Cantera  2.1.2
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
GibbsExcessVPSSTP Class Reference

#include <GibbsExcessVPSSTP.h>

Inheritance diagram for GibbsExcessVPSSTP:
[legend]
Collaboration diagram for GibbsExcessVPSSTP:
[legend]

Public Member Functions

virtual int eosType () const
 Equation of state type flag. More...
 
virtual void initThermo ()
 
Constructors
 GibbsExcessVPSSTP ()
 
 GibbsExcessVPSSTP (const GibbsExcessVPSSTP &b)
 Copy constructor. More...
 
GibbsExcessVPSSTPoperator= (const GibbsExcessVPSSTP &b)
 Assignment operator. More...
 
virtual ThermoPhaseduplMyselfAsThermoPhase () const
 Duplication routine for objects which inherit from ThermoPhase. More...
 
Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and pressure.

virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 The standard concentration \( C^0_k \) used to normalize the generalized concentration. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Returns the natural logarithm of the standard concentration of the kth species. More...
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless. More...
 
virtual void getActivities (doublereal *ac) const
 Get the array of non-dimensional activities (molality based for this class and classes that derive from it) at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getdlnActCoeffdT (doublereal *dlnActCoeffdT) const
 Get the array of temperature derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnX (doublereal *dlnActCoeffdlnX) const
 Get the array of log concentration-like derivatives of the log activity coefficients. More...
 
Partial Molar Properties of the Solution
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
virtual const vector_fpgetPartialMolarVolumes () const
 
Setting the State

These methods set all or part of the thermodynamic state.

virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values, and then normalize them so that they sum to 1.0. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
virtual void setConcentrations (const doublereal *const c)
 Set the concentrations to the specified values within the phase. More...
 
- Public Member Functions inherited from VPStandardStateTP
 VPStandardStateTP ()
 Constructor. More...
 
 VPStandardStateTP (const VPStandardStateTP &b)
 Copy Constructor. More...
 
VPStandardStateTPoperator= (const VPStandardStateTP &b)
 Assignment operator. More...
 
virtual ~VPStandardStateTP ()
 Destructor. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log concentration-like derivatives of the log activity coefficients. More...
 
void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution. More...
 
void getPureGibbs (doublereal *gpure) const
 Get the standard state Gibbs functions for each species at the current T and P. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
virtual const vector_fpgetStandardVolumes () const
 
virtual void setTemperature (const doublereal temp)
 Set the temperature of the phase. More...
 
doublereal pressure () const
 Returns the current pressure of the phase. More...
 
virtual void updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 
virtual void getEntropy_R_ref (doublereal *er) const
 
virtual void getCp_R_ref (doublereal *cprt) const
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Initialize a ThermoPhase object, potentially reading activity coefficient information from an XML database. More...
 
void setVPSSMgr (VPSSMgr *vp_ptr)
 set the VPSS Mgr More...
 
VPSSMgrprovideVPSSMgr ()
 Return a pointer to the VPSSMgr for this phase. More...
 
void createInstallPDSS (size_t k, const XML_Node &s, const XML_Node *phaseNode_ptr)
 
PDSSprovidePDSS (size_t k)
 
const PDSSprovidePDSS (size_t k) const
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual ~ThermoPhase ()
 Destructor. Deletes the species thermo manager. More...
 
 ThermoPhase (const ThermoPhase &right)
 Copy Constructor for the ThermoPhase object. More...
 
ThermoPhaseoperator= (const ThermoPhase &right)
 Assignment operator. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
virtual doublereal cv_vib (int, double) const
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More...
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. More...
 
doublereal entropy_mass () const
 Specific entropy. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. More...
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
virtual ~Phase ()
 Destructor. More...
 
 Phase (const Phase &right)
 Copy Constructor. More...
 
Phaseoperator= (const Phase &right)
 Assignment operator. More...
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual void freezeSpecies ()
 Call when finished adding species. More...
 
bool speciesFrozen ()
 True if freezeSpecies has been called. More...
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More...
 
void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \). More...
 
void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element. More...
 
void addElement (const XML_Node &e)
 Add an element from an XML specification. More...
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree. More...
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species. More...
 
bool elementsFrozen ()
 True if freezeElements has been called. More...
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More...
 

Protected Member Functions

double checkMFSum (const doublereal *const x) const
 utility routine to check mole fraction sum More...
 
- Protected Member Functions inherited from VPStandardStateTP
virtual void _updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
const vector_fpGibbs_RT_ref () const
 
- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Protected Attributes

std::vector< doublereal > moleFractions_
 Storage for the current values of the mole fractions of the species. More...
 
std::vector< doublereal > lnActCoeff_Scaled_
 Storage for the current values of the activity coefficients of the species. More...
 
std::vector< doublereal > dlnActCoeffdT_Scaled_
 Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species. More...
 
std::vector< doublereal > d2lnActCoeffdT2_Scaled_
 Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species. More...
 
std::vector< doublereal > dlnActCoeffdlnN_diag_
 Storage for the current derivative values of the gradients with respect to logarithm of the mole fraction of the log of the activity coefficients of the species. More...
 
std::vector< doublereal > dlnActCoeffdlnX_diag_
 Storage for the current derivative values of the gradients with respect to logarithm of the mole fraction of the log of the activity coefficients of the species. More...
 
Array2D dlnActCoeffdlnN_
 Storage for the current derivative values of the gradients with respect to logarithm of the species mole number of the log of the activity coefficients of the species. More...
 
std::vector< doublereal > m_pp
 Temporary storage space that is fair game. More...
 
- Protected Attributes inherited from VPStandardStateTP
doublereal m_Pcurrent
 Current value of the pressure - state variable. More...
 
doublereal m_Tlast_ss
 The last temperature at which the standard statethermodynamic properties were calculated at. More...
 
doublereal m_Plast_ss
 The last pressure at which the Standard State thermodynamic properties were calculated at. More...
 
doublereal m_P0
 
VPSSMgrm_VPSS_ptr
 Pointer to the VPSS manager that calculates all of the standard state info efficiently. More...
 
std::vector< PDSS * > m_PDSS_storage
 Storage for the PDSS objects for the species. More...
 
- Protected Attributes inherited from ThermoPhase
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition. More...
 
- Protected Attributes inherited from Phase
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 

Private Member Functions

void initLengths ()
 Initialize lengths of local variables after all species have been identified. More...
 
doublereal err (const std::string &msg) const
 Error function. More...
 

Mechanical Properties

virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 

Detailed Description

GibbsExcessVPSSTP is a derived class of ThermoPhase that handles variable pressure standard state methods for calculating thermodynamic properties that are further based on expressing the Excess Gibbs free energy as a function of the mole fractions (or pseudo mole fractions) of constituents. This category is the workhorse for describing molten salts, solid-phase mixtures of semiconductors, and mixtures of miscible and semi-miscible compounds.

It includes

This class adds additional functions onto the ThermoPhase interface that handles the calculation of the excess Gibbs free energy. The ThermoPhase class includes a member function, ThermoPhase::activityConvention() that indicates which convention the activities are based on. The default is to assume activities are based on the molar convention. That default is used here.

All of the Excess Gibbs free energy formulations in this area employ symmetrical formulations.

Chemical potentials of species k, \( \mu_o \), has the following general format:

\[ \mu_k = \mu^o_k(T,P) + R T ln( \gamma_k X_k ) \]

where \( \gamma_k^{\triangle} \) is a molar based activity coefficient for species \(k\).

GibbsExcessVPSSTP contains an internal vector with the current mole fraction vector. That's one of its primary usages. In order to keep the mole fraction vector constant, all of the setState functions are redesigned at this layer.

Activity Concentrations: Relationship of ThermoPhase to Kinetics Expressions

As explained in a similar discussion in the ThermoPhase class, the actual units used in kinetics expressions must be specified in the ThermoPhase class for the corresponding species. These units vary with the field of study. Cantera uses the concept of activity concentrations to represent this. Activity concentrations are used directly in the expressions for kinetics. Standard concentrations are used as the multiplicative constant that takes the activity of a species and turns it into an activity concentration. Standard concentrations must not depend on the concentration of the species in the phase.

Here we set a standard for the specification of the standard concentrations for this class and all child classes underneath it. We specify here that the standard concentration is equal to 1 for all species. Therefore, the activities appear directly in kinetics expressions involving species in underlying GibbsExcessVPSSTP phases.

SetState Strategy

All setState functions that set the internal state of the ThermoPhase object are overloaded at this level, so that a current mole fraction vector is maintained within the object.

Definition at line 97 of file GibbsExcessVPSSTP.h.

Constructor & Destructor Documentation

This doesn't do much more than initialize constants with default values for water at 25C. Water molecular weight comes from the default elements.xml file. It actually differs slightly from the IAPWS95 value of 18.015268. However, density conservation and therefore element conservation is the more important principle to follow.

Definition at line 29 of file GibbsExcessVPSSTP.cpp.

Referenced by GibbsExcessVPSSTP::duplMyselfAsThermoPhase().

Copy constructor.

Parameters
bclass to be copied

Definition at line 42 of file GibbsExcessVPSSTP.cpp.

References GibbsExcessVPSSTP::operator=().

Member Function Documentation

GibbsExcessVPSSTP & operator= ( const GibbsExcessVPSSTP b)
ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplication routine for objects which inherit from ThermoPhase.

This virtual routine can be used to duplicate thermophase objects inherited from ThermoPhase even if the application only has a pointer to ThermoPhase to work with.

Reimplemented from VPStandardStateTP.

Reimplemented in PhaseCombo_Interaction, MargulesVPSSTP, MixedSolventElectrolyte, RedlichKisterVPSSTP, IonsFromNeutralVPSSTP, MolarityIonicVPSSTP, and PseudoBinaryVPSSTP.

Definition at line 78 of file GibbsExcessVPSSTP.cpp.

References GibbsExcessVPSSTP::GibbsExcessVPSSTP().

int eosType ( ) const
virtual

Equation of state type flag.

The ThermoPhase base class returns zero. Subclasses should define this to return a unique non-zero value. Known constants defined for this purpose are listed in mix_defs.h. The MolalityVPSSTP class also returns zero, as it is a non-complete class.

Reimplemented from VPStandardStateTP.

Reimplemented in PhaseCombo_Interaction, MargulesVPSSTP, MixedSolventElectrolyte, RedlichKisterVPSSTP, IonsFromNeutralVPSSTP, MolarityIonicVPSSTP, and PseudoBinaryVPSSTP.

Definition at line 113 of file GibbsExcessVPSSTP.cpp.

Referenced by GibbsExcessVPSSTP::err().

void setPressure ( doublereal  p)
virtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method sets the pressure within the object. The water model is a completely compressible model. Also, the dielectric constant is pressure dependent.

Parameters
pinput Pressure (Pa)
Todo:
Implement a variable pressure capability

Reimplemented from VPStandardStateTP.

Reimplemented in IonsFromNeutralVPSSTP.

Definition at line 122 of file GibbsExcessVPSSTP.cpp.

References GibbsExcessVPSSTP::setState_TP(), and Phase::temperature().

void calcDensity ( )
protectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.

Reimplemented from VPStandardStateTP.

Definition at line 127 of file GibbsExcessVPSSTP.cpp.

References GibbsExcessVPSSTP::getPartialMolarVolumes(), Phase::m_kk, Phase::meanMolecularWeight(), GibbsExcessVPSSTP::moleFractions_, and Phase::setDensity().

Referenced by GibbsExcessVPSSTP::setState_TP().

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 164 of file GibbsExcessVPSSTP.cpp.

References GibbsExcessVPSSTP::getActivities().

doublereal standardConcentration ( size_t  k = 0) const
virtual

The standard concentration \( C^0_k \) used to normalize the generalized concentration.

In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (e.g. surface species of different sizes), this method may be called with an optional parameter indicating the species.

The standard concentration for defaulted to 1. In other words the activity concentration is assumed to be 1.

Parameters
kspecies index. Defaults to zero.

Reimplemented from ThermoPhase.

Reimplemented in PseudoBinaryVPSSTP.

Definition at line 169 of file GibbsExcessVPSSTP.cpp.

doublereal logStandardConc ( size_t  k = 0) const
virtual

Returns the natural logarithm of the standard concentration of the kth species.

Parameters
kspecies index

Reimplemented from ThermoPhase.

Reimplemented in PseudoBinaryVPSSTP.

Definition at line 174 of file GibbsExcessVPSSTP.cpp.

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const
virtual

Returns the units of the standard and generalized concentrations Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

Parameters
uAOutput vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0
kspecies index. Defaults to 0.
sizeUAoutput int containing the size of the vector. Currently, this is equal to 6.
Deprecated:

Reimplemented from ThermoPhase.

Definition at line 248 of file GibbsExcessVPSSTP.cpp.

void getActivities ( doublereal *  ac) const
virtual

Get the array of non-dimensional activities (molality based for this class and classes that derive from it) at the current solution temperature, pressure, and solution concentration.

\[ a_i^\triangle = \gamma_k^{\triangle} \frac{m_k}{m^\triangle} \]

This function must be implemented in derived classes.

Parameters
acOutput vector of molality-based activities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 179 of file GibbsExcessVPSSTP.cpp.

References DATA_PTR, GibbsExcessVPSSTP::getActivityCoefficients(), Phase::getMoleFractions(), Phase::m_kk, and GibbsExcessVPSSTP::moleFractions_.

Referenced by GibbsExcessVPSSTP::getActivityConcentrations(), PseudoBinaryVPSSTP::report(), and MolarityIonicVPSSTP::report().

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in PhaseCombo_Interaction, MixedSolventElectrolyte, and IonsFromNeutralVPSSTP.

Definition at line 188 of file GibbsExcessVPSSTP.cpp.

References ThermoPhase::getLnActivityCoefficients(), and Phase::m_kk.

Referenced by GibbsExcessVPSSTP::getActivities().

virtual void getdlnActCoeffdT ( doublereal *  dlnActCoeffdT) const
inlinevirtual

Get the array of temperature derivatives of the log activity coefficients.

This function is a virtual class, but it first appears in GibbsExcessVPSSTP class and derived classes from GibbsExcessVPSSTP.

units = 1/Kelvin

Parameters
dlnActCoeffdTOutput vector of temperature derivatives of the log Activity Coefficients. length = m_kk

Reimplemented in PhaseCombo_Interaction, MargulesVPSSTP, MixedSolventElectrolyte, and RedlichKisterVPSSTP.

Definition at line 301 of file GibbsExcessVPSSTP.h.

References GibbsExcessVPSSTP::err().

Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT().

virtual void getdlnActCoeffdlnN ( const size_t  ld,
doublereal *const  dlnActCoeffdlnN 
)
inlinevirtual

Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.

Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.

units = 1 / kmol

dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the mth species with respect to the number of moles of the kth species.

\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]

Parameters
ldNumber of rows in the matrix
dlnActCoeffdlnNOutput vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk

Reimplemented from ThermoPhase.

Reimplemented in PhaseCombo_Interaction, MargulesVPSSTP, MixedSolventElectrolyte, RedlichKisterVPSSTP, and IonsFromNeutralVPSSTP.

Definition at line 324 of file GibbsExcessVPSSTP.h.

References GibbsExcessVPSSTP::err().

Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN().

virtual void getdlnActCoeffdlnX ( doublereal *  dlnActCoeffdlnX) const
inlinevirtual

Get the array of log concentration-like derivatives of the log activity coefficients.

This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration-like variable (i.e. number of moles in in a unit volume. ) that represents the standard state. This quantity is to be used in conjunction with derivatives of that concentration-like variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnXOutput vector of derivatives of the log Activity Coefficients. length = m_kk

Definition at line 346 of file GibbsExcessVPSSTP.h.

References GibbsExcessVPSSTP::err().

void getElectrochemPotentials ( doublereal *  mu) const

Get the species electrochemical potentials.

These are partial molar quantities. This method adds a term \( Fz_k \phi_k \) to the to each chemical potential.

Units: J/kmol

Parameters
muoutput vector containing the species electrochemical potentials. Length: m_kk.

Definition at line 205 of file GibbsExcessVPSSTP.cpp.

References Phase::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Frequently, for this class of thermodynamics representations, the excess Volume due to mixing is zero. Here, we set it as a default. It may be overridden in derived classes.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Reimplemented in PhaseCombo_Interaction, MargulesVPSSTP, MixedSolventElectrolyte, RedlichKisterVPSSTP, and MolarityIonicVPSSTP.

Definition at line 218 of file GibbsExcessVPSSTP.cpp.

References VPStandardStateTP::getStandardVolumes().

Referenced by GibbsExcessVPSSTP::calcDensity().

void setState_TP ( doublereal  t,
doublereal  p 
)
virtual

Set the temperature (K) and pressure (Pa)

Set the temperature and pressure.

Parameters
tTemperature (K)
pPressure (Pa)

Reimplemented from VPStandardStateTP.

Reimplemented in IonsFromNeutralVPSSTP.

Definition at line 141 of file GibbsExcessVPSSTP.cpp.

References GibbsExcessVPSSTP::calcDensity(), VPStandardStateTP::m_Pcurrent, Phase::setTemperature(), and VPStandardStateTP::updateStandardStateThermo().

Referenced by GibbsExcessVPSSTP::setPressure().

void setMassFractions ( const doublereal *const  y)
virtual

Set the mass fractions to the specified values, and then normalize them so that they sum to 1.0.

Parameters
yArray of unnormalized mass fraction values (input). Must have a length greater than or equal to the number of species.
yInput vector of mass fractions. Length is m_kk.

Reimplemented from Phase.

Reimplemented in IonsFromNeutralVPSSTP.

Definition at line 83 of file GibbsExcessVPSSTP.cpp.

References DATA_PTR, Phase::getMoleFractions(), GibbsExcessVPSSTP::moleFractions_, and Phase::setMassFractions().

Referenced by IonsFromNeutralVPSSTP::setMassFractions().

void setMassFractions_NoNorm ( const doublereal *const  y)
virtual

Set the mass fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.

Parameters
yInput vector of mass fractions. Length is m_kk.

Reimplemented from Phase.

Reimplemented in IonsFromNeutralVPSSTP.

Definition at line 89 of file GibbsExcessVPSSTP.cpp.

References DATA_PTR, Phase::getMoleFractions(), GibbsExcessVPSSTP::moleFractions_, and Phase::setMassFractions_NoNorm().

Referenced by IonsFromNeutralVPSSTP::setMassFractions_NoNorm().

void setMoleFractions ( const doublereal *const  x)
virtual

Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0.

Parameters
xArray of unnormalized mole fraction values (input). Must have a length greater than or equal to the number of species.
xInput vector of mole fractions. Length is m_kk.

Reimplemented from Phase.

Reimplemented in IonsFromNeutralVPSSTP.

Definition at line 95 of file GibbsExcessVPSSTP.cpp.

References DATA_PTR, Phase::getMoleFractions(), GibbsExcessVPSSTP::moleFractions_, and Phase::setMoleFractions().

Referenced by IonsFromNeutralVPSSTP::setMoleFractions().

void setMoleFractions_NoNorm ( const doublereal *const  x)
virtual

Set the mole fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.

Parameters
xInput vector of mole fractions. Length is m_kk.

Reimplemented from Phase.

Reimplemented in IonsFromNeutralVPSSTP.

Definition at line 101 of file GibbsExcessVPSSTP.cpp.

References DATA_PTR, Phase::getMoleFractions(), GibbsExcessVPSSTP::moleFractions_, and Phase::setMoleFractions_NoNorm().

Referenced by IonsFromNeutralVPSSTP::setMoleFractions_NoNorm().

void setConcentrations ( const doublereal *const  c)
virtual

Set the concentrations to the specified values within the phase.

Parameters
cThe input vector to this routine is in dimensional units. For volumetric phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the number of species in the phase.

Reimplemented from Phase.

Reimplemented in IonsFromNeutralVPSSTP.

Definition at line 107 of file GibbsExcessVPSSTP.cpp.

References DATA_PTR, Phase::getMoleFractions(), GibbsExcessVPSSTP::moleFractions_, and Phase::setConcentrations().

Referenced by IonsFromNeutralVPSSTP::setConcentrations().

void initThermo ( )
virtual

Initialize. This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase.

See Also
importCTML.cpp

Reimplemented from VPStandardStateTP.

Reimplemented in PhaseCombo_Interaction, IonsFromNeutralVPSSTP, MargulesVPSSTP, MixedSolventElectrolyte, RedlichKisterVPSSTP, MolarityIonicVPSSTP, and PseudoBinaryVPSSTP.

Definition at line 272 of file GibbsExcessVPSSTP.cpp.

References DATA_PTR, Phase::getMoleFractions(), GibbsExcessVPSSTP::initLengths(), VPStandardStateTP::initThermo(), and GibbsExcessVPSSTP::moleFractions_.

Referenced by PseudoBinaryVPSSTP::initThermo(), MolarityIonicVPSSTP::initThermo(), RedlichKisterVPSSTP::initThermo(), MargulesVPSSTP::initThermo(), IonsFromNeutralVPSSTP::initThermo(), and PhaseCombo_Interaction::initThermo().

void initLengths ( )
private
doublereal err ( const std::string &  msg) const
private

Error function.

Print an error string and exit

Parameters
msgMessage to be printed

Definition at line 231 of file GibbsExcessVPSSTP.cpp.

References GibbsExcessVPSSTP::eosType(), and Cantera::int2str().

Referenced by GibbsExcessVPSSTP::getdlnActCoeffdlnN(), GibbsExcessVPSSTP::getdlnActCoeffdlnX(), and GibbsExcessVPSSTP::getdlnActCoeffdT().

double checkMFSum ( const doublereal *const  x) const
protected

utility routine to check mole fraction sum

Parameters
xvector of mole fractions.
Deprecated:

Definition at line 238 of file GibbsExcessVPSSTP.cpp.

References Cantera::fp2str(), and Phase::m_kk.

Member Data Documentation

std::vector<doublereal> moleFractions_
mutableprotected

Storage for the current values of the mole fractions of the species.

This vector is kept up-to-date when the setState functions are called. Therefore, it may be considered to be an independent variable.

Note in order to do this, the setState functions are redefined to always keep this vector current.

Definition at line 503 of file GibbsExcessVPSSTP.h.

Referenced by GibbsExcessVPSSTP::calcDensity(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), PseudoBinaryVPSSTP::calcPseudoBinaryMoleFractions(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), RedlichKisterVPSSTP::cp_mole(), MixedSolventElectrolyte::cp_mole(), MargulesVPSSTP::cp_mole(), PhaseCombo_Interaction::cp_mole(), RedlichKisterVPSSTP::enthalpy_mole(), MixedSolventElectrolyte::enthalpy_mole(), MargulesVPSSTP::enthalpy_mole(), PhaseCombo_Interaction::enthalpy_mole(), RedlichKisterVPSSTP::entropy_mole(), MixedSolventElectrolyte::entropy_mole(), MargulesVPSSTP::entropy_mole(), PhaseCombo_Interaction::entropy_mole(), GibbsExcessVPSSTP::getActivities(), MolarityIonicVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), RedlichKisterVPSSTP::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), PhaseCombo_Interaction::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), PseudoBinaryVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initLengths(), GibbsExcessVPSSTP::initThermo(), GibbsExcessVPSSTP::operator=(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), PhaseCombo_Interaction::s_update_lnActCoeff(), GibbsExcessVPSSTP::setConcentrations(), GibbsExcessVPSSTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), and RedlichKisterVPSSTP::Vint().

std::vector<doublereal> lnActCoeff_Scaled_
mutableprotected
std::vector<doublereal> dlnActCoeffdT_Scaled_
mutableprotected

Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species.

Definition at line 512 of file GibbsExcessVPSSTP.h.

Referenced by RedlichKisterVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), PhaseCombo_Interaction::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffdT(), MixedSolventElectrolyte::getdlnActCoeffdT(), MargulesVPSSTP::getdlnActCoeffdT(), PhaseCombo_Interaction::getdlnActCoeffdT(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), GibbsExcessVPSSTP::initLengths(), GibbsExcessVPSSTP::operator=(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT().

std::vector<doublereal> d2lnActCoeffdT2_Scaled_
mutableprotected
std::vector<doublereal> dlnActCoeffdlnN_diag_
mutableprotected
std::vector<doublereal> dlnActCoeffdlnX_diag_
mutableprotected
Array2D dlnActCoeffdlnN_
mutableprotected
std::vector<doublereal> m_pp
mutableprotected

The documentation for this class was generated from the following files: