Cantera  2.1.2
Public Member Functions | Protected Member Functions | Private Attributes | List of all members
WaterSSTP Class Reference

Class for single-component water. More...

#include <WaterSSTP.h>

Inheritance diagram for WaterSSTP:
[legend]
Collaboration diagram for WaterSSTP:
[legend]

Public Member Functions

 WaterSSTP ()
 Base constructor. More...
 
 WaterSSTP (const WaterSSTP &)
 Copy constructor. More...
 
WaterSSTPoperator= (const WaterSSTP &)
 Assignment operator. More...
 
 WaterSSTP (const std::string &inputFile, const std::string &id="")
 Full constructor for a water phase. More...
 
 WaterSSTP (XML_Node &phaseRef, const std::string &id="")
 Full constructor for a water phase. More...
 
virtual ~WaterSSTP ()
 Destructor. More...
 
ThermoPhaseduplMyselfAsThermoPhase () const
 Duplicator from a ThermoPhase object. More...
 
virtual int eosType () const
 Returns the equation of state type flag. More...
 
virtual doublereal critTemperature () const
 critical temperature More...
 
virtual doublereal critPressure () const
 critical pressure More...
 
virtual doublereal critDensity () const
 critical density More...
 
virtual doublereal satPressure (doublereal t)
 saturation pressure More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setTemperature (const doublereal temp)
 Set the temperature of the phase. More...
 
virtual void setDensity (const doublereal dens)
 Set the density of the phase. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
WaterPropsIAPWSgetWater ()
 Get a pointer to a changeable WaterPropsIAPWS object. More...
 
WaterPropsgetWaterProps ()
 Get a pointer to a changeable WaterPropsIAPWS object. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
Mechanical Equation of State Properties
virtual doublereal pressure () const
 Return the thermodynamic pressure (Pa). More...
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
virtual doublereal dthermalExpansionCoeffdT () const
 Return the derivative of the volumetric thermal expansion coefficient. Units: 1/K2. More...
 
Properties of the Standard State of the Species in the Solution
virtual void getStandardChemPotentials (doublereal *gss) const
 Get the gibbs function for the species standard states at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional gibbs function for the species standard states at the current T and P of the solution. More...
 
void getEnthalpy_RT (doublereal *hrt) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More...
 
void getEntropy_R (doublereal *sr) const
 Get the nondimensional Entropies for the species standard states at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More...
 
Thermodynamic Values for the Species Reference State
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 
virtual void getGibbs_ref (doublereal *g) const
 
virtual void getEntropy_R_ref (doublereal *er) const
 
virtual void getCp_R_ref (doublereal *cprt) const
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
- Public Member Functions inherited from SingleSpeciesTP
 SingleSpeciesTP ()
 Base empty constructor. More...
 
 SingleSpeciesTP (const SingleSpeciesTP &right)
 Copy constructor. More...
 
SingleSpeciesTPoperator= (const SingleSpeciesTP &right)
 Assignment operator. More...
 
doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getChemPotentials_RT (doublereal *murt) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More...
 
void getChemPotentials (doublereal *mu) const
 Get the array of chemical potentials. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. Units: J/kmol. More...
 
void getPartialMolarEnthalpies (doublereal *hbar) const
 Get the species partial molar enthalpies. Units: J/kmol. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Get the species partial molar internal energies. Units: J/kmol. More...
 
void getPartialMolarEntropies (doublereal *sbar) const
 Get the species partial molar entropy. Units: J/kmol K. More...
 
void getPartialMolarCp (doublereal *cpbar) const
 Get the species partial molar Heat Capacities. Units: J/ kmol /K. More...
 
void getPartialMolarVolumes (doublereal *vbar) const
 Get the species partial molar volumes. Units: m^3/kmol. More...
 
void getPureGibbs (doublereal *gpure) const
 Get the dimensional Gibbs functions for the standard state of the species at the current T and P. More...
 
void getStandardVolumes (doublereal *vbar) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-8)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-8)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-8)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-8)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setParameters (int n, doublereal *const c)
 
virtual void getParameters (int &n, doublereal *const c) const
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual ~ThermoPhase ()
 Destructor. Deletes the species thermo manager. More...
 
 ThermoPhase (const ThermoPhase &right)
 Copy Constructor for the ThermoPhase object. More...
 
ThermoPhaseoperator= (const ThermoPhase &right)
 Assignment operator. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal cv_vib (int, double) const
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More...
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. More...
 
doublereal entropy_mass () const
 Specific entropy. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. More...
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
virtual ~Phase ()
 Destructor. More...
 
 Phase (const Phase &right)
 Copy Constructor. More...
 
Phaseoperator= (const Phase &right)
 Assignment operator. More...
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual void freezeSpecies ()
 Call when finished adding species. More...
 
bool speciesFrozen ()
 True if freezeSpecies has been called. More...
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More...
 
void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \). More...
 
void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element. More...
 
void addElement (const XML_Node &e)
 Add an element from an XML specification. More...
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree. More...
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species. More...
 
bool elementsFrozen ()
 True if freezeElements has been called. More...
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More...
 

Protected Member Functions

void _updateThermo () const
 
- Protected Member Functions inherited from SingleSpeciesTP
void _updateThermo () const
 
- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Private Attributes

WaterPropsIAPWSm_sub
 Pointer to the WaterPropsIAPWS that calculates the real properties of water. More...
 
WaterPropsm_waterProps
 Pointer to the WaterProps object. More...
 
doublereal m_mw
 Molecular weight of Water -> Cantera assumption. More...
 
doublereal EW_Offset
 Offset constants used to obtain consistency with the NIST database. More...
 
doublereal SW_Offset
 Offset constant used to obtain consistency with NIST convention. More...
 
bool m_ready
 Boolean is true if object has been properly initialized for calculation. More...
 
bool m_allowGasPhase
 Since this phase represents a liquid phase, it's an error to return a gas-phase answer. More...
 

Additional Inherited Members

- Protected Attributes inherited from SingleSpeciesTP
doublereal m_press
 The current pressure of the solution (Pa) More...
 
doublereal m_p0
 
doublereal m_tlast
 Last temperature used to evaluate the thermodynamic polynomial. More...
 
vector_fp m_h0_RT
 Dimensionless enthalpy at the (mtlast, m_p0) More...
 
vector_fp m_cp0_R
 Dimensionless heat capacity at the (mtlast, m_p0) More...
 
vector_fp m_s0_R
 Dimensionless entropy at the (mtlast, m_p0) More...
 
- Protected Attributes inherited from ThermoPhase
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition. More...
 
- Protected Attributes inherited from Phase
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 

Detailed Description

Class for single-component water.

This is designed to cover just the liquid part of water.

The reference is W. Wagner, A. Prub, "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use," J. Phys. Chem. Ref. Dat, 31, 387, 2002.


Specification of Species Standard State Properties


The offsets used in the steam tables are different than NIST's. They assume u_liq(TP) = 0.0, s_liq(TP) = 0.0, where TP is the triple point conditions:

These "steam table" assumptions are used by the WaterPropsIAPWS class. Therefore, offsets must be calculated to make the thermodynamic properties calculated within this class to be consistent with thermo properties within Cantera.

The thermodynamic base state for water is set to the NIST basis here by specifying constants, EW_Offset and SW_Offset, one for energy quantities and one for entropy quantities. The offsets are specified so that the following properties hold:

(From http://webbook.nist.gov)

The "o" here refers to a hypothetical ideal gas state. The way we achieve this in practice is to evaluate at a very low pressure and then use the theoretical ideal gas results to scale up to higher pressures:

Ho(1bar) = H(P0)

So(1bar) = S(P0) + RT ln(1bar/P0)


Application within Kinetics Managers


This is unimplemented.


Instantiation of the Class


The constructor for this phase is NOT located in the default ThermoFactory for Cantera. However, a new WaterSSTP object may be created by the following code snippets, combined with an XML file given in the XML example section.

WaterSSTP *w = new WaterSSTP("waterSSTPphase.xml","");

or

XML_Node *xm = get_XML_NameID("phase", "waterSSTPphase.xml#water", 0);
WaterSSTP *w = new WaterSSTP(*xm);

or by the following call to importPhase():

XML_Node *xm = get_XML_NameID("phase", "waterSSTPphase.xml#water", 0);
WaterSSTP water;
importPhase(*xm, &water);

XML Example


An example of an XML Element named phase setting up a WaterSSTP object with id "water" is given below.

<!-- phase water -->
<phase dim="3" id="water">
<elementArray datasrc="elements.xml">O H </elementArray>
<speciesArray datasrc="#species_data">H2O</speciesArray>
<state>
<temperature units="K">300.0</temperature>
<pressure units="Pa">101325.0</pressure>
</state>
<thermo model="PureLiquidWater"/>
<kinetics model="none"/>
</phase>

Note the model "PureLiquidWater" indicates the usage of the WaterSSTP object.

Definition at line 125 of file WaterSSTP.h.

Constructor & Destructor Documentation

WaterSSTP ( )

Base constructor.

Definition at line 23 of file WaterSSTP.cpp.

Referenced by WaterSSTP::duplMyselfAsThermoPhase().

WaterSSTP ( const WaterSSTP b)

Copy constructor.

Definition at line 61 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterSSTP::m_waterProps.

WaterSSTP ( const std::string &  inputFile,
const std::string &  id = "" 
)
explicit

Full constructor for a water phase.

Parameters
inputFileString name of the input file
idstring id of the phase name

Definition at line 35 of file WaterSSTP.cpp.

References ThermoPhase::initThermoFile().

WaterSSTP ( XML_Node phaseRef,
const std::string &  id = "" 
)
explicit

Full constructor for a water phase.

Parameters
phaseRefXML node referencing the water phase.
idstring id of the phase name

Definition at line 48 of file WaterSSTP.cpp.

References Cantera::findXMLPhase(), and Cantera::importPhase().

~WaterSSTP ( )
virtual

Destructor.

Definition at line 105 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterSSTP::m_waterProps.

Member Function Documentation

WaterSSTP & operator= ( const WaterSSTP b)

Assignment operator.

Definition at line 81 of file WaterSSTP.cpp.

References WaterSSTP::m_allowGasPhase, WaterSSTP::m_mw, WaterSSTP::m_ready, WaterSSTP::m_sub, and WaterSSTP::m_waterProps.

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplicator from a ThermoPhase object.

Reimplemented from SingleSpeciesTP.

Definition at line 100 of file WaterSSTP.cpp.

References WaterSSTP::WaterSSTP().

virtual int eosType ( ) const
inlinevirtual

Returns the equation of state type flag.

This is a modified base class. Therefore, if not overridden in derivied classes, this call will throw an exception.

Reimplemented from SingleSpeciesTP.

Definition at line 157 of file WaterSSTP.h.

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

This function is resolved here by calling the standard state thermo function.

Reimplemented from SingleSpeciesTP.

Definition at line 261 of file WaterSSTP.cpp.

References WaterPropsIAPWS::cv(), and WaterSSTP::m_sub.

doublereal pressure ( ) const
virtual

Return the thermodynamic pressure (Pa).

This method must be overloaded in derived classes. Since the mass density, temperature, and mass fractions are stored, this method should use these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \).

Reimplemented from ThermoPhase.

Definition at line 376 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::pressure().

Referenced by WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT_ref(), and WaterSSTP::getStandardVolumes_ref().

void setPressure ( doublereal  p)
virtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method must be reimplemented in derived classes, where it may involve the solution of a nonlinear equation. Within Cantera, the independent variable is the density. Therefore, this function solves for the density that will yield the desired input pressure. The temperature and composition iare held constant during this process.

This base class function will print an error, if not overwritten.

Parameters
pinput Pressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 382 of file WaterSSTP.cpp.

References WaterPropsIAPWS::density(), Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::Rhocrit(), WaterSSTP::setDensity(), and Phase::temperature().

doublereal isothermalCompressibility ( ) const
virtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

or

\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 398 of file WaterSSTP.cpp.

References WaterPropsIAPWS::isothermalCompressibility(), and WaterSSTP::m_sub.

doublereal thermalExpansionCoeff ( ) const
virtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented from ThermoPhase.

Definition at line 403 of file WaterSSTP.cpp.

References WaterPropsIAPWS::coeffThermExp(), and WaterSSTP::m_sub.

doublereal dthermalExpansionCoeffdT ( ) const
virtual

Return the derivative of the volumetric thermal expansion coefficient. Units: 1/K2.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Definition at line 408 of file WaterSSTP.cpp.

References WaterPropsIAPWS::coeffThermExp(), WaterPropsIAPWS::density(), Phase::density(), Cantera::fp2str(), WaterSSTP::m_sub, WaterSSTP::pressure(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().

void getStandardChemPotentials ( doublereal *  gss) const
virtual

Get the gibbs function for the species standard states at the current T and P of the solution.

Parameters
gssVector of length m_kk, which on return will contain the standard state gibbs function for species k.

Reimplemented from ThermoPhase.

Definition at line 245 of file WaterSSTP.cpp.

References WaterSSTP::EW_Offset, WaterPropsIAPWS::Gibbs(), WaterSSTP::m_ready, WaterSSTP::m_sub, WaterSSTP::SW_Offset, and Phase::temperature().

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional gibbs function for the species standard states at the current T and P of the solution.

Parameters
grtVector of length m_kk, which on return will contain the nondimensional standard state gibbs function for species k

Reimplemented from ThermoPhase.

Definition at line 235 of file WaterSSTP.cpp.

References WaterSSTP::EW_Offset, Cantera::GasConstant, WaterPropsIAPWS::Gibbs(), WaterSSTP::m_ready, WaterSSTP::m_sub, WaterSSTP::SW_Offset, and Phase::temperature().

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.

Parameters
hrtVector of length m_kk, which on return will contain the nondimensional standard state enthalpy of species k

Reimplemented from ThermoPhase.

Definition at line 216 of file WaterSSTP.cpp.

References WaterPropsIAPWS::enthalpy(), WaterSSTP::EW_Offset, Cantera::GasConstant, WaterSSTP::m_sub, and Phase::temperature().

void getEntropy_R ( doublereal *  sr) const
virtual

Get the nondimensional Entropies for the species standard states at the current T and P of the solution.

Parameters
srVector of length m_kk, which on return will contain the nondimensional standard state entropy for speciesk

Reimplemented from ThermoPhase.

Definition at line 229 of file WaterSSTP.cpp.

References WaterPropsIAPWS::entropy(), Cantera::GasConstant, WaterSSTP::m_sub, and WaterSSTP::SW_Offset.

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.

Parameters
cprVector of length m_kk, which on return will contain the nondimensional constant pressure heat capacity for species k

Reimplemented from ThermoPhase.

Definition at line 255 of file WaterSSTP.cpp.

References WaterPropsIAPWS::cp(), Cantera::GasConstant, and WaterSSTP::m_sub.

void getIntEnergy_RT ( doublereal *  urt) const
virtual

Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.

Parameters
urtOutput vector of standard state nondimensional internal energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 223 of file WaterSSTP.cpp.

References WaterSSTP::EW_Offset, Cantera::GasConstant, WaterPropsIAPWS::intEnergy(), and WaterSSTP::m_sub.

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

All functions in this group need to be overrided, because the m_spthermo SpeciesThermo function is not adequate for the real equation of state.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies Length: m_kk.

Reimplemented from SingleSpeciesTP.

Definition at line 266 of file WaterSSTP.cpp.

References WaterPropsIAPWS::density(), Phase::density(), WaterPropsIAPWS::enthalpy(), WaterSSTP::EW_Offset, Cantera::GasConstant, WaterSSTP::m_sub, Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), and Phase::temperature().

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from SingleSpeciesTP.

Definition at line 285 of file WaterSSTP.cpp.

References WaterPropsIAPWS::density(), Phase::density(), WaterSSTP::EW_Offset, Cantera::GasConstant, WaterPropsIAPWS::Gibbs(), WaterSSTP::m_sub, Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::setState_TR(), WaterSSTP::SW_Offset, and Phase::temperature().

Referenced by WaterSSTP::getGibbs_ref().

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. units = J/kmol

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from SingleSpeciesTP.

Definition at line 306 of file WaterSSTP.cpp.

References ThermoPhase::_RT(), WaterSSTP::getGibbs_RT_ref(), and Phase::m_kk.

void getEntropy_R_ref ( doublereal *  er) const
virtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from SingleSpeciesTP.

Definition at line 315 of file WaterSSTP.cpp.

References WaterPropsIAPWS::density(), Phase::density(), WaterPropsIAPWS::entropy(), Cantera::GasConstant, WaterSSTP::m_sub, Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::setState_TR(), WaterSSTP::SW_Offset, and Phase::temperature().

void getCp_R_ref ( doublereal *  cprt) const
virtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from SingleSpeciesTP.

Definition at line 338 of file WaterSSTP.cpp.

References WaterPropsIAPWS::cp(), WaterPropsIAPWS::density(), Phase::density(), Cantera::GasConstant, WaterSSTP::m_sub, Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().

void getStandardVolumes_ref ( doublereal *  vol) const
virtual

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 358 of file WaterSSTP.cpp.

References WaterPropsIAPWS::density(), Phase::density(), WaterSSTP::m_sub, Phase::meanMolecularWeight(), Cantera::OneAtm, WaterSSTP::pressure(), WaterPropsIAPWS::Rhocrit(), and Phase::temperature().

doublereal critTemperature ( ) const
virtual

critical temperature

Reimplemented from ThermoPhase.

Definition at line 425 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::Tcrit().

doublereal critPressure ( ) const
virtual

critical pressure

Reimplemented from ThermoPhase.

Definition at line 430 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::Pcrit().

doublereal critDensity ( ) const
virtual

critical density

Reimplemented from ThermoPhase.

Definition at line 435 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::Rhocrit().

doublereal satPressure ( doublereal  t)
virtual

saturation pressure

Parameters
tTemperature (kelvin)

Reimplemented from SingleSpeciesTP.

Definition at line 454 of file WaterSSTP.cpp.

References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::psat(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().

doublereal vaporFraction ( ) const
virtual

Return the fraction of vapor at the current conditions.

Below Tcrit, this routine will always return 0, by definition of the functionality of the routine. Above Tcrit, we query the density to toggle between 0 and 1.

Reimplemented from SingleSpeciesTP.

Definition at line 462 of file WaterSSTP.cpp.

References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::Tcrit(), and Phase::temperature().

void setTemperature ( const doublereal  temp)
virtual

Set the temperature of the phase.

The density and composition of the phase is constant during this operator.

Parameters
tempTemperature (Kelvin)

Reimplemented from Phase.

Definition at line 440 of file WaterSSTP.cpp.

References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::setState_TR(), and Phase::setTemperature().

Referenced by WaterSSTP::initThermoXML().

void setDensity ( const doublereal  dens)
virtual

Set the density of the phase.

The temperature and composition of the phase is constant during this operator.

Parameters
densvalue of the density in kg m-3

Reimplemented from Phase.

Definition at line 447 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, Phase::setDensity(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().

Referenced by WaterSSTP::initThermoXML(), and WaterSSTP::setPressure().

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from ThermoPhase.

Definition at line 117 of file WaterSSTP.cpp.

References Phase::atomicWeight(), WaterPropsIAPWS::density(), Phase::elementIndex(), SingleSpeciesTP::enthalpy_mole(), SingleSpeciesTP::entropy_mole(), WaterSSTP::EW_Offset, Cantera::GasConstant, WaterSSTP::initThermo(), WaterSSTP::m_mw, WaterSSTP::m_ready, ThermoPhase::m_spthermo, WaterSSTP::m_sub, WaterSSTP::m_waterProps, Cantera::npos, Cantera::OneAtm, WaterSSTP::setDensity(), Phase::setDensity(), Phase::setMolecularWeight(), Phase::setMoleFractions(), WaterSSTP::setTemperature(), Phase::setTemperature(), and WaterSSTP::SW_Offset.

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called from ThermoPhase::initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().

See Also
importCTML.cpp

Reimplemented from SingleSpeciesTP.

Definition at line 111 of file WaterSSTP.cpp.

References SingleSpeciesTP::initThermo().

Referenced by WaterSSTP::initThermoXML().

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented from SingleSpeciesTP.

Definition at line 211 of file WaterSSTP.cpp.

References XML_Node::_require().

WaterPropsIAPWS* getWater ( )
inline

Get a pointer to a changeable WaterPropsIAPWS object.

Definition at line 440 of file WaterSSTP.h.

References WaterSSTP::m_sub.

Referenced by WaterTransport::initTP().

WaterProps* getWaterProps ( )
inline

Get a pointer to a changeable WaterPropsIAPWS object.

Definition at line 445 of file WaterSSTP.h.

References WaterSSTP::m_waterProps.

Referenced by WaterTransport::initTP().

void _updateThermo ( ) const
protected

This internal routine must be overwritten because it is not applicable.

Member Data Documentation

WaterPropsIAPWS* m_sub
mutableprivate
WaterProps* m_waterProps
private

Pointer to the WaterProps object.

This class is used to house several approximation routines for properties of water.

This object owns m_waterProps, and the WaterPropsIAPWS object used by WaterProps is m_sub, which is defined above.

Definition at line 470 of file WaterSSTP.h.

Referenced by WaterSSTP::getWaterProps(), WaterSSTP::initThermoXML(), WaterSSTP::operator=(), WaterSSTP::WaterSSTP(), and WaterSSTP::~WaterSSTP().

doublereal m_mw
private

Molecular weight of Water -> Cantera assumption.

Definition at line 473 of file WaterSSTP.h.

Referenced by WaterSSTP::initThermoXML(), and WaterSSTP::operator=().

doublereal EW_Offset
private

Offset constants used to obtain consistency with the NIST database.

This is added to all internal energy and enthalpy results. units = J kmol-1.

Definition at line 480 of file WaterSSTP.h.

Referenced by WaterSSTP::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), WaterSSTP::getIntEnergy_RT(), WaterSSTP::getStandardChemPotentials(), and WaterSSTP::initThermoXML().

doublereal SW_Offset
private

Offset constant used to obtain consistency with NIST convention.

This is added to all internal entropy results. units = J kmol-1 K-1.

Definition at line 487 of file WaterSSTP.h.

Referenced by WaterSSTP::getEntropy_R(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), WaterSSTP::getStandardChemPotentials(), and WaterSSTP::initThermoXML().

bool m_ready
private

Boolean is true if object has been properly initialized for calculation.

Definition at line 490 of file WaterSSTP.h.

Referenced by WaterSSTP::getGibbs_RT(), WaterSSTP::getStandardChemPotentials(), WaterSSTP::initThermoXML(), and WaterSSTP::operator=().

bool m_allowGasPhase
private

Since this phase represents a liquid phase, it's an error to return a gas-phase answer.

However, if the below is true, then a gas-phase answer is allowed. This is used to check the thermodynamic consistency with ideal-gas thermo functions for example.

Definition at line 498 of file WaterSSTP.h.

Referenced by WaterSSTP::operator=().


The documentation for this class was generated from the following files: