The NASA polynomial parameterization for two temperature ranges. More...
#include <NasaPoly2.h>
The NASA polynomial parameterization for two temperature ranges.
This parameterization expresses the heat capacity as a fourth-order polynomial. Note that this is the form used in the 1971 NASA equilibrium program and by the Chemkin software package, but differs from the form used in the more recent NASA equilibrium program.
Seven coefficients \( (a_0,\dots,a_6) \) are used to represent \( c_p^0(T) \), \( h^0(T) \), and \( s^0(T) \) as polynomials in \( T \) :
\[ \frac{c_p(T)}{R} = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4 \]
\[ \frac{h^0(T)}{RT} = a_0 + \frac{a_1}{2} T + \frac{a_2}{3} T^2 + \frac{a_3}{4} T^3 + \frac{a_4}{5} T^4 + \frac{a_5}{T}. \]
\[ \frac{s^0(T)}{R} = a_0\ln T + a_1 T + \frac{a_2}{2} T^2 + \frac{a_3}{3} T^3 + \frac{a_4}{4} T^4 + a_6. \]
This class is designed specifically for use by the class MultiSpeciesThermo.
Definition at line 48 of file NasaPoly2.h.
Public Member Functions | |
| NasaPoly2 (double tlow, double thigh, double pref, span< const double > coeffs) | |
| Constructor with all input data. | |
| void | setMinTemp (double Tmin) override |
| Set the minimum temperature at which the thermo parameterization is valid. | |
| void | setMaxTemp (double Tmax) override |
| Set the maximum temperature at which the thermo parameterization is valid. | |
| void | setRefPressure (double Pref) override |
| Set the reference pressure [Pa]. | |
| void | setParameters (double Tmid, span< const double > low, span< const double > high) |
| int | reportType () const override |
| Returns an integer representing the type of parameterization. | |
| size_t | temperaturePolySize () const override |
| Number of terms in the temperature polynomial for this parameterization. | |
| void | updateTemperaturePoly (double T, span< double > T_poly) const override |
| Given the temperature T, compute the terms of the temperature polynomial T_poly. | |
| void | updateProperties (span< const double > tt, double &cp_R, double &h_RT, double &s_R) const override |
| Update the properties for this species, given a temperature polynomial. | |
| void | updatePropertiesTemp (const double temp, double &cp_R, double &h_RT, double &s_R) const override |
| Compute the reference-state property of one species. | |
| size_t | nCoeffs () const override |
| This utility function returns the number of coefficients for a given type of species parameterization. | |
| void | reportParameters (size_t &n, int &type, double &tlow, double &thigh, double &pref, span< double > coeffs) const override |
| This utility function returns the type of parameterization and all of the parameters for the species. | |
| void | getParameters (AnyMap &thermo) const override |
| Store the parameters of the species thermo object such that an identical species thermo object could be reconstructed using the newSpeciesThermo() function. | |
| double | reportHf298 () const override |
| Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) | |
| void | resetHf298 () override |
| Restore the original heat of formation for this species. | |
| void | modifyOneHf298 (const size_t k, const double Hf298New) override |
| Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) | |
| void | validate (const string &name) override |
| Check for problems with the parameterization, and generate warnings or throw and exception if any are found. | |
Public Member Functions inherited from SpeciesThermoInterpType | |
| SpeciesThermoInterpType (double tlow, double thigh, double pref) | |
| SpeciesThermoInterpType (const SpeciesThermoInterpType &b)=delete | |
| SpeciesThermoInterpType & | operator= (const SpeciesThermoInterpType &b)=delete |
| virtual double | minTemp () const |
| Returns the minimum temperature that the thermo parameterization is valid. | |
| virtual void | setMinTemp (double Tmin) |
| Set the minimum temperature at which the thermo parameterization is valid. | |
| virtual double | maxTemp () const |
| Returns the maximum temperature that the thermo parameterization is valid. | |
| virtual void | setMaxTemp (double Tmax) |
| Set the maximum temperature at which the thermo parameterization is valid. | |
| virtual double | refPressure () const |
| Returns the reference pressure (Pa) | |
| virtual void | setRefPressure (double Pref) |
| Set the reference pressure [Pa]. | |
| virtual void | validate (const string &name) |
| Check for problems with the parameterization, and generate warnings or throw and exception if any are found. | |
| virtual int | reportType () const |
| Returns an integer representing the type of parameterization. | |
| virtual size_t | temperaturePolySize () const |
| Number of terms in the temperature polynomial for this parameterization. | |
| virtual void | updateTemperaturePoly (double T, span< double > T_poly) const |
| Given the temperature T, compute the terms of the temperature polynomial T_poly. | |
| virtual void | updateProperties (span< const double > tt, double &cp_R, double &h_RT, double &s_R) const |
| Update the properties for this species, given a temperature polynomial. | |
| virtual void | updatePropertiesTemp (const double temp, double &cp_R, double &h_RT, double &s_R) const |
| Compute the reference-state property of one species. | |
| virtual size_t | nCoeffs () const |
| This utility function returns the number of coefficients for a given type of species parameterization. | |
| virtual void | reportParameters (size_t &index, int &type, double &minTemp, double &maxTemp, double &refPressure, span< double > coeffs) const |
| This utility function returns the type of parameterization and all of the parameters for the species. | |
| AnyMap | parameters (bool withInput=true) const |
| Return the parameters of the species thermo object such that an identical species thermo object could be reconstructed using the newSpeciesThermo() function. | |
| virtual double | reportHf298 () const |
| Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) | |
| virtual void | modifyOneHf298 (const size_t k, const double Hf298New) |
| Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) | |
| virtual void | resetHf298 () |
| Restore the original heat of formation for this species. | |
| const AnyMap & | input () const |
| Access input data associated with the species thermo definition. | |
| AnyMap & | input () |
Protected Attributes | |
| double | m_midT = 0.0 |
| Midrange temperature. | |
| NasaPoly1 | mnp_low |
| NasaPoly1 object for the low temperature region. | |
| NasaPoly1 | mnp_high |
| NasaPoly1 object for the high temperature region. | |
Protected Attributes inherited from SpeciesThermoInterpType | |
| double | m_lowT = 0.0 |
| lowest valid temperature | |
| double | m_highT = 0.0 |
| Highest valid temperature. | |
| double | m_Pref = 0.0 |
| Reference state pressure. | |
| AnyMap | m_input |
Additional Inherited Members | |
| virtual void | getParameters (AnyMap &thermo) const |
| Store the parameters of the species thermo object such that an identical species thermo object could be reconstructed using the newSpeciesThermo() function. | |
|
inline |
Constructor with all input data.
| tlow | output - Minimum temperature |
| thigh | output - Maximum temperature |
| pref | output - reference pressure (Pa). |
| coeffs | Vector of coefficients used to set the parameters for the standard state [Tmid, 7 high-T coeffs, 7 low-T coeffs]. This is the coefficient order used in the standard NASA format. |
Definition at line 63 of file NasaPoly2.h.
|
inlineoverridevirtual |
Set the minimum temperature at which the thermo parameterization is valid.
Reimplemented from SpeciesThermoInterpType.
Definition at line 70 of file NasaPoly2.h.
|
inlineoverridevirtual |
Set the maximum temperature at which the thermo parameterization is valid.
Reimplemented from SpeciesThermoInterpType.
Definition at line 75 of file NasaPoly2.h.
|
inlineoverridevirtual |
Set the reference pressure [Pa].
Reimplemented from SpeciesThermoInterpType.
Definition at line 80 of file NasaPoly2.h.
| void setParameters | ( | double | Tmid, |
| span< const double > | low, | ||
| span< const double > | high | ||
| ) |
| Tmid | Temperature [K] at the boundary between the low and high temperature polynomials |
| low | Vector of 7 coefficients for the low temperature polynomial |
| high | Vector of 7 coefficients for the high temperature polynomial |
Definition at line 13 of file NasaPoly2.cpp.
|
inlineoverridevirtual |
Returns an integer representing the type of parameterization.
Reimplemented from SpeciesThermoInterpType.
Definition at line 94 of file NasaPoly2.h.
|
inlineoverridevirtual |
Number of terms in the temperature polynomial for this parameterization.
Reimplemented from SpeciesThermoInterpType.
Definition at line 98 of file NasaPoly2.h.
|
inlineoverridevirtual |
Given the temperature T, compute the terms of the temperature polynomial T_poly.
Reimplemented from SpeciesThermoInterpType.
Definition at line 100 of file NasaPoly2.h.
|
inlineoverridevirtual |
Update the properties for this species, given a temperature polynomial.
This method is called with an array view containing the functions of temperature needed by this parameterization, and three references where the computed property values should be written.
The form and length of the Temperature Polynomial may vary depending on the parameterization.
| [in] | tt | vector of evaluated temperature functions |
| [out] | cp_R | Dimensionless heat capacity |
| [out] | h_RT | Dimensionless enthalpy |
| [out] | s_R | Dimensionless entropy |
Temperature Polynomial: tt[0] = t; tt[1] = t*t; tt[2] = m_t[1]*t; tt[3] = m_t[2]*t; tt[4] = 1.0/t; tt[5] = std::log(t);
Reimplemented from SpeciesThermoInterpType.
Definition at line 105 of file NasaPoly2.h.
|
inlineoverridevirtual |
Compute the reference-state property of one species.
Given temperature T in K, this method updates the values of the non- dimensional heat capacity at constant pressure, enthalpy, and entropy, at the reference pressure, of the species.
| [in] | temp | Temperature (Kelvin) |
| [out] | cp_R | Dimensionless heat capacity |
| [out] | h_RT | Dimensionless enthalpy |
| [out] | s_R | Dimensionless entropy |
Reimplemented from SpeciesThermoInterpType.
Definition at line 114 of file NasaPoly2.h.
|
inlineoverridevirtual |
This utility function returns the number of coefficients for a given type of species parameterization.
Reimplemented from SpeciesThermoInterpType.
Definition at line 123 of file NasaPoly2.h.
|
inlineoverridevirtual |
This utility function returns the type of parameterization and all of the parameters for the species.
All parameters are output variables
| index | Species index |
| type | Integer type of the standard type |
| minTemp | output - Minimum temperature |
| maxTemp | output - Maximum temperature |
| refPressure | output - reference pressure (Pa). |
| coeffs | Vector of coefficients used to set the parameters for the standard state. |
Reimplemented from SpeciesThermoInterpType.
Definition at line 125 of file NasaPoly2.h.
|
overridevirtual |
Store the parameters of the species thermo object such that an identical species thermo object could be reconstructed using the newSpeciesThermo() function.
Reimplemented from SpeciesThermoInterpType.
Definition at line 22 of file NasaPoly2.cpp.
|
inlineoverridevirtual |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
Reimplemented from SpeciesThermoInterpType.
Definition at line 134 of file NasaPoly2.h.
|
inlineoverridevirtual |
Restore the original heat of formation for this species.
Resets changes made by modifyOneHf298().
Reimplemented from SpeciesThermoInterpType.
Definition at line 142 of file NasaPoly2.h.
|
inlineoverridevirtual |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
| k | Species k |
| Hf298New | Specify the new value of the Heat of Formation at 298K and 1 bar |
Reimplemented from SpeciesThermoInterpType.
Definition at line 147 of file NasaPoly2.h.
|
overridevirtual |
Check for problems with the parameterization, and generate warnings or throw and exception if any are found.
Reimplemented from SpeciesThermoInterpType.
Definition at line 33 of file NasaPoly2.cpp.
|
protected |
Midrange temperature.
Definition at line 162 of file NasaPoly2.h.
|
protected |
NasaPoly1 object for the low temperature region.
Definition at line 164 of file NasaPoly2.h.
|
protected |
NasaPoly1 object for the high temperature region.
Definition at line 166 of file NasaPoly2.h.