Cantera  2.1.2
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
RedlichKwongMFTP Class Reference

This class can handle either an ideal solution or an ideal gas approximation of a phase. More...

#include <RedlichKwongMFTP.h>

Inheritance diagram for RedlichKwongMFTP:
[legend]
Collaboration diagram for RedlichKwongMFTP:
[legend]

Public Member Functions

virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Returns the natural logarithm of the standard concentration of the kth species. More...
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual doublereal liquidVolEst (doublereal TKelvin, doublereal &pres) const
 Estimate for the molar volume of the liquid. More...
 
virtual doublereal densityCalc (doublereal TKelvin, doublereal pressure, int phase, doublereal rhoguess)
 Calculates the density given the temperature and the pressure and a guess at the density. More...
 
virtual doublereal densSpinodalLiquid () const
 Return the value of the density at the liquid spinodal point (on the liquid side) for the current temperature. More...
 
virtual doublereal densSpinodalGas () const
 Return the value of the density at the gas spinodal point (on the gas side) for the current temperature. More...
 
virtual doublereal pressureCalc (doublereal TKelvin, doublereal molarVol) const
 Calculate the pressure given the temperature and the molar volume. More...
 
virtual doublereal dpdVCalc (doublereal TKelvin, doublereal molarVol, doublereal &presCalc) const
 Calculate the pressure and the pressure derivative given the temperature and the molar volume. More...
 
void pressureDerivatives () const
 Calculate dpdV and dpdT at the current conditions. More...
 
virtual void updateMixingExpressions ()
 
void updateAB ()
 Update the a and b parameters. More...
 
void calculateAB (doublereal temp, doublereal &aCalc, doublereal &bCalc) const
 Calculate the a and the b parameters given the temperature. More...
 
doublereal da_dt () const
 
void calcCriticalConditions (doublereal a, doublereal b, doublereal a0_coeff, doublereal aT_coeff, doublereal &pc, doublereal &tc, doublereal &vc) const
 
int NicholsSolve (double TKelvin, double pres, doublereal a, doublereal b, doublereal Vroot[3]) const
 Solve the cubic equation of state. More...
 
- Public Member Functions inherited from MixtureFugacityTP
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual void setState_TP (doublereal T, doublereal pres)
 Set the temperature and pressure at the same time. More...
 
virtual void setState_TR (doublereal T, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
 MixtureFugacityTP ()
 Constructor. More...
 
 MixtureFugacityTP (const MixtureFugacityTP &b)
 Copy Constructor. More...
 
MixtureFugacityTPoperator= (const MixtureFugacityTP &b)
 Assignment operator. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void setForcedSolutionBranch (int solnBranch)
 Set the solution branch to force the ThermoPhase to exist on one branch or another. More...
 
virtual int forcedSolutionBranch () const
 Report the solution branch which the solution is restricted to. More...
 
virtual int reportSolnBranchActual () const
 Report the solution branch which the solution is actually on. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log concentration-like derivatives of the log activity coefficients. More...
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Enthalpy functions for the standard state species. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution. More...
 
void getPureGibbs (doublereal *gpure) const
 Get the pure Gibbs free energies of each species. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 
virtual void getEntropy_R_ref (doublereal *er) const
 
virtual void getCp_R_ref (doublereal *cprt) const
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and reference pressure of the solution. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
int phaseState (bool checkState=false) const
 Returns the Phase State flag for the current state of the object. More...
 
doublereal calculatePsat (doublereal TKelvin, doublereal &molarVolGas, doublereal &molarVolLiquid)
 Calculate the saturation pressure at the current mixture content for the given temperature. More...
 
virtual doublereal satPressure (doublereal TKelvin)
 Calculate the saturation pressure at the current mixture content for the given temperature. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual ~ThermoPhase ()
 Destructor. Deletes the species thermo manager. More...
 
 ThermoPhase (const ThermoPhase &right)
 Copy Constructor for the ThermoPhase object. More...
 
ThermoPhaseoperator= (const ThermoPhase &right)
 Assignment operator. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal cv_vib (int, double) const
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More...
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. More...
 
doublereal entropy_mass () const
 Specific entropy. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
virtual void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
virtual ~Phase ()
 Destructor. More...
 
 Phase (const Phase &right)
 Copy Constructor. More...
 
Phaseoperator= (const Phase &right)
 Assignment operator. More...
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual void freezeSpecies ()
 Call when finished adding species. More...
 
bool speciesFrozen ()
 True if freezeSpecies has been called. More...
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More...
 
void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \). More...
 
void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element. More...
 
void addElement (const XML_Node &e)
 Add an element from an XML specification. More...
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree. More...
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species. More...
 
bool elementsFrozen ()
 True if freezeElements has been called. More...
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More...
 

Static Public Attributes

static const doublereal omega_a = 4.27480233540E-01
 Omega constant for a -> value of a in terms of critical properties. More...
 
static const doublereal omega_b = 8.66403499650E-02
 Omega constant for b. More...
 
static const doublereal omega_vc = 3.33333333333333E-01
 Omega constant for the critical molar volume. More...
 

Protected Member Functions

virtual void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 
virtual void setTemperature (const doublereal temp)
 Set the temperature (K) More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values, and then normalize them so that they sum to 1.0. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
virtual void setConcentrations (const doublereal *const c)
 Set the concentrations to the specified values within the phase. More...
 
virtual doublereal sresid () const
 Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture. More...
 
virtual doublereal hresid () const
 Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture. More...
 
- Protected Member Functions inherited from MixtureFugacityTP
void setMoleFractions_NoState (const doublereal *const x)
 
virtual void _updateReferenceStateThermo () const
 Updates the reference state thermodynamic functions at the current T of the solution. More...
 
const vector_fpgibbs_RT_ref () const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
doublereal z () const
 Calculate the value of z. More...
 
virtual doublereal psatEst (doublereal TKelvin) const
 Estimate for the saturation pressure. More...
 
int corr0 (doublereal TKelvin, doublereal pres, doublereal &densLiq, doublereal &densGas, doublereal &liqGRT, doublereal &gasGRT)
 Utility routine in the calculation of the saturation pressure. More...
 
- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Protected Attributes

int m_standardMixingRules
 boolean indicating whether standard mixing rules are applied More...
 
int m_formTempParam
 Form of the temperature parameterization. More...
 
doublereal m_b_current
 Value of b in the equation of state. More...
 
doublereal m_a_current
 Value of a in the equation of state. More...
 
vector_fp a_vec_Curr_
 
vector_fp b_vec_Curr_
 
Array2D a_coeff_vec
 
vector_fp m_pc_Species
 
vector_fp m_tc_Species
 
vector_fp m_vc_Species
 
int NSolns_
 
doublereal Vroot_ [3]
 
vector_fp m_pp
 Temporary storage - length = m_kk. More...
 
vector_fp m_tmpV
 Temporary storage - length = m_kk. More...
 
vector_fp m_partialMolarVolumes
 
doublereal dpdV_
 The derivative of the pressure wrt the volume. More...
 
doublereal dpdT_
 The derivative of the pressure wrt the temperature. More...
 
vector_fp dpdni_
 Vector of derivatives of pressure wrt mole number. More...
 
- Protected Attributes inherited from MixtureFugacityTP
doublereal m_Pcurrent
 Current value of the pressures. More...
 
std::vector< doublereal > moleFractions_
 Storage for the current values of the mole fractions of the species. More...
 
int iState_
 Current state of the fluid. More...
 
int forcedState_
 Force the system to be on a particular side of the spinodal curve. More...
 
doublereal m_Tlast_ref
 The last temperature at which the reference state thermodynamic properties were calculated at. More...
 
doublereal m_logc0
 Temporary storage for log of p/rt. More...
 
vector_fp m_h0_RT
 Temporary storage for dimensionless reference state enthalpies. More...
 
vector_fp m_cp0_R
 Temporary storage for dimensionless reference state heat capacities. More...
 
vector_fp m_g0_RT
 Temporary storage for dimensionless reference state gibbs energies. More...
 
vector_fp m_s0_R
 Temporary storage for dimensionless reference state entropies. More...
 
spinodalFunc * fdpdv_
 
- Protected Attributes inherited from ThermoPhase
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition. More...
 
- Protected Attributes inherited from Phase
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 

Constructors and Duplicators

 RedlichKwongMFTP ()
 Base constructor. More...
 
 RedlichKwongMFTP (const std::string &infile, std::string id="")
 Construct and initialize a RedlichKwongMFTP object directly from an ASCII input file. More...
 
 RedlichKwongMFTP (XML_Node &phaseRef, const std::string &id="")
 Construct and initialize a RedlichKwongMFTP object directly from an XML database. More...
 
 RedlichKwongMFTP (int testProb)
 This is a special constructor, used to replicate test problems during the initial verification of the object. More...
 
 RedlichKwongMFTP (const RedlichKwongMFTP &right)
 Copy Constructor. More...
 
RedlichKwongMFTPoperator= (const RedlichKwongMFTP &right)
 Assignment operator. More...
 
virtual ThermoPhaseduplMyselfAsThermoPhase () const
 Duplicator from the ThermoPhase parent class. More...
 
virtual int eosType () const
 Equation of state type flag. More...
 

Molar Thermodynamic properties

virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 

Mechanical Properties

virtual doublereal pressure () const
 Return the thermodynamic pressure (Pa). More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 

Partial Molar Properties of the Solution

void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Get the species partial molar enthalpies. Units: J/kmol. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Get the species partial molar entropies. Units: J/kmol/K. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Get the species partial molar enthalpies. Units: J/kmol. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Get the partial molar heat capacities Units: J/kmol/K. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Get the species partial molar volumes. Units: m^3/kmol. More...
 

Critical State Properties.

These methods are only implemented by some subclasses, and may be moved out of ThermoPhase at a later date.

virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 

Initialization Methods - For Internal use

virtual void setParametersFromXML (const XML_Node &thermoNode)
 Set equation of state parameter values from XML entries. More...
 
virtual void initThermo ()
 
void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Initialize a ThermoPhase object, potentially reading activity coefficient information from an XML database. More...
 
void readXMLPureFluid (XML_Node &pureFluidParam)
 Read the pure species RedlichKwong input parameters. More...
 
void applyStandardMixingRules ()
 Apply mixing rules for a coefficients. More...
 
void readXMLCrossFluid (XML_Node &pureFluidParam)
 Read the cross species RedlichKwong input parameters. More...
 
void initLengths ()
 

Detailed Description

This class can handle either an ideal solution or an ideal gas approximation of a phase.

Definition at line 33 of file RedlichKwongMFTP.h.

Constructor & Destructor Documentation

Base constructor.

Definition at line 31 of file RedlichKwongMFTP.cpp.

Referenced by RedlichKwongMFTP::duplMyselfAsThermoPhase().

RedlichKwongMFTP ( const std::string &  infile,
std::string  id = "" 
)

Construct and initialize a RedlichKwongMFTP object directly from an ASCII input file.

Parameters
infileName of the input file containing the phase XML data to set up the object
idID of the phase in the input file. Defaults to the empty string.

Definition at line 56 of file RedlichKwongMFTP.cpp.

References Cantera::get_XML_File(), Cantera::get_XML_NameID(), and Cantera::importPhase().

RedlichKwongMFTP ( XML_Node phaseRef,
const std::string &  id = "" 
)

Construct and initialize a RedlichKwongMFTP object directly from an XML database.

Parameters
phaseRefXML phase node containing the description of the phase
idid attribute containing the name of the phase. (default is the empty string)

Definition at line 91 of file RedlichKwongMFTP.cpp.

References Cantera::get_XML_NameID(), and Cantera::importPhase().

RedlichKwongMFTP ( int  testProb)

This is a special constructor, used to replicate test problems during the initial verification of the object.

test problems: 1: Pure CO2 problem input file = CO2_RedlickKwongMFTP.xml

Parameters
testProbHard -coded test problem to instantiate. Current valid values are 1.
Deprecated:
To be refactored into a standalone test

Definition at line 121 of file RedlichKwongMFTP.cpp.

References Cantera::get_XML_File(), Cantera::get_XML_NameID(), and Cantera::importPhase().

RedlichKwongMFTP ( const RedlichKwongMFTP right)

Copy Constructor.

Copy constructor for the object. Constructed object will be a clone of this object, but will also own all of its data. This is a wrapper around the assignment operator

Parameters
rightObject to be copied.

Definition at line 160 of file RedlichKwongMFTP.cpp.

Member Function Documentation

RedlichKwongMFTP & operator= ( const RedlichKwongMFTP right)

Assignment operator.

Assignment operator for the object. Constructed object will be a clone of this object, but will also own all of its data.

Parameters
rightObject to be copied.

Definition at line 184 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::dpdni_, RedlichKwongMFTP::dpdT_, RedlichKwongMFTP::dpdV_, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::m_formTempParam, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_standardMixingRules, RedlichKwongMFTP::m_tmpV, and MixtureFugacityTP::operator=().

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplicator from the ThermoPhase parent class.

Given a pointer to a ThermoPhase object, this function will duplicate the ThermoPhase object and all underlying structures. This is basically a wrapper around the copy constructor.

Returns
returns a pointer to a ThermoPhase

Reimplemented from MixtureFugacityTP.

Definition at line 220 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::RedlichKwongMFTP().

int eosType ( ) const
virtual

Equation of state type flag.

The base class returns zero. Subclasses should define this to return a unique non-zero value. Constants defined for this purpose are listed in mix_defs.h.

Reimplemented from MixtureFugacityTP.

Definition at line 225 of file RedlichKwongMFTP.cpp.

doublereal enthalpy_mole ( ) const
virtual
doublereal intEnergy_mole ( ) const
virtual

Molar internal energy. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 243 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::enthalpy_mole(), Phase::molarDensity(), and RedlichKwongMFTP::pressure().

doublereal entropy_mole ( ) const
virtual
doublereal gibbs_mole ( ) const
virtual

Molar Gibbs function. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 259 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), and Phase::temperature().

doublereal cp_mole ( ) const
virtual
doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 280 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::cp_mole(), and Cantera::GasConstant.

doublereal pressure ( ) const
virtual

Return the thermodynamic pressure (Pa).

Since the mass density, temperature, and mass fractions are stored, this method uses these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \).

\[ P = \frac{RT}{v-b_{mix}} - \frac{a_{mix}}{T^{0.5} v \left( v + b_{mix} \right) } \]

Reimplemented from MixtureFugacityTP.

Definition at line 286 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), Phase::density(), Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, MixtureFugacityTP::m_Pcurrent, Phase::meanMolecularWeight(), and Phase::temperature().

Referenced by RedlichKwongMFTP::entropy_mole(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getChemPotentials(), and RedlichKwongMFTP::intEnergy_mole().

doublereal isothermalCompressibility ( ) const
virtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 360 of file RedlichKwongMFTP.cpp.

void calcDensity ( )
protectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the species standard state molar volumes. The species molar volumes may be functions of temperature and pressure.

Reimplemented from MixtureFugacityTP.

Definition at line 306 of file RedlichKwongMFTP.cpp.

References DATA_PTR, Cantera::dot(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKwongMFTP::m_tmpV, Phase::moleFractdivMMW(), and Phase::setDensity().

void setTemperature ( const doublereal  temp)
protectedvirtual

Set the temperature (K)

Overwritten setTemperature(double) from State.h. This function sets the temperature, and makes sure that the value propagates to underlying objects

Parameters
tempTemperature in kelvin

Reimplemented from MixtureFugacityTP.

Definition at line 323 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), Phase::setTemperature(), and RedlichKwongMFTP::updateAB().

Referenced by RedlichKwongMFTP::densityCalc().

void setMassFractions ( const doublereal *const  y)
protectedvirtual

Set the mass fractions to the specified values, and then normalize them so that they sum to 1.0.

Parameters
yArray of unnormalized mass fraction values (input). Must have a length greater than or equal to the number of species.

Reimplemented from MixtureFugacityTP.

Definition at line 330 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setMassFractions(), and RedlichKwongMFTP::updateAB().

void setMassFractions_NoNorm ( const doublereal *const  y)
protectedvirtual

Set the mass fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.

Parameters
yInput vector of mass fractions. Length is m_kk.

Reimplemented from MixtureFugacityTP.

Definition at line 336 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setMassFractions_NoNorm(), and RedlichKwongMFTP::updateAB().

void setMoleFractions ( const doublereal *const  x)
protectedvirtual

Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0.

Parameters
xArray of unnormalized mole fraction values (input). Must have a length greater than or equal to the number of species.

Reimplemented from MixtureFugacityTP.

Definition at line 342 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setMoleFractions(), and RedlichKwongMFTP::updateAB().

void setMoleFractions_NoNorm ( const doublereal *const  x)
protectedvirtual

Set the mole fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set ofequations.

Parameters
xInput vector of mole fractions. Length is m_kk.

Reimplemented from MixtureFugacityTP.

Definition at line 348 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setMoleFractions(), and RedlichKwongMFTP::updateAB().

void setConcentrations ( const doublereal *const  c)
protectedvirtual

Set the concentrations to the specified values within the phase.

Parameters
cThe input vector to this routine is in dimensional units. For volumetric phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the number of species in the phase.

Reimplemented from MixtureFugacityTP.

Definition at line 354 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setConcentrations(), and RedlichKwongMFTP::updateAB().

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 367 of file RedlichKwongMFTP.cpp.

References DATA_PTR, RedlichKwongMFTP::getPartialMolarVolumes(), Phase::m_kk, and Phase::moleFraction().

doublereal standardConcentration ( size_t  k = 0) const
virtual

Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.

This is defined as the concentration by which the generalized concentration is normalized to produce the activity. In many cases, this quantity will be the same for all species in a phase. Since the activity for an ideal gas mixture is simply the mole fraction, for an ideal gas \( C^0_k = P/\hat R T \).

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.

Reimplemented from ThermoPhase.

Definition at line 375 of file RedlichKwongMFTP.cpp.

References DATA_PTR, MixtureFugacityTP::getStandardVolumes(), and RedlichKwongMFTP::m_tmpV.

Referenced by RedlichKwongMFTP::logStandardConc().

doublereal logStandardConc ( size_t  k = 0) const
virtual

Returns the natural logarithm of the standard concentration of the kth species.

Parameters
kindex of the species. (defaults to zero)

Reimplemented from ThermoPhase.

Definition at line 381 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::standardConcentration().

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const
virtual

Returns the units of the standard and generalized concentrations.

Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

The base ThermoPhase class assigns the default quantities of (kmol/m3) for all species. Inherited classes are responsible for overriding the default values if necessary.

Parameters
uAOutput vector containing the units:
uA[0] = kmol units - default  = 1
uA[1] = m    units - default  = -nDim(), the number of spatial
                              dimensions in the Phase class.
uA[2] = kg   units - default  = 0;
uA[3] = Pa(pressure) units - default = 0;
uA[4] = Temperature units - default = 0;
uA[5] = time units - default = 0
kspecies index. Defaults to 0.
sizeUAoutput int containing the size of the vector. Currently, this is equal to 6.
Deprecated:

Reimplemented from ThermoPhase.

Definition at line 387 of file RedlichKwongMFTP.cpp.

References Phase::nDim().

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution. The activities are based on this standard state.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 414 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), and Phase::temperature().

void getChemPotentials_RT ( doublereal *  mu) const
virtual

Get the array of non-dimensional species chemical potentials.

These are partial molar Gibbs free energies.

\( \mu_k / \hat R T \). Units: unitless

We close the loop on this function, here, calling getChemPotentials() and then dividing by RT. No need for child classes to handle.

Parameters
muOutput vector of non-dimensional species chemical potentials Length: m_kk.

Reimplemented from MixtureFugacityTP.

Definition at line 450 of file RedlichKwongMFTP.cpp.

References ThermoPhase::_RT(), RedlichKwongMFTP::getChemPotentials(), and Phase::m_kk.

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 459 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, MixtureFugacityTP::getGibbs_ref(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, Phase::molarVolume(), Phase::moleFraction(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), ThermoPhase::refPressure(), Cantera::SmallNumber, and Phase::temperature().

Referenced by RedlichKwongMFTP::getChemPotentials_RT().

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual
void getPartialMolarEntropies ( doublereal *  sbar) const
virtual
void getPartialMolarIntEnergies ( doublereal *  ubar) const
virtual

Get the species partial molar enthalpies. Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 612 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, MixtureFugacityTP::getIntEnergy_RT(), Phase::m_kk, Cantera::scale(), and Phase::temperature().

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Get the partial molar heat capacities Units: J/kmol/K.

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 619 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, MixtureFugacityTP::getCp_R(), Phase::m_kk, and Cantera::scale().

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Get the species partial molar volumes. Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 626 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, MixtureFugacityTP::m_Pcurrent, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, and Phase::temperature().

Referenced by RedlichKwongMFTP::calcDensity(), RedlichKwongMFTP::getActivityConcentrations(), and RedlichKwongMFTP::getPartialMolarEntropies().

doublereal critTemperature ( ) const
virtual

Critical temperature (K).

Reimplemented from ThermoPhase.

Definition at line 672 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::densityCalc().

doublereal critPressure ( ) const
virtual

Critical pressure (Pa).

Reimplemented from ThermoPhase.

Definition at line 688 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::liquidVolEst().

doublereal critDensity ( ) const
virtual
void setParametersFromXML ( const XML_Node thermoNode)
virtual

Set equation of state parameter values from XML entries.

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.

This method is called by function importPhase in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model.

Parameters
thermoNodeAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented from ThermoPhase.

Definition at line 1018 of file RedlichKwongMFTP.cpp.

References ThermoPhase::setParametersFromXML().

void initThermo ( )
virtual

Initialize the object

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase().

See Also
importCTML.cpp

Reimplemented from MixtureFugacityTP.

Definition at line 723 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::initLengths(), and MixtureFugacityTP::initThermo().

void setToEquilState ( const doublereal *  lambda_RT)
virtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
lambda_RTInput vector of dimensionless element potentials The length is equal to nElements().

Reimplemented from ThermoPhase.

Definition at line 729 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), DATA_PTR, MixtureFugacityTP::getGibbs_RT_ref(), Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, ThermoPhase::refPressure(), and ThermoPhase::setState_PX().

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Initialize a ThermoPhase object, potentially reading activity coefficient information from an XML database.

This routine initializes the lengths in the current object and then calls the parent routine. This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from MixtureFugacityTP.

Definition at line 785 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::applyStandardMixingRules(), XML_Node::child(), XML_Node::hasChild(), RedlichKwongMFTP::initLengths(), MixtureFugacityTP::initThermoXML(), Cantera::lowercase(), Phase::m_kk, RedlichKwongMFTP::m_standardMixingRules, XML_Node::name(), XML_Node::nChildren(), RedlichKwongMFTP::readXMLCrossFluid(), and RedlichKwongMFTP::readXMLPureFluid().

void readXMLPureFluid ( XML_Node pureFluidParam)
private

Read the pure species RedlichKwong input parameters.

Parameters
pureFluidParamXML_Node for the pure fluid parameters

Definition at line 870 of file RedlichKwongMFTP.cpp.

References XML_Node::attrib(), XML_Node::child(), ctml::getFloatArray(), Cantera::lowercase(), RedlichKwongMFTP::m_formTempParam, Phase::m_kk, XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and Phase::speciesIndex().

Referenced by RedlichKwongMFTP::initThermoXML().

void applyStandardMixingRules ( )
private

Apply mixing rules for a coefficients.

Definition at line 934 of file RedlichKwongMFTP.cpp.

References Phase::m_kk.

Referenced by RedlichKwongMFTP::initThermoXML().

void readXMLCrossFluid ( XML_Node pureFluidParam)
private

Read the cross species RedlichKwong input parameters.

Parameters
pureFluidParamXML_Node for the cross fluid parameters

Definition at line 951 of file RedlichKwongMFTP.cpp.

References XML_Node::attrib(), XML_Node::child(), ctml::getFloatArray(), Cantera::lowercase(), RedlichKwongMFTP::m_formTempParam, Phase::m_kk, XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and Phase::speciesIndex().

Referenced by RedlichKwongMFTP::initThermoXML().

void initLengths ( )
private

Initialize the internal lengths in this object.

Note this is not a virtual function and only handles this object

Definition at line 764 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::dpdni_, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, and Array2D::resize().

Referenced by RedlichKwongMFTP::initThermo(), and RedlichKwongMFTP::initThermoXML().

doublereal sresid ( ) const
protectedvirtual

Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture.

Here we use the current state conditions

Returns
Returns the change in entropy in units of J kmol-1 K-1.

Reimplemented from MixtureFugacityTP.

Definition at line 1024 of file RedlichKwongMFTP.cpp.

References Phase::density(), Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), Phase::temperature(), and MixtureFugacityTP::z().

Referenced by RedlichKwongMFTP::entropy_mole().

doublereal hresid ( ) const
protectedvirtual

Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture.

Reimplemented from MixtureFugacityTP.

Definition at line 1040 of file RedlichKwongMFTP.cpp.

References Phase::density(), Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), Phase::temperature(), and MixtureFugacityTP::z().

Referenced by RedlichKwongMFTP::enthalpy_mole().

doublereal liquidVolEst ( doublereal  TKelvin,
doublereal &  pres 
) const
virtual

Estimate for the molar volume of the liquid.

Note: this is only used as a starting guess for later routines that actually calculate an accurate value for the liquid molar volume. This routine doesn't change the state of the system.

Parameters
TKelvintemperature in kelvin
presPressure in Pa. This is used as an initial guess. If the routine needs to change the pressure to find a stable liquid state, the new pressure is returned in this variable.
Returns
Returns the estimate of the liquid volume.

Reimplemented from MixtureFugacityTP.

Definition at line 1055 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::calculateAB(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::NicholsSolve(), and MixtureFugacityTP::psatEst().

Referenced by RedlichKwongMFTP::densityCalc().

doublereal densityCalc ( doublereal  TKelvin,
doublereal  pressure,
int  phase,
doublereal  rhoguess 
)
virtual

Calculates the density given the temperature and the pressure and a guess at the density.

Note, below T_c, this is a multivalued function. We do not cross the vapor dome in this. This is protected because it is called during setState_TP() routines. Infinite loops would result if it were not protected.

-> why is this not const?

parameters:

Parameters
TKelvinTemperature in Kelvin
pressurePressure in Pascals (Newton/m**2)
phaseint representing the phase whose density we are requesting. If we put a gas or liquid phase here, we will attempt to find a volume in that part of the volume space, only, in this routine. A value of FLUID_UNDEFINED means that we will accept anything.
rhoguessGuessed density of the fluid. A value of -1.0 indicates that there is no guessed density
Returns
We return the density of the fluid at the requested phase. If we have not found any acceptable density we return a -1. If we have found an acceptable density at a different phase, we return a -2.

Reimplemented from MixtureFugacityTP.

Definition at line 1100 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::critTemperature(), Cantera::GasConstant, RedlichKwongMFTP::liquidVolEst(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), RedlichKwongMFTP::NicholsSolve(), and RedlichKwongMFTP::setTemperature().

doublereal densSpinodalLiquid ( ) const
virtual

Return the value of the density at the liquid spinodal point (on the liquid side) for the current temperature.

Returns
returns the density with units of kg m-3

Reimplemented from MixtureFugacityTP.

Definition at line 1174 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::critDensity(), Phase::meanMolecularWeight(), ROOTFIND_SUCCESS, RootFind::setFuncIsGenerallyDecreasing(), RootFind::setPrintLvl(), RootFind::setTol(), and RootFind::solve().

doublereal densSpinodalGas ( ) const
virtual

Return the value of the density at the gas spinodal point (on the gas side) for the current temperature.

Returns
returns the density with units of kg m-3

Reimplemented from MixtureFugacityTP.

Definition at line 1197 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::critDensity(), Phase::meanMolecularWeight(), ROOTFIND_SUCCESS, RootFind::setFuncIsGenerallyIncreasing(), RootFind::setPrintLvl(), RootFind::setTol(), and RootFind::solve().

doublereal pressureCalc ( doublereal  TKelvin,
doublereal  molarVol 
) const
virtual

Calculate the pressure given the temperature and the molar volume.

Calculate the pressure given the temperature and the molar volume

Parameters
TKelvintemperature in kelvin
molarVolmolar volume ( m3/kmol)
Returns
Returns the pressure.

Reimplemented from MixtureFugacityTP.

Definition at line 1220 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, and RedlichKwongMFTP::m_b_current.

doublereal dpdVCalc ( doublereal  TKelvin,
doublereal  molarVol,
doublereal &  presCalc 
) const
virtual

Calculate the pressure and the pressure derivative given the temperature and the molar volume.

Temperature and mole number are held constant

Parameters
TKelvintemperature in kelvin
molarVolmolar volume ( m3/kmol)
presCalcReturns the pressure.
Returns
Returns the derivative of the pressure wrt the molar volume

Reimplemented from MixtureFugacityTP.

Definition at line 1228 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, and RedlichKwongMFTP::m_b_current.

Referenced by RedlichKwongMFTP::NicholsSolve(), and RedlichKwongMFTP::pressureDerivatives().

void pressureDerivatives ( ) const
void updateAB ( )

Update the a and b parameters.

The a and the b parameters depend on the mole fraction and the temperature. This function updates the internal numbers based on the state of the object.

Definition at line 1263 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::m_formTempParam, Phase::m_kk, MixtureFugacityTP::moleFractions_, and Phase::temperature().

Referenced by RedlichKwongMFTP::setConcentrations(), RedlichKwongMFTP::setMassFractions(), RedlichKwongMFTP::setMassFractions_NoNorm(), RedlichKwongMFTP::setMoleFractions(), RedlichKwongMFTP::setMoleFractions_NoNorm(), and RedlichKwongMFTP::setTemperature().

void calculateAB ( doublereal  temp,
doublereal &  aCalc,
doublereal &  bCalc 
) const

Calculate the a and the b parameters given the temperature.

This function doesn't change the internal state of the object, so it is a const function. It does use the stored mole fractions in the object.

Parameters
tempTemperature (TKelvin)
aCalc(output) Returns the a value
bCalc(output) Returns the b value.

Definition at line 1285 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_formTempParam, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::liquidVolEst().

int NicholsSolve ( double  TKelvin,
double  pres,
doublereal  a,
doublereal  b,
doublereal  Vroot[3] 
) const

Solve the cubic equation of state.

The R-K equation of state may be solved via the following formula:

V**3 - V**2(RT/P)  - V(RTb/P - a/(P T**.5) + b*b) - (a b / (P T**.5)) = 0

Returns the number of solutions found. If it only finds the liquid branch solution, it will return a -1 or a -2 instead of 1 or 2. If it returns 0, then there is an error.

Definition at line 1368 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::dpdVCalc(), Cantera::fp2str(), Cantera::GasConstant, RedlichKwongMFTP::omega_a, RedlichKwongMFTP::omega_b, RedlichKwongMFTP::omega_vc, Cantera::Pi, Cantera::writelog(), and Cantera::writelogendl().

Referenced by RedlichKwongMFTP::densityCalc(), and RedlichKwongMFTP::liquidVolEst().

Member Data Documentation

int m_standardMixingRules
protected

boolean indicating whether standard mixing rules are applied

  • 1 = Yes, there are standard cross terms in the a coefficient matrices.
  • 0 = No, there are nonstandard cross terms in the a coefficient matrices.

Definition at line 666 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::initThermoXML(), and RedlichKwongMFTP::operator=().

int m_formTempParam
protected

Form of the temperature parameterization.

  • 0 = There is no temperature parameterization of a or b
  • 1 = The a_ij parameter is a linear function of the temperature

Definition at line 673 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::calculateAB(), RedlichKwongMFTP::operator=(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), and RedlichKwongMFTP::updateAB().

doublereal m_b_current
protected
doublereal m_a_current
protected
vector_fp m_pp
mutableprotected
vector_fp m_tmpV
mutableprotected
doublereal dpdV_
mutableprotected

The derivative of the pressure wrt the volume.

Calculated at the current conditions temperature and mole number kept constant

Definition at line 716 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::operator=(), and RedlichKwongMFTP::pressureDerivatives().

doublereal dpdT_
mutableprotected

The derivative of the pressure wrt the temperature.

Calculated at the current conditions Total volume and mole number kept constant

Definition at line 723 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKwongMFTP::operator=(), and RedlichKwongMFTP::pressureDerivatives().

vector_fp dpdni_
mutableprotected

Vector of derivatives of pressure wrt mole number.

Calculated at the current conditions Total volume, temperature and other mole number kept constant

Definition at line 730 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::initLengths(), and RedlichKwongMFTP::operator=().

const doublereal omega_a = 4.27480233540E-01
static

Omega constant for a -> value of a in terms of critical properties.

this was calculated from a small nonlinear solve

Definition at line 737 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::NicholsSolve().

const doublereal omega_b = 8.66403499650E-02
static

Omega constant for b.

Definition at line 740 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::NicholsSolve().

const doublereal omega_vc = 3.33333333333333E-01
static

Omega constant for the critical molar volume.

Definition at line 743 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::NicholsSolve().


The documentation for this class was generated from the following files: