Cantera
2.1.2
|
Class for single-component water. More...
#include <WaterSSTP.h>
Public Member Functions | |
WaterSSTP () | |
Base constructor. More... | |
WaterSSTP (const WaterSSTP &) | |
Copy constructor. More... | |
WaterSSTP & | operator= (const WaterSSTP &) |
Assignment operator. More... | |
WaterSSTP (const std::string &inputFile, const std::string &id="") | |
Full constructor for a water phase. More... | |
WaterSSTP (XML_Node &phaseRef, const std::string &id="") | |
Full constructor for a water phase. More... | |
virtual | ~WaterSSTP () |
Destructor. More... | |
ThermoPhase * | duplMyselfAsThermoPhase () const |
Duplicator from a ThermoPhase object. More... | |
virtual int | eosType () const |
Returns the equation of state type flag. More... | |
virtual doublereal | critTemperature () const |
critical temperature More... | |
virtual doublereal | critPressure () const |
critical pressure More... | |
virtual doublereal | critDensity () const |
critical density More... | |
virtual doublereal | satPressure (doublereal t) |
saturation pressure More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setTemperature (const doublereal temp) |
Set the temperature of the phase. More... | |
virtual void | setDensity (const doublereal dens) |
Set the density of the phase. More... | |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object using an XML tree. More... | |
virtual void | initThermo () |
Initialize the ThermoPhase object after all species have been set up. More... | |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. More... | |
WaterPropsIAPWS * | getWater () |
Get a pointer to a changeable WaterPropsIAPWS object. More... | |
WaterProps * | getWaterProps () |
Get a pointer to a changeable WaterPropsIAPWS object. More... | |
Molar Thermodynamic Properties of the Solution | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. More... | |
Mechanical Equation of State Properties | |
virtual doublereal | pressure () const |
Return the thermodynamic pressure (Pa). More... | |
virtual void | setPressure (doublereal p) |
Set the internally stored pressure (Pa) at constant temperature and composition. More... | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
virtual doublereal | dthermalExpansionCoeffdT () const |
Return the derivative of the volumetric thermal expansion coefficient. Units: 1/K2. More... | |
Properties of the Standard State of the Species in the Solution | |
virtual void | getStandardChemPotentials (doublereal *gss) const |
Get the gibbs function for the species standard states at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional gibbs function for the species standard states at the current T and P of the solution. More... | |
void | getEnthalpy_RT (doublereal *hrt) const |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More... | |
void | getEntropy_R (doublereal *sr) const |
Get the nondimensional Entropies for the species standard states at the current T and P of the solution. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More... | |
Thermodynamic Values for the Species Reference State | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
virtual void | getGibbs_ref (doublereal *g) const |
virtual void | getEntropy_R_ref (doublereal *er) const |
virtual void | getCp_R_ref (doublereal *cprt) const |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
Public Member Functions inherited from SingleSpeciesTP | |
SingleSpeciesTP () | |
Base empty constructor. More... | |
SingleSpeciesTP (const SingleSpeciesTP &right) | |
Copy constructor. More... | |
SingleSpeciesTP & | operator= (const SingleSpeciesTP &right) |
Assignment operator. More... | |
doublereal | enthalpy_mole () const |
Molar enthalpy. Units: J/kmol. More... | |
doublereal | intEnergy_mole () const |
Molar internal energy. Units: J/kmol. More... | |
doublereal | entropy_mole () const |
Molar entropy. Units: J/kmol/K. More... | |
doublereal | gibbs_mole () const |
Molar Gibbs function. Units: J/kmol. More... | |
doublereal | cp_mole () const |
Molar heat capacity at constant pressure. Units: J/kmol/K. More... | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
void | getChemPotentials_RT (doublereal *murt) const |
Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More... | |
void | getChemPotentials (doublereal *mu) const |
Get the array of chemical potentials. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. Units: J/kmol. More... | |
void | getPartialMolarEnthalpies (doublereal *hbar) const |
Get the species partial molar enthalpies. Units: J/kmol. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Get the species partial molar internal energies. Units: J/kmol. More... | |
void | getPartialMolarEntropies (doublereal *sbar) const |
Get the species partial molar entropy. Units: J/kmol K. More... | |
void | getPartialMolarCp (doublereal *cpbar) const |
Get the species partial molar Heat Capacities. Units: J/ kmol /K. More... | |
void | getPartialMolarVolumes (doublereal *vbar) const |
Get the species partial molar volumes. Units: m^3/kmol. More... | |
void | getPureGibbs (doublereal *gpure) const |
Get the dimensional Gibbs functions for the standard state of the species at the current T and P. More... | |
void | getStandardVolumes (doublereal *vbar) const |
Get the molar volumes of each species in their standard states at the current T and P of the solution. More... | |
void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
void | setState_TPX (doublereal t, doublereal p, compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
void | setState_TPY (doublereal t, doublereal p, compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (doublereal h, doublereal p, doublereal tol=1.e-8) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (doublereal u, doublereal v, doublereal tol=1.e-8) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (doublereal s, doublereal p, doublereal tol=1.e-8) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (doublereal s, doublereal v, doublereal tol=1.e-8) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setParameters (int n, doublereal *const c) |
virtual void | getParameters (int &n, doublereal *const c) const |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
virtual | ~ThermoPhase () |
Destructor. Deletes the species thermo manager. More... | |
ThermoPhase (const ThermoPhase &right) | |
Copy Constructor for the ThermoPhase object. More... | |
ThermoPhase & | operator= (const ThermoPhase &right) |
Assignment operator. More... | |
doublereal | _RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
doublereal | Hf298SS (const int k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const int k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | cv_vib (int, double) const |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns an array of generalized concentrations. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
Return the standard concentration for the kth species. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
virtual void | getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const |
Returns the units of the standard and generalized concentrations. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const |
Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More... | |
virtual void | getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const |
Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More... | |
virtual void | getdStandardVolumes_dT (doublereal *d_vol_dT) const |
Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More... | |
virtual void | getdStandardVolumes_dP (doublereal *d_vol_dP) const |
Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | setReferenceComposition (const doublereal *const x) |
Sets the reference composition. More... | |
virtual void | getReferenceComposition (doublereal *const x) const |
Gets the reference composition. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. More... | |
doublereal | entropy_mass () const |
Specific entropy. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. More... | |
virtual void | setToEquilState (const doublereal *lambda_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
void | setElementPotentials (const vector_fp &lambda) |
Stores the element potentials in the ThermoPhase object. More... | |
bool | getElementPotentials (doublereal *lambda) const |
Returns the element potentials stored in the ThermoPhase object. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
void | setSpeciesThermo (SpeciesThermo *spthermo) |
Install a species thermodynamic property manager. More... | |
virtual SpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | installSlavePhases (Cantera::XML_Node *phaseNode) |
Add in species from Slave phases. More... | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
virtual void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
virtual | ~Phase () |
Destructor. More... | |
Phase (const Phase &right) | |
Copy Constructor. More... | |
Phase & | operator= (const Phase &right) |
Assignment operator. More... | |
XML_Node & | xml () |
Returns a reference to the XML_Node stored for the phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase Write to vector 'state' the current internal state. More... | |
void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
doublereal | size (size_t k) const |
This routine returns the size of species k. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
virtual void | freezeSpecies () |
Call when finished adding species. More... | |
bool | speciesFrozen () |
True if freezeSpecies has been called. More... | |
virtual bool | ready () const |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
std::string | id () const |
Return the string id for the phase. More... | |
void | setID (const std::string &id) |
Set the string id for the phase. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More... | |
void | setMoleFractionsByName (compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
void | getMoleFractionsByName (compositionMap &x) const |
Get the mole fractions by name. More... | |
doublereal | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
doublereal | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
doublereal | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
doublereal | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions (const doublereal *const x) |
Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector. More... | |
virtual void | setMoleFractions_NoNorm (const doublereal *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (doublereal *const y) const |
Get the species mass fractions. More... | |
const doublereal * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
virtual void | setMassFractions (const doublereal *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const doublereal *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
void | getConcentrations (doublereal *const c) const |
Get the species concentrations (kmol/m^3). More... | |
doublereal | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrations (const doublereal *const conc) |
Set the concentrations to the specified values within the phase. More... | |
const doublereal * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual doublereal | density () const |
Density (kg/m^3). More... | |
doublereal | molarDensity () const |
Molar density (kmol/m^3). More... | |
doublereal | molarVolume () const |
Molar volume (m^3/kmol). More... | |
virtual void | setMolarDensity (const doublereal molarDensity) |
Set the internally stored molar density (kmol/m^3) of the phase. More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_Y (const doublereal *const Q) const |
Evaluate the mass-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
doublereal | sum_xlogQ (doublereal *const Q) const |
Evaluate \( \sum_k X_k \log Q_k \). More... | |
void | addElement (const std::string &symbol, doublereal weight=-12345.0) |
Add an element. More... | |
void | addElement (const XML_Node &e) |
Add an element from an XML specification. More... | |
void | addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More... | |
void | addUniqueElement (const XML_Node &e) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More... | |
void | addElementsFromXML (const XML_Node &phase) |
Add all elements referenced in an XML_Node tree. More... | |
void | freezeElements () |
Prohibit addition of more elements, and prepare to add species. More... | |
bool | elementsFrozen () |
True if freezeElements has been called. More... | |
size_t | addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More... | |
void | addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
void | addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More... | |
Protected Member Functions | |
void | _updateThermo () const |
Protected Member Functions inherited from SingleSpeciesTP | |
void | _updateThermo () const |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | init (const vector_fp &mw) |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
Private Attributes | |
WaterPropsIAPWS * | m_sub |
Pointer to the WaterPropsIAPWS that calculates the real properties of water. More... | |
WaterProps * | m_waterProps |
Pointer to the WaterProps object. More... | |
doublereal | m_mw |
Molecular weight of Water -> Cantera assumption. More... | |
doublereal | EW_Offset |
Offset constants used to obtain consistency with the NIST database. More... | |
doublereal | SW_Offset |
Offset constant used to obtain consistency with NIST convention. More... | |
bool | m_ready |
Boolean is true if object has been properly initialized for calculation. More... | |
bool | m_allowGasPhase |
Since this phase represents a liquid phase, it's an error to return a gas-phase answer. More... | |
Additional Inherited Members | |
Protected Attributes inherited from SingleSpeciesTP | |
doublereal | m_press |
The current pressure of the solution (Pa) More... | |
doublereal | m_p0 |
doublereal | m_tlast |
Last temperature used to evaluate the thermodynamic polynomial. More... | |
vector_fp | m_h0_RT |
Dimensionless enthalpy at the (mtlast, m_p0) More... | |
vector_fp | m_cp0_R |
Dimensionless heat capacity at the (mtlast, m_p0) More... | |
vector_fp | m_s0_R |
Dimensionless entropy at the (mtlast, m_p0) More... | |
Protected Attributes inherited from ThermoPhase | |
SpeciesThermo * | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. More... | |
vector_fp | m_lambdaRRT |
Vector of element potentials. More... | |
bool | m_hasElementPotentials |
Boolean indicating whether there is a valid set of saved element potentials for this phase. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
std::vector< doublereal > | xMol_Ref |
Reference Mole Fraction Composition. More... | |
Protected Attributes inherited from Phase | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesSize |
Vector of species sizes. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
Class for single-component water.
This is designed to cover just the liquid part of water.
The reference is W. Wagner, A. Prub, "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use," J. Phys. Chem. Ref. Dat, 31, 387, 2002.
The offsets used in the steam tables are different than NIST's. They assume u_liq(TP) = 0.0, s_liq(TP) = 0.0, where TP is the triple point conditions:
These "steam table" assumptions are used by the WaterPropsIAPWS class. Therefore, offsets must be calculated to make the thermodynamic properties calculated within this class to be consistent with thermo properties within Cantera.
The thermodynamic base state for water is set to the NIST basis here by specifying constants, EW_Offset and SW_Offset, one for energy quantities and one for entropy quantities. The offsets are specified so that the following properties hold:
(From http://webbook.nist.gov)
The "o" here refers to a hypothetical ideal gas state. The way we achieve this in practice is to evaluate at a very low pressure and then use the theoretical ideal gas results to scale up to higher pressures:
Ho(1bar) = H(P0)
So(1bar) = S(P0) + RT ln(1bar/P0)
This is unimplemented.
The constructor for this phase is NOT located in the default ThermoFactory for Cantera. However, a new WaterSSTP object may be created by the following code snippets, combined with an XML file given in the XML example section.
or
or by the following call to importPhase():
An example of an XML Element named phase setting up a WaterSSTP object with id "water" is given below.
Note the model "PureLiquidWater" indicates the usage of the WaterSSTP object.
Definition at line 125 of file WaterSSTP.h.
WaterSSTP | ( | ) |
Base constructor.
Definition at line 23 of file WaterSSTP.cpp.
Referenced by WaterSSTP::duplMyselfAsThermoPhase().
Copy constructor.
Definition at line 61 of file WaterSSTP.cpp.
References WaterSSTP::m_sub, and WaterSSTP::m_waterProps.
|
explicit |
Full constructor for a water phase.
inputFile | String name of the input file |
id | string id of the phase name |
Definition at line 35 of file WaterSSTP.cpp.
References ThermoPhase::initThermoFile().
Full constructor for a water phase.
phaseRef | XML node referencing the water phase. |
id | string id of the phase name |
Definition at line 48 of file WaterSSTP.cpp.
References Cantera::findXMLPhase(), and Cantera::importPhase().
|
virtual |
Destructor.
Definition at line 105 of file WaterSSTP.cpp.
References WaterSSTP::m_sub, and WaterSSTP::m_waterProps.
Assignment operator.
Definition at line 81 of file WaterSSTP.cpp.
References WaterSSTP::m_allowGasPhase, WaterSSTP::m_mw, WaterSSTP::m_ready, WaterSSTP::m_sub, and WaterSSTP::m_waterProps.
|
virtual |
Duplicator from a ThermoPhase object.
Reimplemented from SingleSpeciesTP.
Definition at line 100 of file WaterSSTP.cpp.
References WaterSSTP::WaterSSTP().
|
inlinevirtual |
Returns the equation of state type flag.
This is a modified base class. Therefore, if not overridden in derivied classes, this call will throw an exception.
Reimplemented from SingleSpeciesTP.
Definition at line 157 of file WaterSSTP.h.
|
virtual |
Molar heat capacity at constant volume. Units: J/kmol/K.
This function is resolved here by calling the standard state thermo function.
Reimplemented from SingleSpeciesTP.
Definition at line 261 of file WaterSSTP.cpp.
References WaterPropsIAPWS::cv(), and WaterSSTP::m_sub.
|
virtual |
Return the thermodynamic pressure (Pa).
This method must be overloaded in derived classes. Since the mass density, temperature, and mass fractions are stored, this method should use these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \).
Reimplemented from ThermoPhase.
Definition at line 376 of file WaterSSTP.cpp.
References WaterSSTP::m_sub, and WaterPropsIAPWS::pressure().
Referenced by WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT_ref(), and WaterSSTP::getStandardVolumes_ref().
|
virtual |
Set the internally stored pressure (Pa) at constant temperature and composition.
This method must be reimplemented in derived classes, where it may involve the solution of a nonlinear equation. Within Cantera, the independent variable is the density. Therefore, this function solves for the density that will yield the desired input pressure. The temperature and composition iare held constant during this process.
This base class function will print an error, if not overwritten.
p | input Pressure (Pa) |
Reimplemented from ThermoPhase.
Definition at line 382 of file WaterSSTP.cpp.
References WaterPropsIAPWS::density(), Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::Rhocrit(), WaterSSTP::setDensity(), and Phase::temperature().
|
virtual |
Returns the isothermal compressibility. Units: 1/Pa.
The isothermal compressibility is defined as
\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]
or
\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]
Reimplemented from ThermoPhase.
Definition at line 398 of file WaterSSTP.cpp.
References WaterPropsIAPWS::isothermalCompressibility(), and WaterSSTP::m_sub.
|
virtual |
Return the volumetric thermal expansion coefficient. Units: 1/K.
The thermal expansion coefficient is defined as
\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]
Reimplemented from ThermoPhase.
Definition at line 403 of file WaterSSTP.cpp.
References WaterPropsIAPWS::coeffThermExp(), and WaterSSTP::m_sub.
|
virtual |
Return the derivative of the volumetric thermal expansion coefficient. Units: 1/K2.
The thermal expansion coefficient is defined as
\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]
Definition at line 408 of file WaterSSTP.cpp.
References WaterPropsIAPWS::coeffThermExp(), WaterPropsIAPWS::density(), Phase::density(), Cantera::fp2str(), WaterSSTP::m_sub, WaterSSTP::pressure(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().
|
virtual |
Get the gibbs function for the species standard states at the current T and P of the solution.
gss | Vector of length m_kk, which on return will contain the standard state gibbs function for species k. |
Reimplemented from ThermoPhase.
Definition at line 245 of file WaterSSTP.cpp.
References WaterSSTP::EW_Offset, WaterPropsIAPWS::Gibbs(), WaterSSTP::m_ready, WaterSSTP::m_sub, WaterSSTP::SW_Offset, and Phase::temperature().
|
virtual |
Get the nondimensional gibbs function for the species standard states at the current T and P of the solution.
grt | Vector of length m_kk, which on return will contain the nondimensional standard state gibbs function for species k |
Reimplemented from ThermoPhase.
Definition at line 235 of file WaterSSTP.cpp.
References WaterSSTP::EW_Offset, Cantera::GasConstant, WaterPropsIAPWS::Gibbs(), WaterSSTP::m_ready, WaterSSTP::m_sub, WaterSSTP::SW_Offset, and Phase::temperature().
|
virtual |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.
hrt | Vector of length m_kk, which on return will contain the nondimensional standard state enthalpy of species k |
Reimplemented from ThermoPhase.
Definition at line 216 of file WaterSSTP.cpp.
References WaterPropsIAPWS::enthalpy(), WaterSSTP::EW_Offset, Cantera::GasConstant, WaterSSTP::m_sub, and Phase::temperature().
|
virtual |
Get the nondimensional Entropies for the species standard states at the current T and P of the solution.
sr | Vector of length m_kk, which on return will contain the nondimensional standard state entropy for speciesk |
Reimplemented from ThermoPhase.
Definition at line 229 of file WaterSSTP.cpp.
References WaterPropsIAPWS::entropy(), Cantera::GasConstant, WaterSSTP::m_sub, and WaterSSTP::SW_Offset.
|
virtual |
Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.
cpr | Vector of length m_kk, which on return will contain the nondimensional constant pressure heat capacity for species k |
Reimplemented from ThermoPhase.
Definition at line 255 of file WaterSSTP.cpp.
References WaterPropsIAPWS::cp(), Cantera::GasConstant, and WaterSSTP::m_sub.
|
virtual |
Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.
urt | Output vector of standard state nondimensional internal energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 223 of file WaterSSTP.cpp.
References WaterSSTP::EW_Offset, Cantera::GasConstant, WaterPropsIAPWS::intEnergy(), and WaterSSTP::m_sub.
|
virtual |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
All functions in this group need to be overrided, because the m_spthermo SpeciesThermo function is not adequate for the real equation of state.
hrt | Output vector containing the nondimensional reference state enthalpies Length: m_kk. |
Reimplemented from SingleSpeciesTP.
Definition at line 266 of file WaterSSTP.cpp.
References WaterPropsIAPWS::density(), Phase::density(), WaterPropsIAPWS::enthalpy(), WaterSSTP::EW_Offset, Cantera::GasConstant, WaterSSTP::m_sub, Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), and Phase::temperature().
|
virtual |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
grt | Output vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk. |
Reimplemented from SingleSpeciesTP.
Definition at line 285 of file WaterSSTP.cpp.
References WaterPropsIAPWS::density(), Phase::density(), WaterSSTP::EW_Offset, Cantera::GasConstant, WaterPropsIAPWS::Gibbs(), WaterSSTP::m_sub, Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::setState_TR(), WaterSSTP::SW_Offset, and Phase::temperature().
Referenced by WaterSSTP::getGibbs_ref().
|
virtual |
Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. units = J/kmol
g | Output vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol. |
Reimplemented from SingleSpeciesTP.
Definition at line 306 of file WaterSSTP.cpp.
References ThermoPhase::_RT(), WaterSSTP::getGibbs_RT_ref(), and Phase::m_kk.
|
virtual |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
er | Output vector containing the nondimensional reference state entropies. Length: m_kk. |
Reimplemented from SingleSpeciesTP.
Definition at line 315 of file WaterSSTP.cpp.
References WaterPropsIAPWS::density(), Phase::density(), WaterPropsIAPWS::entropy(), Cantera::GasConstant, WaterSSTP::m_sub, Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::setState_TR(), WaterSSTP::SW_Offset, and Phase::temperature().
|
virtual |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
cprt | Output vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk |
Reimplemented from SingleSpeciesTP.
Definition at line 338 of file WaterSSTP.cpp.
References WaterPropsIAPWS::cp(), WaterPropsIAPWS::density(), Phase::density(), Cantera::GasConstant, WaterSSTP::m_sub, Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().
|
virtual |
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
units = m^3 / kmol
vol | Output vector containing the standard state volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 358 of file WaterSSTP.cpp.
References WaterPropsIAPWS::density(), Phase::density(), WaterSSTP::m_sub, Phase::meanMolecularWeight(), Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), and Phase::temperature().
|
virtual |
critical temperature
Reimplemented from ThermoPhase.
Definition at line 425 of file WaterSSTP.cpp.
References WaterSSTP::m_sub, and WaterPropsIAPWS::Tcrit().
|
virtual |
critical pressure
Reimplemented from ThermoPhase.
Definition at line 430 of file WaterSSTP.cpp.
References WaterSSTP::m_sub, and WaterPropsIAPWS::Pcrit().
|
virtual |
critical density
Reimplemented from ThermoPhase.
Definition at line 435 of file WaterSSTP.cpp.
References WaterSSTP::m_sub, and WaterPropsIAPWS::Rhocrit().
|
virtual |
saturation pressure
t | Temperature (kelvin) |
Reimplemented from SingleSpeciesTP.
Definition at line 454 of file WaterSSTP.cpp.
References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::psat(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().
|
virtual |
Return the fraction of vapor at the current conditions.
Below Tcrit, this routine will always return 0, by definition of the functionality of the routine. Above Tcrit, we query the density to toggle between 0 and 1.
Reimplemented from SingleSpeciesTP.
Definition at line 462 of file WaterSSTP.cpp.
References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::Tcrit(), and Phase::temperature().
|
virtual |
Set the temperature of the phase.
The density and composition of the phase is constant during this operator.
temp | Temperature (Kelvin) |
Reimplemented from Phase.
Definition at line 440 of file WaterSSTP.cpp.
References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::setState_TR(), and Phase::setTemperature().
Referenced by WaterSSTP::initThermoXML().
|
virtual |
Set the density of the phase.
The temperature and composition of the phase is constant during this operator.
dens | value of the density in kg m-3 |
Reimplemented from Phase.
Definition at line 447 of file WaterSSTP.cpp.
References WaterSSTP::m_sub, Phase::setDensity(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().
Referenced by WaterSSTP::initThermoXML(), and WaterSSTP::setPressure().
|
virtual |
Import and initialize a ThermoPhase object using an XML tree.
Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.
The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented from ThermoPhase.
Definition at line 117 of file WaterSSTP.cpp.
References Phase::atomicWeight(), WaterPropsIAPWS::density(), Phase::elementIndex(), SingleSpeciesTP::enthalpy_mole(), SingleSpeciesTP::entropy_mole(), WaterSSTP::EW_Offset, Cantera::GasConstant, WaterSSTP::initThermo(), WaterSSTP::m_mw, WaterSSTP::m_ready, ThermoPhase::m_spthermo, WaterSSTP::m_sub, WaterSSTP::m_waterProps, Cantera::npos, Cantera::OneAtm, WaterSSTP::setDensity(), Phase::setDensity(), Phase::setMolecularWeight(), Phase::setMoleFractions(), WaterSSTP::setTemperature(), Phase::setTemperature(), and WaterSSTP::SW_Offset.
|
virtual |
Initialize the ThermoPhase object after all species have been set up.
Initialize.
This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called from ThermoPhase::initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().
Reimplemented from SingleSpeciesTP.
Definition at line 111 of file WaterSSTP.cpp.
References SingleSpeciesTP::initThermo().
Referenced by WaterSSTP::initThermoXML().
|
virtual |
Set equation of state parameter values from XML entries.
This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.
eosdata | An XML_Node object corresponding to the "thermo" entry for this phase in the input file. |
Reimplemented from SingleSpeciesTP.
Definition at line 211 of file WaterSSTP.cpp.
References XML_Node::_require().
|
inline |
Get a pointer to a changeable WaterPropsIAPWS object.
Definition at line 440 of file WaterSSTP.h.
References WaterSSTP::m_sub.
Referenced by WaterTransport::initTP().
|
inline |
Get a pointer to a changeable WaterPropsIAPWS object.
Definition at line 445 of file WaterSSTP.h.
References WaterSSTP::m_waterProps.
Referenced by WaterTransport::initTP().
|
protected |
This internal routine must be overwritten because it is not applicable.
|
mutableprivate |
Pointer to the WaterPropsIAPWS that calculates the real properties of water.
Definition at line 460 of file WaterSSTP.h.
Referenced by WaterSSTP::critDensity(), WaterSSTP::critPressure(), WaterSSTP::critTemperature(), WaterSSTP::cv_mole(), WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), WaterSSTP::getIntEnergy_RT(), WaterSSTP::getStandardChemPotentials(), WaterSSTP::getStandardVolumes_ref(), WaterSSTP::getWater(), WaterSSTP::initThermoXML(), WaterSSTP::isothermalCompressibility(), WaterSSTP::operator=(), WaterSSTP::pressure(), WaterSSTP::satPressure(), WaterSSTP::setDensity(), WaterSSTP::setPressure(), WaterSSTP::setTemperature(), WaterSSTP::thermalExpansionCoeff(), WaterSSTP::vaporFraction(), WaterSSTP::WaterSSTP(), and WaterSSTP::~WaterSSTP().
|
private |
Pointer to the WaterProps object.
This class is used to house several approximation routines for properties of water.
This object owns m_waterProps, and the WaterPropsIAPWS object used by WaterProps is m_sub, which is defined above.
Definition at line 470 of file WaterSSTP.h.
Referenced by WaterSSTP::getWaterProps(), WaterSSTP::initThermoXML(), WaterSSTP::operator=(), WaterSSTP::WaterSSTP(), and WaterSSTP::~WaterSSTP().
|
private |
Molecular weight of Water -> Cantera assumption.
Definition at line 473 of file WaterSSTP.h.
Referenced by WaterSSTP::initThermoXML(), and WaterSSTP::operator=().
|
private |
Offset constants used to obtain consistency with the NIST database.
This is added to all internal energy and enthalpy results. units = J kmol-1.
Definition at line 480 of file WaterSSTP.h.
Referenced by WaterSSTP::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), WaterSSTP::getIntEnergy_RT(), WaterSSTP::getStandardChemPotentials(), and WaterSSTP::initThermoXML().
|
private |
Offset constant used to obtain consistency with NIST convention.
This is added to all internal entropy results. units = J kmol-1 K-1.
Definition at line 487 of file WaterSSTP.h.
Referenced by WaterSSTP::getEntropy_R(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), WaterSSTP::getStandardChemPotentials(), and WaterSSTP::initThermoXML().
|
private |
Boolean is true if object has been properly initialized for calculation.
Definition at line 490 of file WaterSSTP.h.
Referenced by WaterSSTP::getGibbs_RT(), WaterSSTP::getStandardChemPotentials(), WaterSSTP::initThermoXML(), and WaterSSTP::operator=().
|
private |
Since this phase represents a liquid phase, it's an error to return a gas-phase answer.
However, if the below is true, then a gas-phase answer is allowed. This is used to check the thermodynamic consistency with ideal-gas thermo functions for example.
Definition at line 498 of file WaterSSTP.h.
Referenced by WaterSSTP::operator=().