Cantera  3.1.0a1
MultiSpeciesThermo.h
Go to the documentation of this file.
1 /**
2  * @file MultiSpeciesThermo.h
3  * Header for a general species thermodynamic property manager for a phase (see
4  * @link Cantera::MultiSpeciesThermo MultiSpeciesThermo@endlink).
5  */
6 
7 // This file is part of Cantera. See License.txt in the top-level directory or
8 // at https://cantera.org/license.txt for license and copyright information.
9 
10 #ifndef CT_MULTISPECIESTHERMO_H
11 #define CT_MULTISPECIESTHERMO_H
12 
14 
15 namespace Cantera
16 {
17 
18 //! A species thermodynamic property manager for a phase.
19 /*!
20  * This is a general manager that can handle a wide variety of species
21  * thermodynamic polynomials for individual species and compute their
22  * nondimensional, reference-state thermodynamic properties (that is, as a function
23  * of temperature only).
24  *
25  * The ThermoPhase object relies on MultiSpeciesThermo to calculate the
26  * thermodynamic properties of the reference state for all of the species in the
27  * phase, for a range of temperatures. Note, the pressure dependence of the
28  * species thermodynamic functions is not handled at this level. Species using
29  * the same parameterization are grouped together in order to minimize the
30  * operation count and achieve better efficiency.
31  *
32  * The most important member function for the MultiSpeciesThermo class is the
33  * member function MultiSpeciesThermo::update(). The function calculates the
34  * values of Cp/R, H/RT, and S/R for all of the species at once at the specified
35  * temperature.
36  *
37  * Usually, all of the species in a phase are installed into a
38  * MultiSpeciesThermo object. However, there is no requirement that a
39  * MultiSpeciesThermo object handles all of the species in a phase. The member
40  * function
41  * @link MultiSpeciesThermo::install_STIT() install_STIT()@endlink
42  * is called to install each species into the MultiSpeciesThermo object.
43  *
44  * @ingroup spthermo
45  */
47 {
48 public:
49  //! Constructor
50  MultiSpeciesThermo() = default;
51 
52  // MultiSpeciesThermo objects are not copyable or assignable
53  MultiSpeciesThermo(const MultiSpeciesThermo& b) = delete;
54  MultiSpeciesThermo& operator=(const MultiSpeciesThermo& b) = delete;
55  virtual ~MultiSpeciesThermo() = default;
56 
57  //! Install a new species thermodynamic property parameterization for one
58  //! species.
59  /*!
60  * @param index Index of the species being installed
61  * @param stit Pointer to the SpeciesThermoInterpType object
62  * This will set up the thermo for one species
63  */
64  virtual void install_STIT(size_t index,
65  shared_ptr<SpeciesThermoInterpType> stit);
66 
67  //! Modify the species thermodynamic property parameterization for a species
68  /*!
69  * @param index Index of the species being installed
70  * @param spec Pointer to the SpeciesThermoInterpType object
71  */
72  virtual void modifySpecies(size_t index,
73  shared_ptr<SpeciesThermoInterpType> spec);
74 
75  //! Get reference-state properties for a single species
76  /*!
77  * @param k species index
78  * @param T Temperature (Kelvin)
79  * @param cp_R Dimensionless heat capacity
80  * @param h_RT Dimensionless enthalpy
81  * @param s_R Dimensionless entropy
82  */
83  virtual void update_single(size_t k, double T, double* cp_R,
84  double* h_RT, double* s_R) const;
85 
86  //! Compute the reference-state properties for all species.
87  /*!
88  * Given temperature T in K, this method updates the values of the non-
89  * dimensional heat capacity at constant pressure, enthalpy, and entropy,
90  * at the reference pressure, Pref of each of the standard states.
91  *
92  * @param T Temperature (Kelvin)
93  * @param cp_R Vector of Dimensionless heat capacities. (length m_kk).
94  * @param h_RT Vector of Dimensionless enthalpies. (length m_kk).
95  * @param s_R Vector of Dimensionless entropies. (length m_kk).
96  */
97  virtual void update(double T, double* cp_R, double* h_RT, double* s_R) const;
98 
99  //! Minimum temperature.
100  /*!
101  * If no argument is supplied, this method returns the minimum temperature
102  * for which @e all parameterizations are valid. If an integer index k is
103  * supplied, then the value returned is the minimum temperature for
104  * species k in the phase.
105  *
106  * @param k Species index
107  */
108  virtual double minTemp(size_t k=npos) const;
109 
110  //! Maximum temperature.
111  /*!
112  * If no argument is supplied, this method returns the maximum temperature
113  * for which @e all parameterizations are valid. If an integer index k is
114  * supplied, then the value returned is the maximum temperature for
115  * parameterization k.
116  *
117  * @param k Species Index
118  */
119  virtual double maxTemp(size_t k=npos) const;
120 
121  //! The reference-state pressure (Pa) for all species
122  virtual double refPressure() const;
123 
124  //! This utility function reports the type of parameterization used for the
125  //! species with index number *index*.
126  /*!
127  * @param index Species index
128  */
129  virtual int reportType(size_t index) const;
130 
131  //! This utility function reports back the type of parameterization and
132  //! all of the parameters for the species with index number *index*.
133  /*!
134  * @param index Species index
135  * @param type Integer type of the standard type
136  * @param c Vector of coefficients used to set the
137  * parameters for the standard state.
138  * @param minTemp output - Minimum temperature
139  * @param maxTemp output - Maximum temperature
140  * @param refPressure output - reference pressure (Pa).
141  */
142  virtual void reportParams(size_t index, int& type, double* const c, double& minTemp,
143  double& maxTemp, double& refPressure) const;
144 
145  //! Report the 298 K Heat of Formation of the standard state of one species
146  //! (J kmol-1)
147  /*!
148  * The 298K Heat of Formation is defined as the enthalpy change to create
149  * the standard state of the species from its constituent elements in their
150  * standard states at 298 K and 1 bar.
151  *
152  * @param k species index
153  * @returns the current value of the Heat of Formation at 298K and 1 bar
154  */
155  virtual double reportOneHf298(const size_t k) const;
156 
157  //! Modify the value of the 298 K Heat of Formation of the standard state of
158  //! one species in the phase (J kmol-1)
159  /*!
160  * The 298K heat of formation is defined as the enthalpy change to create
161  * the standard state of the species from its constituent elements in their
162  * standard states at 298 K and 1 bar.
163  *
164  * @param k Index of the species
165  * @param Hf298New Specify the new value of the Heat of Formation at
166  * 298K and 1 bar. units = J/kmol.
167  */
168  virtual void modifyOneHf298(const size_t k, const double Hf298New);
169 
170  //! Restore the original heat of formation of one or more species
171  /*!
172  * Resets changes made by modifyOneHf298(). If the species index is not
173  * specified, the heats of formation for all species are restored.
174  */
175  virtual void resetHf298(const size_t k);
176 
177  //! Check if data for all species (0 through nSpecies-1) has been installed.
178  bool ready(size_t nSpecies);
179 
180 private:
181  //! Provide the SpeciesThermoInterpType object
182  /*!
183  * @param k species index
184  * @return pointer to the SpeciesThermoInterpType object.
185  */
187  const SpeciesThermoInterpType* provideSTIT(size_t k) const;
188 
189 protected:
190  //! Mark species *k* as having its thermodynamic data installed
191  void markInstalled(size_t k);
192 
193  typedef pair<size_t, shared_ptr<SpeciesThermoInterpType>> index_STIT;
194  typedef map<int, vector<index_STIT>> STIT_map;
195  typedef map<int, vector<double>> tpoly_map;
196 
197  //! This is the main data structure, which contains the
198  //! SpeciesThermoInterpType objects, sorted by the parameterization type.
199  //! `m_sp[i]` is the vector of [species index, STIT] pairs which use
200  //! parameterization `i`.
201  STIT_map m_sp;
202 
203  //! Temperature polynomials for each thermo parameterization
204  mutable tpoly_map m_tpoly;
205 
206  //! Map from species index to location within #m_sp, such that
207  //! `m_sp[m_speciesLoc[k].first][m_speciesLoc[k].second]` is the
208  //! SpeciesThermoInterpType object for species `k`.
209  map<size_t, pair<int, size_t>> m_speciesLoc;
210 
211  //! Maximum value of the lowest temperature
212  double m_tlow_max = 0.0;
213 
214  //! Minimum value of the highest temperature
215  double m_thigh_min = 1e+30;
216 
217  //! reference pressure (Pa)
218  double m_p0 = 0.0;
219 
220  //! indicates if data for species has been installed
221  vector<bool> m_installed;
222 };
223 
224 }
225 
226 #endif
Pure Virtual Base class for individual species reference state thermodynamic managers and text for th...
A species thermodynamic property manager for a phase.
bool ready(size_t nSpecies)
Check if data for all species (0 through nSpecies-1) has been installed.
MultiSpeciesThermo()=default
Constructor.
STIT_map m_sp
This is the main data structure, which contains the SpeciesThermoInterpType objects,...
SpeciesThermoInterpType * provideSTIT(size_t k)
Provide the SpeciesThermoInterpType object.
virtual void update(double T, double *cp_R, double *h_RT, double *s_R) const
Compute the reference-state properties for all species.
double m_p0
reference pressure (Pa)
virtual void install_STIT(size_t index, shared_ptr< SpeciesThermoInterpType > stit)
Install a new species thermodynamic property parameterization for one species.
void markInstalled(size_t k)
Mark species k as having its thermodynamic data installed.
virtual double refPressure() const
The reference-state pressure (Pa) for all species.
double m_tlow_max
Maximum value of the lowest temperature.
virtual void modifySpecies(size_t index, shared_ptr< SpeciesThermoInterpType > spec)
Modify the species thermodynamic property parameterization for a species.
virtual int reportType(size_t index) const
This utility function reports the type of parameterization used for the species with index number ind...
virtual double minTemp(size_t k=npos) const
Minimum temperature.
tpoly_map m_tpoly
Temperature polynomials for each thermo parameterization.
double m_thigh_min
Minimum value of the highest temperature.
virtual double maxTemp(size_t k=npos) const
Maximum temperature.
virtual void update_single(size_t k, double T, double *cp_R, double *h_RT, double *s_R) const
Get reference-state properties for a single species.
map< size_t, pair< int, size_t > > m_speciesLoc
Map from species index to location within m_sp, such that m_sp[m_speciesLoc[k].first][m_speciesLoc[k]...
vector< bool > m_installed
indicates if data for species has been installed
virtual void modifyOneHf298(const size_t k, const double Hf298New)
Modify the value of the 298 K Heat of Formation of the standard state of one species in the phase (J ...
virtual void reportParams(size_t index, int &type, double *const c, double &minTemp, double &maxTemp, double &refPressure) const
This utility function reports back the type of parameterization and all of the parameters for the spe...
virtual void resetHf298(const size_t k)
Restore the original heat of formation of one or more species.
virtual double reportOneHf298(const size_t k) const
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
Abstract Base class for the thermodynamic manager for an individual species' reference state.
Namespace for the Cantera kernel.
Definition: AnyMap.cpp:564
const size_t npos
index returned by functions to indicate "no position"
Definition: ct_defs.h:180