13 const double Tstar = 647.27;
14 const double rhoStar = 317.763;
15 const double presStar = 22.115E6;
16 const double muStar = 55.071E-6;
18 const double H[4] = {1., 0.978197, 0.579829, -0.202354};
19 const double Hij[6][7] = {
20 { 0.5132047, 0.2151778, -0.2818107, 0.1778064, -0.04176610, 0., 0.},
21 { 0.3205656, 0.7317883, -1.070786 , 0.4605040, 0., -0.01578386, 0.},
22 { 0., 1.241044 , -1.263184 , 0.2340379, 0., 0., 0.},
23 { 0., 1.476783 , 0., -0.4924179, 0.1600435, 0., -0.003629481},
24 {-0.7782567, 0.0 , 0., 0. , 0., 0., 0.},
25 { 0.1885447, 0.0 , 0., 0. , 0., 0., 0.},
40 static const double TStar = 647.27;
44 double rhobar = dens/rhoStar;
45 double tbar = temp / TStar;
46 double tbar2 = tbar * tbar;
47 double tbar3 = tbar2 * tbar;
48 double mu0bar = std::sqrt(tbar) / (H[0] + H[1]/tbar + H[2]/tbar2 + H[3]/tbar3);
50 double tfac1 = 1.0 / tbar - 1.0;
51 double tfac2 = tfac1 * tfac1;
52 double tfac3 = tfac2 * tfac1;
53 double tfac4 = tfac3 * tfac1;
54 double tfac5 = tfac4 * tfac1;
56 double rfac1 = rhobar - 1.0;
57 double rfac2 = rfac1 * rfac1;
58 double rfac3 = rfac2 * rfac1;
59 double rfac4 = rfac3 * rfac1;
60 double rfac5 = rfac4 * rfac1;
61 double rfac6 = rfac5 * rfac1;
63 double sum = Hij[0][0] + Hij[1][0]*tfac1 + Hij[4][0]*tfac4 + Hij[5][0]*tfac5 +
64 Hij[0][1]*rfac1 + Hij[1][1]*tfac1*rfac1 + Hij[2][1]*tfac2*rfac1 + Hij[3][1]*tfac3*rfac1 +
65 Hij[0][2]*rfac2 + Hij[1][2]*tfac1*rfac2 + Hij[2][2]*tfac2*rfac2 +
66 Hij[0][3]*rfac3 + Hij[1][3]*tfac1*rfac3 + Hij[2][3]*tfac2*rfac3 + Hij[3][3]*tfac3*rfac3 +
67 Hij[0][4]*rfac4 + Hij[3][4]*tfac3*rfac4 +
68 Hij[1][5]*tfac1*rfac5 + Hij[3][6]*tfac3*rfac6;
69 double mu1bar = std::exp(rhobar * sum);
73 if (tbar >= 0.9970 && tbar <= 1.0082 && rhobar >= 0.755 && rhobar <= 1.290) {
75 drhodp *= presStar / rhoStar;
76 double xsi = rhobar * drhodp;
78 mu2bar = 0.922 * std::pow(xsi, 0.0263);
82 double mubar = mu0bar * mu1bar * mu2bar;
83 return mubar * muStar;
88 static const double lambdastar = 0.4945;
89 static const double L[4] = {
95 static const double Lji[6][5] = {
96 { 1.3293046, 1.7018363, 5.2246158, 8.7127675, -1.8525999},
97 {-0.40452437, -2.2156845, -10.124111, -9.5000611, 0.93404690},
98 { 0.24409490, 1.6511057, 4.9874687, 4.3786606, 0.0},
99 { 0.018660751, -0.76736002, -0.27297694, -0.91783782, 0.0},
100 {-0.12961068, 0.37283344, -0.43083393, 0.0, 0.0},
101 { 0.044809953, -0.11203160, 0.13333849, 0.0, 0.0},
107 double rhobar = dens / rhoStar;
108 double tbar = temp / Tstar;
109 double tbar2 = tbar * tbar;
110 double tbar3 = tbar2 * tbar;
111 double lambda0bar = sqrt(tbar) / (L[0] + L[1]/tbar + L[2]/tbar2 + L[3]/tbar3);
113 double tfac1 = 1.0 / tbar - 1.0;
114 double tfac2 = tfac1 * tfac1;
115 double tfac3 = tfac2 * tfac1;
116 double tfac4 = tfac3 * tfac1;
117 double tfac5 = tfac4 * tfac1;
119 double rfac1 = rhobar - 1.0;
120 double rfac2 = rfac1 * rfac1;
121 double rfac3 = rfac2 * rfac1;
122 double rfac4 = rfac3 * rfac1;
123 double rfac5 = rfac4 * rfac1;
124 double rfac6 = rfac5 * rfac1;
126 double sum = (Lji[0][0] + Lji[0][1]*tfac1 + Lji[0][2]*tfac2 + Lji[0][3]*tfac3 + Lji[0][4]*tfac4 +
127 Lji[1][0]*rfac1 + Lji[1][1]*tfac1*rfac1 + Lji[1][2]*tfac2*rfac1 + Lji[1][3]*tfac3*rfac1 + Lji[1][4]*tfac4*rfac1 +
128 Lji[2][0]*rfac2 + Lji[2][1]*tfac1*rfac2 + Lji[2][2]*tfac2*rfac2 + Lji[2][3]*tfac3*rfac2 +
129 Lji[3][0]*rfac3 + Lji[3][1]*tfac1*rfac3 + Lji[3][2]*tfac2*rfac3 + Lji[3][3]*tfac3*rfac3 +
130 Lji[4][0]*rfac4 + Lji[4][1]*tfac1*rfac4 + Lji[4][2]*tfac2*rfac4 +
131 Lji[5][0]*rfac5 + Lji[5][1]*tfac1*rfac5 + Lji[5][2]*tfac2*rfac5
133 double lambda1bar = exp(rhobar * sum);
134 double mu0bar = std::sqrt(tbar) / (H[0] + H[1]/tbar + H[2]/tbar2 + H[3]/tbar3);
136 sum = (Hij[0][0] + Hij[1][0]*tfac1 + Hij[4][0]*tfac4 + Hij[5][0]*tfac5 +
137 Hij[0][1]*rfac1 + Hij[1][1]*tfac1*rfac1 + Hij[2][1]*tfac2*rfac1 + Hij[3][1]*tfac3*rfac1 +
138 Hij[0][2]*rfac2 + Hij[1][2]*tfac1*rfac2 + Hij[2][2]*tfac2*rfac2 +
139 Hij[0][3]*rfac3 + Hij[1][3]*tfac1*rfac3 + Hij[2][3]*tfac2*rfac3 + Hij[3][3]*tfac3*rfac3 +
140 Hij[0][4]*rfac4 + Hij[3][4]*tfac3*rfac4 +
141 Hij[1][5]*tfac1*rfac5 + Hij[3][6]*tfac3*rfac6
143 double mu1bar = std::exp(rhobar * sum);
144 double t2r2 = tbar2 / (rhobar * rhobar);
146 double xsi = rhobar * rhobar * kappa * presStar;
147 double xsipow = std::pow(xsi, 0.4678);
148 double temp2 = (tbar - 1.0) * (tbar - 1.0);
150 dpdT_const_rho *= Tstar / presStar;
151 double lambda2bar = 0.0013848 / (mu0bar * mu1bar) * t2r2 * dpdT_const_rho * dpdT_const_rho *
152 xsipow * sqrt(rhobar) * exp(-18.66*temp2 - rfac4);
153 return (lambda0bar * lambda1bar + lambda2bar) * lambdastar;
Implementation of a pressure dependent standard state virtual function for a Pure Water Phase (see Sp...
Header file for a derived class of ThermoPhase that handles variable pressure standard state methods ...
Header file defining class WaterTransport.
double temperature() const
Temperature (K).
virtual double density() const
Density (kg/m^3).
Base class for a phase with thermodynamic properties.
virtual double thermalExpansionCoeff() const
Return the volumetric thermal expansion coefficient. Units: 1/K.
virtual double isothermalCompressibility() const
Returns the isothermal compressibility. Units: 1/Pa.
ThermoPhase * m_thermo
pointer to the object representing the phase
ThermoPhase & thermo()
Phase object.
double thermalConductivity() override
Returns the thermal conductivity of water at the current conditions (W/m/K)
double viscosity() override
Returns the viscosity of water at the current conditions (kg/m/s)
void init(ThermoPhase *thermo, int mode=0, int log_level=0) override
Initialize a transport manager.
Namespace for the Cantera kernel.