Cantera  2.1.2
Public Member Functions | Protected Attributes | List of all members
TortuosityMaxwell Class Reference

Maxwell model for tortuosity. More...

#include <TortuosityMaxwell.h>

Inheritance diagram for TortuosityMaxwell:
[legend]
Collaboration diagram for TortuosityMaxwell:
[legend]

Public Member Functions

 TortuosityMaxwell (double relativeConductivites=0.0)
 Default constructor uses Maxwelln exponent of 1.5. More...
 
 TortuosityMaxwell (const TortuosityMaxwell &right)
 Copy Constructor. More...
 
TortuosityMaxwelloperator= (const TortuosityMaxwell &right)
 Assignment operator. More...
 
virtual TortuosityBaseduplMyselfAsTortuosityBase () const
 Duplication operator. More...
 
virtual doublereal tortuosityFactor (doublereal porosity)
 The tortuosity factor models the effective increase in the diffusive transport length. More...
 
virtual doublereal McMillanFactor (doublereal porosity)
 The McMillan number is the ratio of the flux-like variable to the value it would have without porous flow. More...
 
- Public Member Functions inherited from TortuosityBase
 TortuosityBase ()
 Default constructor uses Bruggeman exponent of 1.5. More...
 
 TortuosityBase (const TortuosityBase &right)
 Copy Constructor. More...
 
virtual ~TortuosityBase ()
 Default destructor for TortuosityBase. More...
 
TortuosityBaseoperator= (const TortuosityBase &right)
 Assignment operator. More...
 

Protected Attributes

doublereal relativeConductivities_
 Relative conductivities of the dispersed and continuous phases,. More...
 

Detailed Description

Maxwell model for tortuosity.

This class implements transport coefficient corrections appropriate for porous media with a dispersed phase. This model goes back to Maxwell. The formula for the conductivity is expressed in terms of the volume fraction of the continuous phase, \( \phi \), and the relative conductivities of the dispersed and continuous phases, \( r = \kappa_d / \kappa_0 \). For dilute particle suspensions the effective conductivity is

\[ \kappa / \kappa_0 = 1 + 3 ( 1 - \phi ) ( r - 1 ) / ( r + 2 ) + O(\phi^2) \]

The class is derived from the TortuosityBase class.

Definition at line 41 of file TortuosityMaxwell.h.

Constructor & Destructor Documentation

TortuosityMaxwell ( double  relativeConductivites = 0.0)

Default constructor uses Maxwelln exponent of 1.5.

Parameters
setPowerExponent in the Maxwell factor. The default is 1.5

Definition at line 21 of file TortuosityMaxwell.cpp.

Referenced by TortuosityMaxwell::duplMyselfAsTortuosityBase().

Copy Constructor.

Parameters
rightObject to be copied

Definition at line 31 of file TortuosityMaxwell.cpp.

Member Function Documentation

TortuosityMaxwell & operator= ( const TortuosityMaxwell right)

Assignment operator.

Parameters
rightObject to be copied

Definition at line 42 of file TortuosityMaxwell.cpp.

References TortuosityBase::operator=(), and TortuosityMaxwell::relativeConductivities_.

TortuosityBase * duplMyselfAsTortuosityBase ( ) const
virtual

Duplication operator.

Returns
Returns a pointer to a duplicate of the current object given a base class pointer

Reimplemented from TortuosityBase.

Definition at line 59 of file TortuosityMaxwell.cpp.

References TortuosityMaxwell::TortuosityMaxwell().

doublereal tortuosityFactor ( doublereal  porosity)
virtual

The tortuosity factor models the effective increase in the diffusive transport length.

This method returns \( 1/\tau^2 \) in the description of the flux

\( C_T D_i \nabla X_i / \tau^2 \).

Reimplemented from TortuosityBase.

Definition at line 71 of file TortuosityMaxwell.cpp.

References TortuosityMaxwell::McMillanFactor().

doublereal McMillanFactor ( doublereal  porosity)
virtual

The McMillan number is the ratio of the flux-like variable to the value it would have without porous flow.

The McMillan number combines the effect of tortuosity and volume fraction of the transported phase. The net flux observed is then the product of the McMillan number and the non-porous transport rate. For a conductivity in a non-porous media, \( \kappa_0 \), the conductivity in the porous media would be \( \kappa = (\rm McMillan) \kappa_0 \).

Reimplemented from TortuosityBase.

Definition at line 85 of file TortuosityMaxwell.cpp.

References TortuosityMaxwell::relativeConductivities_.

Referenced by TortuosityMaxwell::tortuosityFactor().

Member Data Documentation

doublereal relativeConductivities_
protected

Relative conductivities of the dispersed and continuous phases,.

\[ \code{relativeConductivites_} = \kappa_d / \kappa_0 \]

Definition at line 103 of file TortuosityMaxwell.h.

Referenced by TortuosityMaxwell::McMillanFactor(), and TortuosityMaxwell::operator=().


The documentation for this class was generated from the following files: