Cantera  3.1.0a1
PureFluidPhase Class Reference

This phase object consists of a single component that can be a gas, a liquid, a mixed gas-liquid fluid, or a fluid beyond its critical point. More...

#include <PureFluidPhase.h>

Inheritance diagram for PureFluidPhase:
[legend]

Detailed Description

This phase object consists of a single component that can be a gas, a liquid, a mixed gas-liquid fluid, or a fluid beyond its critical point.

The object inherits from ThermoPhase. However, it's built on top of the tpx package.

Definition at line 30 of file PureFluidPhase.h.

Public Member Functions

 PureFluidPhase ()=default
 Empty Base Constructor. More...
 
string type () const override
 String indicating the thermodynamic model implemented. More...
 
string phaseOfMatter () const override
 String indicating the mechanical phase of the matter in this Phase. More...
 
void setSubstance (const string &name)
 Set the name of the TPX substance to use for the equation of state. More...
 
bool isPure () const override
 Return whether phase represents a pure (single species) substance. More...
 
bool hasPhaseTransition () const override
 Return whether phase represents a substance with phase transitions. More...
 
vector< string > fullStates () const override
 Return a vector containing full states defining a phase. More...
 
vector< string > partialStates () const override
 Return a vector of settable partial property sets within a phase. More...
 
double minTemp (size_t k=npos) const override
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
double maxTemp (size_t k=npos) const override
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
double enthalpy_mole () const override
 Molar enthalpy. Units: J/kmol. More...
 
double intEnergy_mole () const override
 Molar internal energy. Units: J/kmol. More...
 
double entropy_mole () const override
 Molar entropy. Units: J/kmol/K. More...
 
double gibbs_mole () const override
 Molar Gibbs function. Units: J/kmol. More...
 
double cp_mole () const override
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
double cv_mole () const override
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
double pressure () const override
 Return the thermodynamic pressure (Pa). More...
 
void setPressure (double p) override
 sets the thermodynamic pressure (Pa). More...
 
void setTemperature (const double T) override
 Set the internally stored temperature of the phase (K). More...
 
void setDensity (const double rho) override
 Set the internally stored density (kg/m^3) of the phase. More...
 
void getChemPotentials (double *mu) const override
 Get the species chemical potentials. Units: J/kmol. More...
 
void getPartialMolarEnthalpies (double *hbar) const override
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
void getPartialMolarEntropies (double *sbar) const override
 Returns an array of partial molar entropies of the species in the solution. More...
 
void getPartialMolarIntEnergies (double *ubar) const override
 Return an array of partial molar internal energies for the species in the mixture. More...
 
void getPartialMolarCp (double *cpbar) const override
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
void getPartialMolarVolumes (double *vbar) const override
 Return an array of partial molar volumes for the species in the mixture. More...
 
Units standardConcentrationUnits () const override
 Returns the units of the "standard concentration" for this phase. More...
 
void getActivityConcentrations (double *c) const override
 This method returns an array of generalized concentrations. More...
 
double standardConcentration (size_t k=0) const override
 Return the standard concentration for the kth species. More...
 
void getActivities (double *a) const override
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
double isothermalCompressibility () const override
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
double thermalExpansionCoeff () const override
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
tpx::SubstanceTPX_Substance ()
 Returns a reference to the substance object. More...
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up. More...
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function. More...
 
string report (bool show_thermo=true, double threshold=1e-14) const override
 returns a summary of the state of the phase as a string More...
 
bool compatibleWithMultiPhase () const override
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
Properties of the Standard State of the Species in the Solution

The standard state of the pure fluid is defined as the real properties of the pure fluid at the most stable state of the fluid at the current temperature and pressure of the solution.

With this definition, the activity of the fluid is always then defined to be equal to one.

void getStandardChemPotentials (double *mu) const override
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
void getEnthalpy_RT (double *hrt) const override
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
void getEntropy_R (double *sr) const override
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
void getGibbs_RT (double *grt) const override
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference States

The species reference state for pure fluids is defined as an ideal gas at the reference pressure and current temperature of the fluid.

void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
void getGibbs_ref (double *g) const override
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
Setting the State

These methods set all or part of the thermodynamic state.

void setState_HP (double h, double p, double tol=1e-9) override
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
void setState_UV (double u, double v, double tol=1e-9) override
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
void setState_SV (double s, double v, double tol=1e-9) override
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
void setState_SP (double s, double p, double tol=1e-9) override
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
void setState_ST (double s, double t, double tol=1e-9) override
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
void setState_TV (double t, double v, double tol=1e-9) override
 Set the temperature (K) and specific volume (m^3/kg). More...
 
void setState_PV (double p, double v, double tol=1e-9) override
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
void setState_UP (double u, double p, double tol=1e-9) override
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
void setState_VH (double v, double h, double tol=1e-9) override
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
void setState_TH (double t, double h, double tol=1e-9) override
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
void setState_SH (double s, double h, double tol=1e-9) override
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
Critical State Properties
double critTemperature () const override
 Critical temperature (K). More...
 
double critPressure () const override
 Critical pressure (Pa). More...
 
double critDensity () const override
 Critical density (kg/m3). More...
 
Saturation properties.
double satTemperature (double p) const override
 Return the saturation temperature given the pressure. More...
 
double satPressure (double t) override
 Return the saturation pressure given the temperature. More...
 
double vaporFraction () const override
 Return the fraction of vapor at the current conditions. More...
 
void setState_Tsat (double t, double x) override
 Set the state to a saturated system at a particular temperature. More...
 
void setState_Psat (double p, double x) override
 Set the state to a saturated system at a particular pressure. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor. More...
 
double RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More...
 
string type () const override
 String indicating the thermodynamic model implemented. More...
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal. More...
 
virtual double refPressure () const
 Returns the reference pressure in Pa. More...
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual double soundSpeed () const
 Return the speed of sound. Units: m/s. More...
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V). More...
 
double electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual double logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getActivityCoefficients (double *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPureGibbs (double *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (double *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (double *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (double *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT_ref (double *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (double *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (double *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_DP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More...
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const double *mu_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
virtual double critVolume () const
 Critical volume (m3/kmol). More...
 
virtual double critCompressibility () const
 Critical compressibility (unitless). More...
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality). More...
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase. More...
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file. More...
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description. More...
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function. More...
 
virtual void getSpeciesParameters (const string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More...
 
const AnyMapinput () const
 Access input data associated with the phase description. More...
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance. More...
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance. More...
 
string nativeMode () const
 Return string acronym representing the native state of a Phase. More...
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase. More...
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase. More...
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState. More...
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector. More...
 
double molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges. More...
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol]. More...
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
double chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced. More...
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More...
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector. More...
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions. More...
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions. More...
 
string name () const
 Return the name of the phase. More...
 
void setName (const string &nm)
 Sets the string name for the phase. More...
 
string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'. More...
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
double atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
string speciesName (size_t k) const
 Name of the species with index k. More...
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name. More...
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species. More...
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
double massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
double massFraction (const string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values. More...
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (double *const y) const
 Get the species mass fractions. More...
 
const double * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3). More...
 
virtual double concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
double temperature () const
 Temperature (K). More...
 
virtual double electronTemperature () const
 Electron Temperature (K) More...
 
virtual double density () const
 Density (kg/m^3). More...
 
virtual double molarDensity () const
 Molar density (kmol/m^3). More...
 
virtual double molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K). More...
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \). More...
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name). More...
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map. More...
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string. More...
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Protected Member Functions

void Set (tpx::PropertyPair::type n, double x, double y) const
 Main call to the tpx level to set the state of the system. More...
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible. More...
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase. More...
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 

Private Attributes

unique_ptr< tpx::Substancem_sub
 Pointer to the underlying tpx object Substance that does the work. More...
 
string m_tpx_name
 Name for this substance used by the TPX package. More...
 
double m_mw = -1.0
 Molecular weight of the substance (kg kmol-1) More...
 
bool m_verbose = false
 flag to turn on some printing. More...
 

Additional Inherited Members

- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
AnyMap m_input
 Data supplied via setParameters. More...
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts. More...
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention. More...
 
double m_tlast = 0.0
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk = 0
 Number of species in the phase. More...
 
size_t m_ndim = 3
 Dimensionality of the phase. More...
 
vector< double > m_speciesComp
 Atomic composition of the species. More...
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk. More...
 
map< string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element. More...
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced. More...
 

Constructor & Destructor Documentation

◆ PureFluidPhase()

PureFluidPhase ( )
default

Empty Base Constructor.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from Phase.

Definition at line 36 of file PureFluidPhase.h.

◆ phaseOfMatter()

string phaseOfMatter ( ) const
overridevirtual

String indicating the mechanical phase of the matter in this Phase.

Options for the string are:

  • supercritical
  • gas
  • liquid
  • liquid-gas-mix

If the temperature or pressure are greater than the critical temperature or pressure, respectively, the mechanical phase is supercritical. If the underlying tpx::TwoPhase() returns True, the mechanical phase is liquid-gas-mix. If the temperature is greater than the saturation temperature at the current pressure, the mechanical phase is gas. Otherwise, the mechanical phase is liquid.

Reimplemented from ThermoPhase.

Definition at line 68 of file PureFluidPhase.cpp.

◆ setSubstance()

void setSubstance ( const string &  name)
inline

Set the name of the TPX substance to use for the equation of state.

This function should be called before initThermo().

Definition at line 59 of file PureFluidPhase.h.

◆ isPure()

bool isPure ( ) const
inlineoverridevirtual

Return whether phase represents a pure (single species) substance.

Reimplemented from Phase.

Definition at line 63 of file PureFluidPhase.h.

◆ hasPhaseTransition()

bool hasPhaseTransition ( ) const
inlineoverridevirtual

Return whether phase represents a substance with phase transitions.

Reimplemented from Phase.

Definition at line 67 of file PureFluidPhase.h.

◆ fullStates()

vector< string > fullStates ( ) const
overridevirtual

Return a vector containing full states defining a phase.

Full states list combinations of properties that allow for the specification of a thermodynamic state based on user input. Properties and states are represented by single letter acronyms, and combinations of letters, respectively (for example, "TDY", "TPX", "SVX"). Supported property acronyms are: "T": temperature "P": pressure "D": density "X": mole fractions "Y": mass fractions "T": temperature "U": specific internal energy "V": specific volume "H": specific enthalpy "S": specific entropy "Q": vapor fraction

Reimplemented from Phase.

Definition at line 57 of file PureFluidPhase.cpp.

◆ partialStates()

vector< string > partialStates ( ) const
overridevirtual

Return a vector of settable partial property sets within a phase.

Partial states encompass all valid combinations of properties that allow for the specification of a state while ignoring species concentrations (such as "TD", "TP", "SV").

Reimplemented from Phase.

Definition at line 63 of file PureFluidPhase.cpp.

◆ minTemp()

double minTemp ( size_t  k = npos) const
overridevirtual

Minimum temperature for which the thermodynamic data for the species or phase are valid.

If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.

Parameters
kindex of the species. Default is -1, which will return the max of the min value over all species.

Reimplemented from ThermoPhase.

Definition at line 81 of file PureFluidPhase.cpp.

◆ maxTemp()

double maxTemp ( size_t  k = npos) const
overridevirtual

Maximum temperature for which the thermodynamic data for the species are valid.

If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.

Parameters
kindex of the species. Default is -1, which will return the min of the max value over all species.

Reimplemented from ThermoPhase.

Definition at line 86 of file PureFluidPhase.cpp.

◆ enthalpy_mole()

double enthalpy_mole ( ) const
overridevirtual

Molar enthalpy. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 91 of file PureFluidPhase.cpp.

◆ intEnergy_mole()

double intEnergy_mole ( ) const
overridevirtual

Molar internal energy. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 96 of file PureFluidPhase.cpp.

◆ entropy_mole()

double entropy_mole ( ) const
overridevirtual

Molar entropy. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 101 of file PureFluidPhase.cpp.

◆ gibbs_mole()

double gibbs_mole ( ) const
overridevirtual

Molar Gibbs function. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 106 of file PureFluidPhase.cpp.

◆ cp_mole()

double cp_mole ( ) const
overridevirtual

Molar heat capacity at constant pressure. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 111 of file PureFluidPhase.cpp.

◆ cv_mole()

double cv_mole ( ) const
overridevirtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 116 of file PureFluidPhase.cpp.

◆ pressure()

double pressure ( ) const
overridevirtual

Return the thermodynamic pressure (Pa).

This method calculates the current pressure consistent with the independent variables, T, rho.

Reimplemented from Phase.

Definition at line 121 of file PureFluidPhase.cpp.

◆ setPressure()

void setPressure ( double  p)
overridevirtual

sets the thermodynamic pressure (Pa).

This method calculates the density that is consistent with the desired pressure, given the temperature.

Parameters
pPressure (Pa)

Reimplemented from Phase.

Definition at line 126 of file PureFluidPhase.cpp.

◆ setTemperature()

void setTemperature ( const double  temp)
overridevirtual

Set the internally stored temperature of the phase (K).

Parameters
tempTemperature in Kelvin

Reimplemented from Phase.

Definition at line 132 of file PureFluidPhase.cpp.

◆ setDensity()

void setDensity ( const double  density_)
overridevirtual

Set the internally stored density (kg/m^3) of the phase.

Note the density of a phase is an independent variable.

Parameters
[in]density_density (kg/m^3).

Reimplemented from Phase.

Definition at line 138 of file PureFluidPhase.cpp.

◆ getChemPotentials()

void getChemPotentials ( double *  mu) const
inlineoverridevirtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 102 of file PureFluidPhase.h.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( double *  hbar) const
overridevirtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 164 of file PureFluidPhase.cpp.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( double *  sbar) const
overridevirtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 169 of file PureFluidPhase.cpp.

◆ getPartialMolarIntEnergies()

void getPartialMolarIntEnergies ( double *  ubar) const
overridevirtual

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 174 of file PureFluidPhase.cpp.

◆ getPartialMolarCp()

void getPartialMolarCp ( double *  cpbar) const
overridevirtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 179 of file PureFluidPhase.cpp.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( double *  vbar) const
overridevirtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 184 of file PureFluidPhase.cpp.

◆ standardConcentrationUnits()

Units standardConcentrationUnits ( ) const
overridevirtual

Returns the units of the "standard concentration" for this phase.

These are the units of the values returned by the functions getActivityConcentrations() and standardConcentration(), which can vary between different ThermoPhase-derived classes, or change within a single class depending on input options. See the documentation for standardConcentration() for the derived class for specific details.

Reimplemented from ThermoPhase.

Definition at line 189 of file PureFluidPhase.cpp.

◆ getActivityConcentrations()

void getActivityConcentrations ( double *  c) const
overridevirtual

This method returns an array of generalized concentrations.

\( C^a_k \) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 194 of file PureFluidPhase.cpp.

◆ standardConcentration()

double standardConcentration ( size_t  k = 0) const
overridevirtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (that is, generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (such as surface species of different sizes), this method may be called with an optional parameter indicating the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard concentration. The units are by definition dependent on the ThermoPhase and kinetics manager representation.

Reimplemented from ThermoPhase.

Definition at line 199 of file PureFluidPhase.cpp.

◆ getActivities()

void getActivities ( double *  a) const
overridevirtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

Note, for molality based formulations, this returns the molality based activities.

We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.

Parameters
aOutput vector of activities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 204 of file PureFluidPhase.cpp.

◆ isothermalCompressibility()

double isothermalCompressibility ( ) const
overridevirtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

or

\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 149 of file PureFluidPhase.cpp.

◆ thermalExpansionCoeff()

double thermalExpansionCoeff ( ) const
overridevirtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented from ThermoPhase.

Definition at line 154 of file PureFluidPhase.cpp.

◆ TPX_Substance()

tpx::Substance & TPX_Substance ( )

Returns a reference to the substance object.

Definition at line 159 of file PureFluidPhase.cpp.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( double *  mu) const
overridevirtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 209 of file PureFluidPhase.cpp.

◆ getEnthalpy_RT()

void getEnthalpy_RT ( double *  hrt) const
overridevirtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 214 of file PureFluidPhase.cpp.

◆ getEntropy_R()

void getEntropy_R ( double *  sr) const
overridevirtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 219 of file PureFluidPhase.cpp.

◆ getGibbs_RT()

void getGibbs_RT ( double *  grt) const
overridevirtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 224 of file PureFluidPhase.cpp.

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( double *  hrt) const
overridevirtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 229 of file PureFluidPhase.cpp.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( double *  grt) const
overridevirtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 240 of file PureFluidPhase.cpp.

◆ getGibbs_ref()

void getGibbs_ref ( double *  g) const
overridevirtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 252 of file PureFluidPhase.cpp.

◆ getEntropy_R_ref()

void getEntropy_R_ref ( double *  er) const
overridevirtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 258 of file PureFluidPhase.cpp.

◆ setState_HP()

void setState_HP ( double  h,
double  p,
double  tol = 1e-9 
)
overridevirtual

Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.

Parameters
hSpecific enthalpy (J/kg)
pPressure (Pa)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 295 of file PureFluidPhase.cpp.

◆ setState_UV()

void setState_UV ( double  u,
double  v,
double  tol = 1e-9 
)
overridevirtual

Set the specific internal energy (J/kg) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.

Parameters
uspecific internal energy (J/kg)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 301 of file PureFluidPhase.cpp.

◆ setState_SV()

void setState_SV ( double  s,
double  v,
double  tol = 1e-9 
)
overridevirtual

Set the specific entropy (J/kg/K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 307 of file PureFluidPhase.cpp.

◆ setState_SP()

void setState_SP ( double  s,
double  p,
double  tol = 1e-9 
)
overridevirtual

Set the specific entropy (J/kg/K) and pressure (Pa).

This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
pspecific pressure (Pa).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 313 of file PureFluidPhase.cpp.

◆ setState_ST()

void setState_ST ( double  s,
double  t,
double  tol = 1e-9 
)
overridevirtual

Set the specific entropy (J/kg/K) and temperature (K).

This function fixes the internal state of the phase so that the specific entropy and temperature have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
sspecific entropy (J/kg/K)
ttemperature (K)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 319 of file PureFluidPhase.cpp.

◆ setState_TV()

void setState_TV ( double  t,
double  v,
double  tol = 1e-9 
)
overridevirtual

Set the temperature (K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the temperature and specific volume have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
ttemperature (K)
vspecific volume (m^3/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 325 of file PureFluidPhase.cpp.

◆ setState_PV()

void setState_PV ( double  p,
double  v,
double  tol = 1e-9 
)
overridevirtual

Set the pressure (Pa) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the pressure and specific volume have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
ppressure (Pa)
vspecific volume (m^3/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 331 of file PureFluidPhase.cpp.

◆ setState_UP()

void setState_UP ( double  u,
double  p,
double  tol = 1e-9 
)
overridevirtual

Set the specific internal energy (J/kg) and pressure (Pa).

This function fixes the internal state of the phase so that the specific internal energy and pressure have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
uspecific internal energy (J/kg)
ppressure (Pa)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 337 of file PureFluidPhase.cpp.

◆ setState_VH()

void setState_VH ( double  v,
double  h,
double  tol = 1e-9 
)
overridevirtual

Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)

This function fixes the internal state of the phase so that the specific volume and the specific enthalpy have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
vspecific volume (m^3/kg)
hspecific enthalpy (J/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 343 of file PureFluidPhase.cpp.

◆ setState_TH()

void setState_TH ( double  t,
double  h,
double  tol = 1e-9 
)
overridevirtual

Set the temperature (K) and the specific enthalpy (J/kg)

This function fixes the internal state of the phase so that the temperature and specific enthalpy have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
ttemperature (K)
hspecific enthalpy (J/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 349 of file PureFluidPhase.cpp.

◆ setState_SH()

void setState_SH ( double  s,
double  h,
double  tol = 1e-9 
)
overridevirtual

Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)

This function fixes the internal state of the phase so that the temperature and pressure have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
sspecific entropy (J/kg/K)
hspecific enthalpy (J/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented from ThermoPhase.

Definition at line 355 of file PureFluidPhase.cpp.

◆ critTemperature()

double critTemperature ( ) const
overridevirtual

Critical temperature (K).

Reimplemented from ThermoPhase.

Definition at line 270 of file PureFluidPhase.cpp.

◆ critPressure()

double critPressure ( ) const
overridevirtual

Critical pressure (Pa).

Reimplemented from ThermoPhase.

Definition at line 275 of file PureFluidPhase.cpp.

◆ critDensity()

double critDensity ( ) const
overridevirtual

Critical density (kg/m3).

Reimplemented from ThermoPhase.

Definition at line 280 of file PureFluidPhase.cpp.

◆ satTemperature()

double satTemperature ( double  p) const
overridevirtual

Return the saturation temperature given the pressure.

Parameters
pPressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 285 of file PureFluidPhase.cpp.

◆ satPressure()

double satPressure ( double  t)
overridevirtual

Return the saturation pressure given the temperature.

Parameters
tTemperature (Kelvin)

Reimplemented from ThermoPhase.

Definition at line 361 of file PureFluidPhase.cpp.

◆ vaporFraction()

double vaporFraction ( ) const
overridevirtual

Return the fraction of vapor at the current conditions.

Reimplemented from ThermoPhase.

Definition at line 367 of file PureFluidPhase.cpp.

◆ setState_Tsat()

void setState_Tsat ( double  t,
double  x 
)
overridevirtual

Set the state to a saturated system at a particular temperature.

Parameters
tTemperature (kelvin)
xFraction of vapor

Reimplemented from ThermoPhase.

Definition at line 372 of file PureFluidPhase.cpp.

◆ setState_Psat()

void setState_Psat ( double  p,
double  x 
)
overridevirtual

Set the state to a saturated system at a particular pressure.

Parameters
pPressure (Pa)
xFraction of vapor

Reimplemented from ThermoPhase.

Definition at line 379 of file PureFluidPhase.cpp.

◆ initThermo()

void initThermo ( )
overridevirtual

Initialize the ThermoPhase object after all species have been set up.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 21 of file PureFluidPhase.cpp.

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
overridevirtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Definition at line 51 of file PureFluidPhase.cpp.

◆ report()

string report ( bool  show_thermo = true,
double  threshold = 1e-14 
) const
overridevirtual

returns a summary of the state of the phase as a string

Parameters
show_thermoIf true, extra information is printed out about the thermodynamic state of the system.
thresholdShow information about species with mole fractions greater than threshold.

Reimplemented from ThermoPhase.

Definition at line 386 of file PureFluidPhase.cpp.

◆ compatibleWithMultiPhase()

bool compatibleWithMultiPhase ( ) const
inlineoverridevirtual

Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.

Returns false for special phase types which already represent multi-phase mixtures, namely PureFluidPhase.

Reimplemented from ThermoPhase.

Definition at line 191 of file PureFluidPhase.h.

◆ Set()

void Set ( tpx::PropertyPair::type  n,
double  x,
double  y 
) const
protected

Main call to the tpx level to set the state of the system.

Parameters
nInteger indicating which 2 thermo components are held constant
xValue of the first component
yValue of the second component

Definition at line 144 of file PureFluidPhase.cpp.

Member Data Documentation

◆ m_sub

unique_ptr<tpx::Substance> m_sub
mutableprivate

Pointer to the underlying tpx object Substance that does the work.

Definition at line 206 of file PureFluidPhase.h.

◆ m_tpx_name

string m_tpx_name
private

Name for this substance used by the TPX package.

Definition at line 209 of file PureFluidPhase.h.

◆ m_mw

double m_mw = -1.0
private

Molecular weight of the substance (kg kmol-1)

Definition at line 212 of file PureFluidPhase.h.

◆ m_verbose

bool m_verbose = false
private

flag to turn on some printing.

Definition at line 215 of file PureFluidPhase.h.


The documentation for this class was generated from the following files: