Cantera  3.1.0b1
Loading...
Searching...
No Matches
IdealMolalSoln Class Reference

This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one. More...

#include <IdealMolalSoln.h>

Inheritance diagram for IdealMolalSoln:
[legend]

Detailed Description

This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one.

This is a full instantiation of a ThermoPhase object. The assumption is that the molality-based activity coefficient is equal to one. This also implies that the osmotic coefficient is equal to one.

Note, this does not mean that the solution is an ideal solution. In fact, there is a singularity in the formulation as the solvent concentration goes to zero.

The mechanical equation of state is currently assumed to be that of an incompressible solution. This may change in the future. Each species has its own molar volume. The molar volume is a constant.

Class IdealMolalSoln represents a condensed phase. The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for incompressible mixtures.

The standard concentrations can have three different forms. See setStandardConcentrationModel().

\( V^0_0 \) is the solvent standard molar volume. \( m^{\Delta} \) is a constant equal to a molality of \( 1.0 \quad\mbox{gm kmol}^{-1} \).

The current default is to have mformGC = 2.

The value and form of the activity concentration will affect reaction rate constants involving species in this phase.

An example phase definition is given in the YAML API Reference.

Definition at line 67 of file IdealMolalSoln.h.

Public Member Functions

 IdealMolalSoln (const string &inputFile="", const string &id="")
 Constructor for phase initialization.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
bool isIdeal () const override
 Boolean indicating whether phase is ideal.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
void setStandardConcentrationModel (const string &model)
 Set the standard concentration model.
 
void setCutoffModel (const string &model)
 Set cutoff model. Must be one of 'none', 'poly', or 'polyExp'.
 
double speciesMolarVolume (int k) const
 Report the molar volume of species k.
 
void getSpeciesMolarVolumes (double *smv) const
 Fill in a return vector containing the species molar volumes units - \( m^3 kmol^{-1} \).
 
Molar Thermodynamic Properties of the Solution
double enthalpy_mole () const override
 Molar enthalpy of the solution. Units: J/kmol.
 
double intEnergy_mole () const override
 Molar internal energy of the solution: Units: J/kmol.
 
double entropy_mole () const override
 Molar entropy of the solution. Units: J/kmol/K.
 
double gibbs_mole () const override
 Molar Gibbs function for the solution: Units J/kmol.
 
double cp_mole () const override
 Molar heat capacity of the solution at constant pressure. Units: J/kmol/K.
 
Activities and Activity Concentrations

The activity \( a_k \) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \ln a_k. \]

The quantity \( \mu_k^0(T) \) is the chemical potential at unit activity, which depends only on temperature and the pressure.

Units standardConcentrationUnits () const override
 Returns the units of the "standard concentration" for this phase.
 
void getActivityConcentrations (double *c) const override
 This method returns an array of generalized concentrations.
 
double standardConcentration (size_t k=0) const override
 Return the standard concentration for the kth species.
 
void getActivities (double *ac) const override
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
void getMolalityActivityCoefficients (double *acMolality) const override
 Get the array of non-dimensional molality-based activity coefficients at the current solution temperature, pressure, and solution concentration.
 
Partial Molar Properties of the Solution
void getChemPotentials (double *mu) const override
 Get the species chemical potentials: Units: J/kmol.
 
void getPartialMolarEnthalpies (double *hbar) const override
 Returns an array of partial molar enthalpies for the species in the mixture.
 
void getPartialMolarIntEnergies (double *hbar) const override
 Returns an array of partial molar internal energies for the species in the mixture.
 
void getPartialMolarEntropies (double *sbar) const override
 Returns an array of partial molar entropies of the species in the solution.
 
void getPartialMolarVolumes (double *vbar) const override
 
void getPartialMolarCp (double *cpbar) const override
 Partial molar heat capacity of the solution:. UnitsL J/kmol/K.
 
- Public Member Functions inherited from MolalityVPSSTP
 MolalityVPSSTP ()
 Default Constructor.
 
void setState_TPM (double t, double p, const double *const molalities)
 Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes.
 
void setState_TPM (double t, double p, const Composition &m)
 Set the temperature (K), pressure (Pa), and molalities.
 
void setState_TPM (double t, double p, const string &m)
 Set the temperature (K), pressure (Pa), and molalities.
 
void setState (const AnyMap &state) override
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
 
void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN) override
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
string report (bool show_thermo=true, double threshold=1e-14) const override
 returns a summary of the state of the phase as a string
 
string phaseOfMatter () const override
 String indicating the mechanical phase of the matter in this Phase.
 
void setpHScale (const int pHscaleType)
 Set the pH scale, which determines the scale for single-ion activity coefficients.
 
int pHScale () const
 Reports the pH scale, which determines the scale for single-ion activity coefficients.
 
void setMoleFSolventMin (double xmolSolventMIN)
 Sets the minimum mole fraction in the molality formulation.
 
double moleFSolventMin () const
 Returns the minimum mole fraction in the molality formulation.
 
void calcMolalities () const
 Calculates the molality of all species and stores the result internally.
 
void getMolalities (double *const molal) const
 This function will return the molalities of the species.
 
void setMolalities (const double *const molal)
 Set the molalities of the solutes in a phase.
 
void setMolalitiesByName (const Composition &xMap)
 Set the molalities of a phase.
 
void setMolalitiesByName (const string &name)
 Set the molalities of a phase.
 
int activityConvention () const override
 We set the convention to molality here.
 
void getActivityConcentrations (double *c) const override
 This method returns an array of generalized concentrations.
 
double standardConcentration (size_t k=0) const override
 Return the standard concentration for the kth species.
 
void getActivities (double *ac) const override
 Get the array of non-dimensional activities (molality based for this class and classes that derive from it) at the current solution temperature, pressure, and solution concentration.
 
void getActivityCoefficients (double *ac) const override
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.
 
virtual double osmoticCoefficient () const
 Calculate the osmotic coefficient.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
- Public Member Functions inherited from VPStandardStateTP
void setTemperature (const double temp) override
 Set the temperature of the phase.
 
void setPressure (double p) override
 Set the internally stored pressure (Pa) at constant temperature and composition.
 
void setState_TP (double T, double pres) override
 Set the temperature and pressure at the same time.
 
double pressure () const override
 Returns the current pressure of the phase.
 
virtual void updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution.
 
double minTemp (size_t k=npos) const override
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
double maxTemp (size_t k=npos) const override
 Maximum temperature for which the thermodynamic data for the species are valid.
 
PDSSprovidePDSS (size_t k)
 
const PDSSprovidePDSS (size_t k) const
 
 VPStandardStateTP ()
 Constructor.
 
bool isCompressible () const override
 Return whether phase represents a compressible substance.
 
int standardStateConvention () const override
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
void getStandardChemPotentials (double *mu) const override
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
 
void getEnthalpy_RT (double *hrt) const override
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
void getEntropy_R (double *sr) const override
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
 
void getGibbs_RT (double *grt) const override
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
 
void getPureGibbs (double *gpure) const override
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
 
void getIntEnergy_RT (double *urt) const override
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
void getCp_R (double *cpr) const override
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
 
void getStandardVolumes (double *vol) const override
 Get the molar volumes of the species standard states at the current T and P of the solution.
 
virtual const vector< double > & getStandardVolumes () const
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
void getSpeciesParameters (const string &name, AnyMap &speciesNode) const override
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void installPDSS (size_t k, unique_ptr< PDSS > &&pdss)
 Install a PDSS object for species k
 
virtual bool addSpecies (shared_ptr< Species > spec)
 Add a Species to this Phase.
 
void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_ref (double *g) const override
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getCp_R_ref (double *cprt) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
void getStandardVolumes_ref (double *vol) const override
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor.
 
double RT () const
 Return the Gas Constant multiplied by the current temperature.
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
 
virtual AnyMap getAuxiliaryData ()
 Return intermediate or model-specific parameters used by particular derived classes.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
virtual double refPressure () const
 Returns the reference pressure in Pa.
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
virtual double cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K.
 
virtual double soundSpeed () const
 Return the speed of sound. Units: m/s.
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V).
 
double electricPotential () const
 Returns the electric potential of this phase (V).
 
virtual double logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species.
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials.
 
virtual void getIntEnergy_RT_ref (double *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg.
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg.
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K.
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg.
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K.
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K.
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K).
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg).
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg).
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa).
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg)
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
 
virtual void setState_DP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object.
 
virtual void setToEquilState (const double *mu_RT)
 This method is used by the ChemEquil equilibrium solver.
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
 
virtual double critTemperature () const
 Critical temperature (K).
 
virtual double critPressure () const
 Critical pressure (Pa).
 
virtual double critVolume () const
 Critical volume (m3/kmol).
 
virtual double critCompressibility () const
 Critical compressibility (unitless).
 
virtual double critDensity () const
 Critical density (kg/m3).
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure.
 
virtual double satPressure (double t)
 Return the saturation pressure given the temperature.
 
virtual double vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure.
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality).
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species.
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file.
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description.
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
const AnyMapinput () const
 Access input data associated with the phase description.
 
AnyMapinput ()
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor.
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance.
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions.
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance.
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance.
 
string nativeMode () const
 Return string acronym representing the native state of a Phase.
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase.
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase.
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase.
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase.
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState.
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector.
 
double molecularWeight (size_t k) const
 Molecular weight of species k.
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges.
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol].
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m.
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m.
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
double chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use.
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced.
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex.
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector.
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions.
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions.
 
string name () const
 Return the name of the phase.
 
void setName (const string &nm)
 Sets the string name for the phase.
 
string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'.
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
double atomicWeight (size_t m) const
 Atomic weight of element m.
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements().
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object.
 
string speciesName (size_t k) const
 Name of the species with index k.
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies().
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name.
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name.
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species.
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name.
 
double massFraction (size_t k) const
 Return the mass fraction of a single species.
 
double massFraction (const string &name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values.
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (double *const y) const
 Get the species mass fractions.
 
const double * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them.
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing.
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3).
 
virtual double concentration (const size_t k) const
 Concentration of species k.
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase.
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations.
 
double temperature () const
 Temperature (K).
 
virtual double electronTemperature () const
 Electron Temperature (K)
 
virtual double density () const
 Density (kg/m^3).
 
virtual double molarDensity () const
 Molar density (kmol/m^3).
 
virtual double molarVolume () const
 Molar volume (m^3/kmol).
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase.
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K).
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \).
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element.
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name).
 
void addSpeciesLock ()
 Lock species list to prevent addition of new species.
 
void removeSpeciesLock ()
 Decrement species lock counter.
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map.
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string.
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species.
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k.
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species.
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase.
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception.
 

Public Attributes

double IMS_X_o_cutoff_
 value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process;
 
double IMS_gamma_o_min_
 gamma_o value for the cutoff process at the zero solvent point
 
double IMS_gamma_k_min_
 gamma_k minimum for the cutoff process at the zero solvent point
 
double IMS_slopefCut_
 Parameter in the polyExp cutoff treatment.
 
double IMS_slopegCut_
 Parameter in the polyExp cutoff treatment.
 
Parameters in the polyExp cutoff having to do with rate of exp decay
double IMS_cCut_
 
double IMS_dfCut_ = 0.0
 
double IMS_efCut_ = 0.0
 
double IMS_afCut_ = 0.0
 
double IMS_bfCut_ = 0.0
 
double IMS_dgCut_ = 0.0
 
double IMS_egCut_ = 0.0
 
double IMS_agCut_ = 0.0
 
double IMS_bgCut_ = 0.0
 

Protected Attributes

vector< double > m_speciesMolarVolume
 Species molar volume \( m^3 kmol^{-1} \).
 
int m_formGC = 2
 The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'species-molar-volume', 2 = 'solvent-molar-volume'.
 
int IMS_typeCutoff_ = 0
 Cutoff type.
 
- Protected Attributes inherited from MolalityVPSSTP
int m_pHScalingType = PHSCALE_PITZER
 Scaling to be used for output of single-ion species activity coefficients.
 
size_t m_indexCLM = npos
 Index of the phScale species.
 
double m_weightSolvent = 18.01528
 Molecular weight of the Solvent.
 
double m_xmolSolventMIN = 0.01
 In any molality implementation, it makes sense to have a minimum solvent mole fraction requirement, since the implementation becomes singular in the xmolSolvent=0 limit.
 
double m_Mnaught = 18.01528E-3
 This is the multiplication factor that goes inside log expressions involving the molalities of species.
 
vector< double > m_molalities
 Current value of the molalities of the species in the phase.
 
- Protected Attributes inherited from VPStandardStateTP
double m_Pcurrent = OneAtm
 Current value of the pressure - state variable.
 
double m_minTemp = 0.0
 The minimum temperature at which data for all species is valid.
 
double m_maxTemp = BigNumber
 The maximum temperature at which data for all species is valid.
 
double m_Tlast_ss = -1.0
 The last temperature at which the standard state thermodynamic properties were calculated at.
 
double m_Plast_ss = -1.0
 The last pressure at which the Standard State thermodynamic properties were calculated at.
 
vector< unique_ptr< PDSS > > m_PDSS_storage
 Storage for the PDSS objects for the species.
 
vector< double > m_h0_RT
 Vector containing the species reference enthalpies at T = m_tlast and P = p_ref.
 
vector< double > m_cp0_R
 Vector containing the species reference constant pressure heat capacities at T = m_tlast and P = p_ref.
 
vector< double > m_g0_RT
 Vector containing the species reference Gibbs functions at T = m_tlast and P = p_ref.
 
vector< double > m_s0_R
 Vector containing the species reference entropies at T = m_tlast and P = p_ref.
 
vector< double > m_V0
 Vector containing the species reference molar volumes.
 
vector< double > m_hss_RT
 Vector containing the species Standard State enthalpies at T = m_tlast and P = m_plast.
 
vector< double > m_cpss_R
 Vector containing the species Standard State constant pressure heat capacities at T = m_tlast and P = m_plast.
 
vector< double > m_gss_RT
 Vector containing the species Standard State Gibbs functions at T = m_tlast and P = m_plast.
 
vector< double > m_sss_R
 Vector containing the species Standard State entropies at T = m_tlast and P = m_plast.
 
vector< double > m_Vss
 Vector containing the species standard state volumes at T = m_tlast and P = m_plast.
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
AnyMap m_input
 Data supplied via setParameters.
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts.
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention.
 
double m_tlast = 0.0
 last value of the temperature processed by reference state
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase.
 
size_t m_kk = 0
 Number of species in the phase.
 
size_t m_ndim = 3
 Dimensionality of the phase.
 
vector< double > m_speciesComp
 Atomic composition of the species.
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk.
 
map< string, shared_ptr< Species > > m_species
 Map of Species objects.
 
size_t m_nSpeciesLocks = 0
 Reference counter preventing species addition.
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element.
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced.
 

Private Member Functions

void s_updateIMS_lnMolalityActCoeff () const
 This function will be called to update the internally stored natural logarithm of the molality activity coefficients.
 
void calcIMSCutoffParams_ ()
 Calculate parameters for cutoff treatments of activity coefficients.
 

Private Attributes

vector< double > m_tmpV
 vector of size m_kk, used as a temporary holding area.
 
vector< double > IMS_lnActCoeffMolal_
 Logarithm of the molal activity coefficients.
 

Mechanical Equation of State Properties

In this equation of state implementation, the density is a function only of the mole fractions.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() will cause an exception to be thrown.

double isothermalCompressibility () const override
 The isothermal compressibility. Units: 1/Pa.
 
double thermalExpansionCoeff () const override
 The thermal expansion coefficient. Units: 1/K.
 
void calcDensity () override
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
 

Additional Inherited Members

- Protected Member Functions inherited from MolalityVPSSTP
virtual void getUnscaledMolalityActivityCoefficients (double *acMolality) const
 Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration.
 
virtual void applyphScale (double *acMolality) const
 Apply the current phScale to a set of activity Coefficients or activities.
 
- Protected Member Functions inherited from VPStandardStateTP
virtual void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
 
virtual void _updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution.
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
const vector< double > & Gibbs_RT_ref () const
 
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible.
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase.
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes.
 

Constructor & Destructor Documentation

◆ IdealMolalSoln()

IdealMolalSoln ( const string &  inputFile = "",
const string &  id = "" 
)
explicit

Constructor for phase initialization.

This constructor will initialize a phase, by reading the required information from an input file.

Parameters
inputFileName of the Input file that contains information about the phase. If blank, an empty phase will be created.
idid of the phase within the input file

Definition at line 37 of file IdealMolalSoln.cpp.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from Phase.

Definition at line 81 of file IdealMolalSoln.h.

◆ isIdeal()

bool isIdeal ( ) const
inlineoverridevirtual

Boolean indicating whether phase is ideal.

Reimplemented from ThermoPhase.

Definition at line 85 of file IdealMolalSoln.h.

◆ enthalpy_mole()

double enthalpy_mole ( ) const
overridevirtual

Molar enthalpy of the solution. Units: J/kmol.

Returns the amount of enthalpy per mole of solution. For an ideal molal solution,

\[ \bar{h}(T, P, X_k) = \sum_k X_k \bar{h}_k(T) \]

The formula is written in terms of the partial molar enthalpies. \( \bar{h}_k(T, p, m_k) \). See the partial molar enthalpy function, getPartialMolarEnthalpies(), for details.

Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 48 of file IdealMolalSoln.cpp.

◆ intEnergy_mole()

double intEnergy_mole ( ) const
overridevirtual

Molar internal energy of the solution: Units: J/kmol.

Returns the amount of internal energy per mole of solution. For an ideal molal solution,

\[ \bar{u}(T, P, X_k) = \sum_k X_k \bar{u}_k(T) \]

The formula is written in terms of the partial molar internal energy. \( \bar{u}_k(T, p, m_k) \).

Reimplemented from ThermoPhase.

Definition at line 54 of file IdealMolalSoln.cpp.

◆ entropy_mole()

double entropy_mole ( ) const
overridevirtual

Molar entropy of the solution. Units: J/kmol/K.

Returns the amount of entropy per mole of solution. For an ideal molal solution,

\[ \bar{s}(T, P, X_k) = \sum_k X_k \bar{s}_k(T) \]

The formula is written in terms of the partial molar entropies. \( \bar{s}_k(T, p, m_k) \). See the partial molar entropies function, getPartialMolarEntropies(), for details.

Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 60 of file IdealMolalSoln.cpp.

◆ gibbs_mole()

double gibbs_mole ( ) const
overridevirtual

Molar Gibbs function for the solution: Units J/kmol.

Returns the Gibbs free energy of the solution per mole of the solution.

\[ \bar{g}(T, P, X_k) = \sum_k X_k \mu_k(T) \]

Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 66 of file IdealMolalSoln.cpp.

◆ cp_mole()

double cp_mole ( ) const
overridevirtual

Molar heat capacity of the solution at constant pressure. Units: J/kmol/K.

\[ \bar{c}_p(T, P, X_k) = \sum_k X_k \bar{c}_{p,k}(T) \]

Units: J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 72 of file IdealMolalSoln.cpp.

◆ calcDensity()

void calcDensity ( )
overrideprotectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \( X_k \) are the mole fractions, \( W_k \) are the molecular weights, and \( V_k \) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

NOTE: This function is not a member of the ThermoPhase base class.

Reimplemented from VPStandardStateTP.

Definition at line 80 of file IdealMolalSoln.cpp.

◆ isothermalCompressibility()

double isothermalCompressibility ( ) const
overridevirtual

The isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

It's equal to zero for this model, since the molar volume doesn't change with pressure or temperature.

Reimplemented from ThermoPhase.

Definition at line 87 of file IdealMolalSoln.cpp.

◆ thermalExpansionCoeff()

double thermalExpansionCoeff ( ) const
overridevirtual

The thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

It's equal to zero for this model, since the molar volume doesn't change with pressure or temperature.

Reimplemented from ThermoPhase.

Definition at line 92 of file IdealMolalSoln.cpp.

◆ standardConcentrationUnits()

Units standardConcentrationUnits ( ) const
overridevirtual

Returns the units of the "standard concentration" for this phase.

These are the units of the values returned by the functions getActivityConcentrations() and standardConcentration(), which can vary between different ThermoPhase-derived classes, or change within a single class depending on input options. See the documentation for standardConcentration() for the derived class for specific details.

Reimplemented from ThermoPhase.

Definition at line 99 of file IdealMolalSoln.cpp.

◆ getActivityConcentrations()

void getActivityConcentrations ( double *  c) const
overridevirtual

This method returns an array of generalized concentrations.

\( C^a_k \) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 109 of file IdealMolalSoln.cpp.

◆ standardConcentration()

double standardConcentration ( size_t  k = 0) const
overridevirtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (that is, generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (such as surface species of different sizes), this method may be called with an optional parameter indicating the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard concentration. The units are by definition dependent on the ThermoPhase and kinetics manager representation.

Reimplemented from ThermoPhase.

Definition at line 126 of file IdealMolalSoln.cpp.

◆ getActivities()

void getActivities ( double *  ac) const
overridevirtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

(note solvent is on molar scale)

Parameters
acOutput activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 142 of file IdealMolalSoln.cpp.

◆ getMolalityActivityCoefficients()

void getMolalityActivityCoefficients ( double *  acMolality) const
overridevirtual

Get the array of non-dimensional molality-based activity coefficients at the current solution temperature, pressure, and solution concentration.

(note solvent is on molar scale. The solvent molar based activity coefficient is returned).

Parameters
acMolalityOutput Molality-based activity coefficients. Length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 171 of file IdealMolalSoln.cpp.

◆ getChemPotentials()

void getChemPotentials ( double *  mu) const
overridevirtual

Get the species chemical potentials: Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution.

\[ \mu_k = \mu^{o}_k(T,P) + R T \ln(\frac{m_k}{m^\Delta}) \]

\[ \mu_w = \mu^{o}_w(T,P) + R T ((X_w - 1.0) / X_w) \]

\( w \) refers to the solvent species. \( X_w \) is the mole fraction of the solvent. \( m_k \) is the molality of the kth solute. \( m^\Delta \) is 1 gmol solute per kg solvent.

Units: J/kmol.

Parameters
muOutput vector of species chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 193 of file IdealMolalSoln.cpp.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( double *  hbar) const
overridevirtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol). For this phase, the partial molar enthalpies are equal to the species standard state enthalpies.

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
hbarOutput vector of partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 231 of file IdealMolalSoln.cpp.

◆ getPartialMolarIntEnergies()

void getPartialMolarIntEnergies ( double *  hbar) const
overridevirtual

Returns an array of partial molar internal energies for the species in the mixture.

Units (J/kmol). For this phase, the partial molar internal energies are equal to the species standard state internal energies (which are equal to the reference state internal energies)

\[ \bar u_k(T,P) = \hat u^{ref}_k(T) \]

Parameters
hbarOutput vector of partial molar internal energies, length m_kk

Reimplemented from ThermoPhase.

Definition at line 239 of file IdealMolalSoln.cpp.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( double *  sbar) const
overridevirtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol.

Maxwell's equations provide an insight in how to calculate this (p.215 Smith and Van Ness)

\[ \frac{d(\mu_k)}{dT} = -\bar{s}_i \]

For this phase, the partial molar entropies are equal to the standard state species entropies plus the ideal molal solution contribution.

\[ \bar{s}_k(T,P) = s^0_k(T) - R \ln( \frac{m_k}{m^{\triangle}} ) \]

\[ \bar{s}_w(T,P) = s^0_w(T) - R ((X_w - 1.0) / X_w) \]

The subscript, w, refers to the solvent species. \( X_w \) is the mole fraction of solvent. The reference-state pure-species entropies, \( s^0_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
sbarOutput vector of partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 247 of file IdealMolalSoln.cpp.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( double *  vbar) const
overridevirtual

For this solution, the partial molar volumes are equal to the constant species molar volumes.

Units: m^3 kmol-1.

Parameters
vbarOutput vector of partial molar volumes.

Reimplemented from ThermoPhase.

Definition at line 276 of file IdealMolalSoln.cpp.

◆ getPartialMolarCp()

void getPartialMolarCp ( double *  cpbar) const
overridevirtual

Partial molar heat capacity of the solution:. UnitsL J/kmol/K.

The kth partial molar heat capacity is equal to the temperature derivative of the partial molar enthalpy of the kth species in the solution at constant P and composition (p. 220 Smith and Van Ness).

\[ \bar{Cp}_k(T,P) = {Cp}^0_k(T) \]

For this solution, this is equal to the reference state heat capacities.

Units: J/kmol/K

Parameters
cpbarOutput vector of partial molar heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 281 of file IdealMolalSoln.cpp.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
overridevirtual

Add a Species to this Phase.

Returns true if the species was successfully added, or false if the species was ignored.

Derived classes which need to size arrays according to the number of species should overload this method. The derived class implementation should call the base class method, and, if this returns true (indicating that the species has been added), adjust their array sizes accordingly.

See also
ignoreUndefinedElements addUndefinedElements throwUndefinedElements

Reimplemented from Phase.

Definition at line 293 of file IdealMolalSoln.cpp.

◆ initThermo()

void initThermo ( )
overridevirtual

Initialize the ThermoPhase object after all species have been set up.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 304 of file IdealMolalSoln.cpp.

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
overridevirtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Definition at line 331 of file IdealMolalSoln.cpp.

◆ setStandardConcentrationModel()

void setStandardConcentrationModel ( const string &  model)

Set the standard concentration model.

Must be one of 'unity', 'species-molar-volume', or 'solvent-molar-volume'. The default is 'solvent-molar-volume'.

model ActivityConc StandardConc
unity \( {m_k}/ { m^{\Delta}} \) \( 1.0 \)
species-molar-volume \( m_k / (m^{\Delta} V_k) \) \( 1.0 / V_k \)
solvent-molar-volume \( m_k / (m^{\Delta} V^0_0) \) \( 1.0 / V^0_0 \)

Definition at line 373 of file IdealMolalSoln.cpp.

◆ setCutoffModel()

void setCutoffModel ( const string &  model)

Set cutoff model. Must be one of 'none', 'poly', or 'polyExp'.

Definition at line 389 of file IdealMolalSoln.cpp.

◆ speciesMolarVolume()

double speciesMolarVolume ( int  k) const

Report the molar volume of species k.

units - \( m^3 kmol^{-1} \)

Parameters
kSpecies index.

◆ getSpeciesMolarVolumes()

void getSpeciesMolarVolumes ( double *  smv) const

Fill in a return vector containing the species molar volumes units - \( m^3 kmol^{-1} \).

Parameters
smvOutput vector of species molar volumes.

◆ s_updateIMS_lnMolalityActCoeff()

void s_updateIMS_lnMolalityActCoeff ( ) const
private

This function will be called to update the internally stored natural logarithm of the molality activity coefficients.

Normally the solutes are all zero. However, sometimes they are not, due to stability schemes.

gamma_k_molar = gamma_k_molal / Xmol_solvent

gamma_o_molar = gamma_o_molal

Definition at line 405 of file IdealMolalSoln.cpp.

◆ calcIMSCutoffParams_()

void calcIMSCutoffParams_ ( )
private

Calculate parameters for cutoff treatments of activity coefficients.

Some cutoff treatments for the activity coefficients actually require some calculations to create a consistent treatment.

This routine is called during the setup to calculate these parameters

Definition at line 506 of file IdealMolalSoln.cpp.

Member Data Documentation

◆ m_speciesMolarVolume

vector<double> m_speciesMolarVolume
protected

Species molar volume \( m^3 kmol^{-1} \).

Definition at line 394 of file IdealMolalSoln.h.

◆ m_formGC

int m_formGC = 2
protected

The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'species-molar-volume', 2 = 'solvent-molar-volume'.

See setStandardConcentrationModel().

Definition at line 401 of file IdealMolalSoln.h.

◆ IMS_typeCutoff_

int IMS_typeCutoff_ = 0
protected

Cutoff type.

Definition at line 404 of file IdealMolalSoln.h.

◆ m_tmpV

vector<double> m_tmpV
mutableprivate

vector of size m_kk, used as a temporary holding area.

Definition at line 408 of file IdealMolalSoln.h.

◆ IMS_lnActCoeffMolal_

vector<double> IMS_lnActCoeffMolal_
mutableprivate

Logarithm of the molal activity coefficients.

Normally these are all one. However, stability schemes will change that

Definition at line 414 of file IdealMolalSoln.h.

◆ IMS_X_o_cutoff_

double IMS_X_o_cutoff_

value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process;

Definition at line 418 of file IdealMolalSoln.h.

◆ IMS_gamma_o_min_

double IMS_gamma_o_min_

gamma_o value for the cutoff process at the zero solvent point

Definition at line 421 of file IdealMolalSoln.h.

◆ IMS_gamma_k_min_

double IMS_gamma_k_min_

gamma_k minimum for the cutoff process at the zero solvent point

Definition at line 424 of file IdealMolalSoln.h.

◆ IMS_slopefCut_

double IMS_slopefCut_

Parameter in the polyExp cutoff treatment.

This is the slope of the f function at the zero solvent point. Default value is 0.6

Definition at line 428 of file IdealMolalSoln.h.

◆ IMS_slopegCut_

double IMS_slopegCut_

Parameter in the polyExp cutoff treatment.

This is the slope of the g function at the zero solvent point. Default value is 0.0

Definition at line 432 of file IdealMolalSoln.h.

◆ IMS_cCut_

double IMS_cCut_

Definition at line 436 of file IdealMolalSoln.h.

◆ IMS_dfCut_

double IMS_dfCut_ = 0.0

Definition at line 437 of file IdealMolalSoln.h.

◆ IMS_efCut_

double IMS_efCut_ = 0.0

Definition at line 438 of file IdealMolalSoln.h.

◆ IMS_afCut_

double IMS_afCut_ = 0.0

Definition at line 439 of file IdealMolalSoln.h.

◆ IMS_bfCut_

double IMS_bfCut_ = 0.0

Definition at line 440 of file IdealMolalSoln.h.

◆ IMS_dgCut_

double IMS_dgCut_ = 0.0

Definition at line 441 of file IdealMolalSoln.h.

◆ IMS_egCut_

double IMS_egCut_ = 0.0

Definition at line 442 of file IdealMolalSoln.h.

◆ IMS_agCut_

double IMS_agCut_ = 0.0

Definition at line 443 of file IdealMolalSoln.h.

◆ IMS_bgCut_

double IMS_bgCut_ = 0.0

Definition at line 444 of file IdealMolalSoln.h.


The documentation for this class was generated from the following files: