Cantera  3.1.0a1
SingleSpeciesTP Class Reference

The SingleSpeciesTP class is a filter class for ThermoPhase. More...

#include <SingleSpeciesTP.h>

Inheritance diagram for SingleSpeciesTP:
[legend]

Detailed Description

The SingleSpeciesTP class is a filter class for ThermoPhase.

What it does is to simplify the construction of ThermoPhase objects by assuming that the phase consists of one and only one type of species. In other words, it's a stoichiometric phase. However, no assumptions are made concerning the thermodynamic functions or the equation of state of the phase. Therefore it's an incomplete description of the thermodynamics. The complete description must be made in a derived class of SingleSpeciesTP.

Several different groups of thermodynamic functions are resolved at this level by this class. For example, All partial molar property routines call their single species standard state equivalents. All molar solution thermodynamic routines call the single species standard state equivalents. Activities routines are resolved at this level, as there is only one species.

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is again left open to implementation.

Mole fraction and Mass fraction vectors are assumed to be equal to x[0] = 1 y[0] = 1, respectively. Simplifications to the interface of setState_TPY() and setState_TPX() functions result and are made within the class.

Note, this class can handle the thermodynamic description of one phase of one species. It can not handle the description of phase equilibrium between two phases of a stoichiometric compound (such as water liquid and water vapor, below the critical point). However, it may be used to describe the thermodynamics of one phase of such a compound even past the phase equilibrium point, up to the point where the phase itself ceases to be a stable phase.

This class doesn't do much at the initialization level. Its SingleSpeciesTP::initThermo() member does check that one and only one species has been defined to occupy the phase.

Definition at line 56 of file SingleSpeciesTP.h.

Public Member Functions

 SingleSpeciesTP ()=default
 Base empty constructor. More...
 
string type () const override
 String indicating the thermodynamic model implemented. More...
 
bool isPure () const override
 Return whether phase represents a pure (single species) substance. More...
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase. More...
 
Molar Thermodynamic Properties of the Solution

These functions are resolved at this level, by reference to the partial molar functions and standard state functions for species 0.

Derived classes don't need to supply entries for these functions.

double enthalpy_mole () const override
 Molar enthalpy. Units: J/kmol. More...
 
double intEnergy_mole () const override
 Molar internal energy. Units: J/kmol. More...
 
double entropy_mole () const override
 Molar entropy. Units: J/kmol/K. More...
 
double gibbs_mole () const override
 Molar Gibbs function. Units: J/kmol. More...
 
double cp_mole () const override
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
double cv_mole () const override
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
Activities, Standard State, and Activity Concentrations

The activity \( a_k \) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \ln a_k. \]

The quantity \( \mu_k^0(T) \) is the chemical potential at unit activity, which depends only on temperature.

void getActivities (double *a) const override
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
void getActivityCoefficients (double *ac) const override
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
Partial Molar Properties of the Solution

These functions are resolved at this level, by reference to the partial molar functions and standard state functions for species 0.

Derived classes don't need to supply entries for these functions.

void getChemPotentials (double *mu) const override
 Get the array of chemical potentials. More...
 
void getPartialMolarEnthalpies (double *hbar) const override
 Get the species partial molar enthalpies. Units: J/kmol. More...
 
void getPartialMolarIntEnergies (double *ubar) const override
 Get the species partial molar internal energies. Units: J/kmol. More...
 
void getPartialMolarEntropies (double *sbar) const override
 Get the species partial molar entropy. Units: J/kmol K. More...
 
void getPartialMolarCp (double *cpbar) const override
 Get the species partial molar Heat Capacities. Units: J/ kmol /K. More...
 
void getPartialMolarVolumes (double *vbar) const override
 Get the species partial molar volumes. Units: m^3/kmol. More...
 
Properties of the Standard State of the Species in the Solution

These functions are the primary way real properties are supplied to derived thermodynamics classes of SingleSpeciesTP.

These functions must be supplied in derived classes. They are not resolved at the SingleSpeciesTP level.

void getPureGibbs (double *gpure) const override
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
void getStandardVolumes (double *vbar) const override
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference State

Almost all functions in this group are resolved by this class.

The internal energy function is not given by this class, since it would involve a specification of the equation of state.

void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
void getGibbs_ref (double *g) const override
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
void getCp_R_ref (double *cprt) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
Setting the State

These methods set all or part of the thermodynamic state.

void setMassFractions (const double *const y) override
 Mass fractions are fixed, with Y[0] = 1.0. More...
 
void setMoleFractions (const double *const x) override
 Mole fractions are fixed, with x[0] = 1.0. More...
 
void setState_HP (double h, double p, double tol=1e-9) override
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
void setState_UV (double u, double v, double tol=1e-9) override
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
void setState_SP (double s, double p, double tol=1e-9) override
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
void setState_SV (double s, double v, double tol=1e-9) override
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor. More...
 
double RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More...
 
string type () const override
 String indicating the thermodynamic model implemented. More...
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal. More...
 
virtual string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase. More...
 
virtual double refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual double minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual double maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual double isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual double thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
virtual double soundSpeed () const
 Return the speed of sound. Units: m/s. More...
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V). More...
 
double electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase. More...
 
virtual void getActivityConcentrations (double *c) const
 This method returns an array of generalized concentrations. More...
 
virtual double standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual double logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getStandardChemPotentials (double *mu) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT (double *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (double *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (double *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (double *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (double *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT_ref (double *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (double *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_DP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More...
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const double *mu_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual double critTemperature () const
 Critical temperature (K). More...
 
virtual double critPressure () const
 Critical pressure (Pa). More...
 
virtual double critVolume () const
 Critical volume (m3/kmol). More...
 
virtual double critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual double critDensity () const
 Critical density (kg/m3). More...
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure. More...
 
virtual double satPressure (double t)
 Return the saturation pressure given the temperature. More...
 
virtual double vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure. More...
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality). More...
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase. More...
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file. More...
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description. More...
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function. More...
 
virtual void getSpeciesParameters (const string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More...
 
const AnyMapinput () const
 Access input data associated with the phase description. More...
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
virtual string report (bool show_thermo=true, double threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions. More...
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance. More...
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance. More...
 
string nativeMode () const
 Return string acronym representing the native state of a Phase. More...
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase. More...
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase. More...
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase. More...
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase. More...
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState. More...
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector. More...
 
double molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges. More...
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol]. More...
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
double chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced. More...
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More...
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector. More...
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions. More...
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions. More...
 
string name () const
 Return the name of the phase. More...
 
void setName (const string &nm)
 Sets the string name for the phase. More...
 
string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'. More...
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
double atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
string speciesName (size_t k) const
 Name of the species with index k. More...
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name. More...
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species. More...
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
double massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
double massFraction (const string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (double *const y) const
 Get the species mass fractions. More...
 
const double * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3). More...
 
virtual double concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
double temperature () const
 Temperature (K). More...
 
virtual double electronTemperature () const
 Electron Temperature (K) More...
 
virtual double pressure () const
 Return the thermodynamic pressure (Pa). More...
 
virtual double density () const
 Density (kg/m^3). More...
 
virtual double molarDensity () const
 Molar density (kmol/m^3). More...
 
virtual double molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setPressure (double p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K). More...
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K). More...
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \). More...
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name). More...
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map. More...
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string. More...
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Protected Member Functions

void _updateThermo () const
 This internal routine calculates new species Cp0, H0, and S0 whenever the temperature has changed. More...
 
- Protected Member Functions inherited from ThermoPhase
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function. More...
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible. More...
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase. More...
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 

Protected Attributes

double m_press = OneAtm
 The current pressure of the solution (Pa). It gets initialized to 1 atm. More...
 
double m_p0 = OneAtm
 
double m_h0_RT
 Dimensionless enthalpy at the (mtlast, m_p0) More...
 
double m_cp0_R
 Dimensionless heat capacity at the (mtlast, m_p0) More...
 
double m_s0_R
 Dimensionless entropy at the (mtlast, m_p0) More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
AnyMap m_input
 Data supplied via setParameters. More...
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts. More...
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention. More...
 
double m_tlast = 0.0
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk = 0
 Number of species in the phase. More...
 
size_t m_ndim = 3
 Dimensionality of the phase. More...
 
vector< double > m_speciesComp
 Atomic composition of the species. More...
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk. More...
 
map< string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element. More...
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced. More...
 

Constructor & Destructor Documentation

◆ SingleSpeciesTP()

SingleSpeciesTP ( )
default

Base empty constructor.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from Phase.

Reimplemented in WaterSSTP, and StoichSubstance.

Definition at line 62 of file SingleSpeciesTP.h.

◆ isPure()

bool isPure ( ) const
inlineoverridevirtual

Return whether phase represents a pure (single species) substance.

Reimplemented from Phase.

Definition at line 66 of file SingleSpeciesTP.h.

◆ enthalpy_mole()

double enthalpy_mole ( ) const
overridevirtual

Molar enthalpy. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 20 of file SingleSpeciesTP.cpp.

◆ intEnergy_mole()

double intEnergy_mole ( ) const
overridevirtual

Molar internal energy. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 27 of file SingleSpeciesTP.cpp.

◆ entropy_mole()

double entropy_mole ( ) const
overridevirtual

Molar entropy. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 34 of file SingleSpeciesTP.cpp.

◆ gibbs_mole()

double gibbs_mole ( ) const
overridevirtual

Molar Gibbs function. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 41 of file SingleSpeciesTP.cpp.

◆ cp_mole()

double cp_mole ( ) const
overridevirtual

Molar heat capacity at constant pressure. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 51 of file SingleSpeciesTP.cpp.

◆ cv_mole()

double cv_mole ( ) const
overridevirtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Reimplemented in WaterSSTP.

Definition at line 62 of file SingleSpeciesTP.cpp.

◆ getActivities()

void getActivities ( double *  a) const
inlineoverridevirtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

We redefine this function to just return 1.0 here.

Parameters
aOutput vector of activities. Length: 1.

Reimplemented from ThermoPhase.

Definition at line 101 of file SingleSpeciesTP.h.

◆ getActivityCoefficients()

void getActivityCoefficients ( double *  ac) const
inlineoverridevirtual

Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 105 of file SingleSpeciesTP.h.

◆ getChemPotentials()

void getChemPotentials ( double *  mu) const
overridevirtual

Get the array of chemical potentials.

These are the phase, partial molar, and the standard state chemical potentials. \( \mu(T,P) = \mu^0_k(T,P) \).

Parameters
muOn return, Contains the chemical potential of the single species and the phase. Units are J / kmol . Length = 1

Reimplemented from ThermoPhase.

Definition at line 84 of file SingleSpeciesTP.cpp.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( double *  hbar) const
overridevirtual

Get the species partial molar enthalpies. Units: J/kmol.

These are the phase enthalpies. \( h_k \).

Parameters
hbarOutput vector of species partial molar enthalpies. Length: 1. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 89 of file SingleSpeciesTP.cpp.

◆ getPartialMolarIntEnergies()

void getPartialMolarIntEnergies ( double *  ubar) const
overridevirtual

Get the species partial molar internal energies. Units: J/kmol.

These are the phase internal energies. \( u_k \).

Parameters
ubarOn return, Contains the internal energy of the single species and the phase. Units are J / kmol . Length = 1

Reimplemented from ThermoPhase.

Definition at line 95 of file SingleSpeciesTP.cpp.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( double *  sbar) const
overridevirtual

Get the species partial molar entropy. Units: J/kmol K.

This is the phase entropy. \( s(T,P) = s_o(T,P) \).

Parameters
sbarOn return, Contains the entropy of the single species and the phase. Units are J / kmol / K . Length = 1

Reimplemented from ThermoPhase.

Definition at line 101 of file SingleSpeciesTP.cpp.

◆ getPartialMolarCp()

void getPartialMolarCp ( double *  cpbar) const
overridevirtual

Get the species partial molar Heat Capacities. Units: J/ kmol /K.

This is the phase heat capacity. \( Cp(T,P) = Cp_o(T,P) \).

Parameters
cpbarOn return, Contains the heat capacity of the single species and the phase. Units are J / kmol / K . Length = 1

Reimplemented from ThermoPhase.

Definition at line 107 of file SingleSpeciesTP.cpp.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( double *  vbar) const
overridevirtual

Get the species partial molar volumes. Units: m^3/kmol.

This is the phase molar volume. \( V(T,P) = V_o(T,P) \).

Parameters
vbarOn return, Contains the molar volume of the single species and the phase. Units are m^3 / kmol. Length = 1

Reimplemented from ThermoPhase.

Definition at line 113 of file SingleSpeciesTP.cpp.

◆ getPureGibbs()

void getPureGibbs ( double *  gpure) const
overridevirtual

Get the Gibbs functions for the standard state of the species at the current T and P of the solution.

Units are Joules/kmol

Parameters
gpureOutput vector of standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 120 of file SingleSpeciesTP.cpp.

◆ getStandardVolumes()

void getStandardVolumes ( double *  vbar) const
overridevirtual

Get the molar volumes of each species in their standard states at the current T and P of the solution.

units = m^3 / kmol

We resolve this function at this level, by assigning the molecular weight divided by the phase density

Parameters
vbarOn output this contains the standard volume of the species and phase (m^3/kmol). Vector of length 1

Reimplemented from ThermoPhase.

Definition at line 126 of file SingleSpeciesTP.cpp.

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( double *  hrt) const
overridevirtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in WaterSSTP.

Definition at line 133 of file SingleSpeciesTP.cpp.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( double *  grt) const
overridevirtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in WaterSSTP.

Definition at line 139 of file SingleSpeciesTP.cpp.

◆ getGibbs_ref()

void getGibbs_ref ( double *  g) const
overridevirtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Reimplemented in WaterSSTP.

Definition at line 145 of file SingleSpeciesTP.cpp.

◆ getEntropy_R_ref()

void getEntropy_R_ref ( double *  er) const
overridevirtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Reimplemented in WaterSSTP.

Definition at line 151 of file SingleSpeciesTP.cpp.

◆ getCp_R_ref()

void getCp_R_ref ( double *  cprt) const
overridevirtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from ThermoPhase.

Reimplemented in WaterSSTP.

Definition at line 157 of file SingleSpeciesTP.cpp.

◆ setMassFractions()

void setMassFractions ( const double *const  y)
inlineoverridevirtual

Mass fractions are fixed, with Y[0] = 1.0.

Reimplemented from Phase.

Definition at line 218 of file SingleSpeciesTP.h.

◆ setMoleFractions()

void setMoleFractions ( const double *const  x)
inlineoverridevirtual

Mole fractions are fixed, with x[0] = 1.0.

Reimplemented from Phase.

Definition at line 221 of file SingleSpeciesTP.h.

◆ setState_HP()

void setState_HP ( double  h,
double  p,
double  tol = 1e-9 
)
overridevirtual

Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.

Parameters
hSpecific enthalpy (J/kg)
pPressure (Pa)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 165 of file SingleSpeciesTP.cpp.

◆ setState_UV()

void setState_UV ( double  u,
double  v,
double  tol = 1e-9 
)
overridevirtual

Set the specific internal energy (J/kg) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.

Parameters
uspecific internal energy (J/kg)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 180 of file SingleSpeciesTP.cpp.

◆ setState_SP()

void setState_SP ( double  s,
double  p,
double  tol = 1e-9 
)
overridevirtual

Set the specific entropy (J/kg/K) and pressure (Pa).

This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
pspecific pressure (Pa).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 199 of file SingleSpeciesTP.cpp.

◆ setState_SV()

void setState_SV ( double  s,
double  v,
double  tol = 1e-9 
)
overridevirtual

Set the specific entropy (J/kg/K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 214 of file SingleSpeciesTP.cpp.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
overridevirtual

Add a Species to this Phase.

Returns true if the species was successfully added, or false if the species was ignored.

Derived classes which need to size arrays according to the number of species should overload this method. The derived class implementation should call the base class method, and, if this returns true (indicating that the species has been added), adjust their array sizes accordingly.

See also
ignoreUndefinedElements addUndefinedElements throwUndefinedElements

Reimplemented from Phase.

Definition at line 233 of file SingleSpeciesTP.cpp.

◆ _updateThermo()

void _updateThermo ( ) const
protected

This internal routine calculates new species Cp0, H0, and S0 whenever the temperature has changed.

Definition at line 242 of file SingleSpeciesTP.cpp.

Member Data Documentation

◆ m_press

double m_press = OneAtm
protected

The current pressure of the solution (Pa). It gets initialized to 1 atm.

Definition at line 233 of file SingleSpeciesTP.h.

◆ m_h0_RT

double m_h0_RT
mutableprotected

Dimensionless enthalpy at the (mtlast, m_p0)

Definition at line 240 of file SingleSpeciesTP.h.

◆ m_cp0_R

double m_cp0_R
mutableprotected

Dimensionless heat capacity at the (mtlast, m_p0)

Definition at line 242 of file SingleSpeciesTP.h.

◆ m_s0_R

double m_s0_R
mutableprotected

Dimensionless entropy at the (mtlast, m_p0)

Definition at line 244 of file SingleSpeciesTP.h.


The documentation for this class was generated from the following files: