
virtual

Import and initialize an IdealMolalSoln phase specification in an XML tree into the current object.

This routine is called from importPhase() to finish up the initialization of the thermo object. It reads in the species molar volumes.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from VPStandardStateTP.

Definition at line 502 of file IdealMolalSoln.cpp.

References XML_Node::attrib(), IdealMolalSoln::calcIMSCutoffParams_(), XML_Node::child(), XML_Node::findByAttr(), XML_Node::findByName(), Cantera::get_XML_NameID(), ctml::getFloat(), ctml::getStringArray(), XML_Node::hasChild(), XML_Node::id(), IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_slopefCut_, IdealMolalSoln::IMS_slopegCut_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, IdealMolalSoln::initThermo(), MolalityVPSSTP::initThermoXML(), IdealMolalSoln::m_formGC, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, IdealMolalSoln::m_speciesMolarVolume, Cantera::npos, XML_Node::root(), MolalityVPSSTP::setMoleFSolventMin(), MolalityVPSSTP::setStateFromXML(), Phase::speciesName(), and Phase::speciesNames().

double speciesMolarVolume ( int  k) const

Report the molar volume of species k.

units - \( m^3 kmol^{-1} \)

Parameters
kSpecies index.
void getSpeciesMolarVolumes ( double *  smv) const

Fill in a return vector containing the species molar volumes units - \( m^3 kmol^{-1} \)

Parameters
smvOutput vector of species molar volumes.
doublereal err ( const std::string &  msg) const
private
void s_updateIMS_lnMolalityActCoeff ( ) const
private

This function will be called to update the internally stored natural logarithm of the molality activity coefficients.

Normally the solutes are all zero. However, sometimes they are not, due to stability schemes.

gamma_k_molar = gamma_k_molal / Xmol_solvent

gamma_o_molar = gamma_o_molal

Definition at line 703 of file IdealMolalSoln.cpp.

References MolalityVPSSTP::calcMolalities(), IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_xmolSolventMIN, and Phase::moleFraction().

Referenced by IdealMolalSoln::getActivities(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::getMolalityActivityCoefficients(), and IdealMolalSoln::getPartialMolarEntropies().

void initLengths ( )
private

This internal function adjusts the lengths of arrays.

This function is not virtual nor is it inherited

Definition at line 815 of file IdealMolalSoln.cpp.

References IdealMolalSoln::IMS_lnActCoeffMolal_, Phase::m_kk, IdealMolalSoln::m_pp, IdealMolalSoln::m_speciesMolarVolume, IdealMolalSoln::m_tmpV, and Phase::nSpecies().

Referenced by IdealMolalSoln::initThermo().

void calcIMSCutoffParams_ ( )
private

Calculate parameters for cutoff treatments of activity coefficients.

Some cutoff treatments for the activity coefficients actually require some calculations to create a consistent treatment.

This routine is called during the setup to calculate these parameters

Definition at line 828 of file IdealMolalSoln.cpp.

References IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_slopefCut_, IdealMolalSoln::IMS_slopegCut_, and IdealMolalSoln::IMS_X_o_cutoff_.

Referenced by IdealMolalSoln::initThermoXML().

Member Data Documentation

vector_fp m_speciesMolarVolume
protected

Species molar volume \( m^3 kmol^{-1} \).

Definition at line 731 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::initLengths(), IdealMolalSoln::initThermoXML(), IdealMolalSoln::operator=(), and IdealMolalSoln::standardConcentration().

int m_formGC
protected

The standard concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the XML file.

m_formGC ActivityConc StandardConc
0 \( {m_k}/ { m^{\Delta}}\) \( 1.0 \)
1 \( m_k / (m^{\Delta} V_k)\) \( 1.0 / V_k \)
2 \( m_k / (m^{\Delta} V^0_0)\)\( 1.0 / V^0_0\)

Definition at line 745 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::getActivityConcentrations(), IdealMolalSoln::initThermoXML(), IdealMolalSoln::operator=(), and IdealMolalSoln::standardConcentration().

int IMS_typeCutoff_
vector_fp m_pp
mutableprivate

Temporary array used in equilibrium calculations.

Definition at line 755 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcDensity(), IdealMolalSoln::enthalpy_mole(), IdealMolalSoln::initLengths(), and IdealMolalSoln::operator=().

vector_fp m_tmpV
mutableprivate
vector_fp IMS_lnActCoeffMolal_
mutableprivate
doublereal IMS_X_o_cutoff_

value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process;

Definition at line 770 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::initThermoXML(), IdealMolalSoln::operator=(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_gamma_o_min_

gamma_o value for the cutoff process at the zero solvent point

Definition at line 773 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::initThermoXML(), IdealMolalSoln::operator=(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_gamma_k_min_

gamma_k minimum for the cutoff process at the zero solvent point

Definition at line 776 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::initThermoXML(), IdealMolalSoln::operator=(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_slopefCut_

Parameter in the polyExp cutoff treatment.

This is the slope of the f function at the zero solvent point Default value is 0.6

Definition at line 783 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::initThermoXML(), and IdealMolalSoln::operator=().

doublereal IMS_slopegCut_

Parameter in the polyExp cutoff treatment.

This is the slope of the g function at the zero solvent point Default value is 0.0

Definition at line 790 of file IdealMolalSoln.h.

Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::initThermoXML(), and IdealMolalSoln::operator=().


The documentation for this class was generated from the following files: