Cantera  2.1.2
Public Member Functions | Protected Member Functions | Private Attributes | List of all members
PureFluidPhase Class Reference

This phase object consists of a single component that can be a gas, a liquid, a mixed gas-liquid fluid, or a fluid beyond its critical point. More...

#include <PureFluidPhase.h>

Inheritance diagram for PureFluidPhase:
[legend]
Collaboration diagram for PureFluidPhase:
[legend]

Public Member Functions

 PureFluidPhase ()
 Empty Base Constructor. More...
 
 PureFluidPhase (const PureFluidPhase &right)
 Copy Constructor. More...
 
PureFluidPhaseoperator= (const PureFluidPhase &right)
 Assignment operator. More...
 
virtual ~PureFluidPhase ()
 Destructor. More...
 
ThermoPhaseduplMyselfAsThermoPhase () const
 Duplication function. More...
 
virtual int eosType () const
 Equation of state type. More...
 
virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
virtual doublereal pressure () const
 Return the thermodynamic pressure (Pa). More...
 
virtual void setPressure (doublereal p)
 sets the thermodynamic pressure (Pa). More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
tpx::SubstanceTPX_Substance ()
 Returns a reference to the substance object. More...
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string More...
 
Properties of the Standard State of the Species in the Solution
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference States
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
Setting the State

These methods set all or part of the thermodynamic state.

virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-8)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-8)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-8)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-8)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
Critical State Properties
virtual doublereal critTemperature () const
 critical temperature More...
 
virtual doublereal critPressure () const
 critical pressure More...
 
virtual doublereal critDensity () const
 critical density More...
 
Saturation properties.
virtual doublereal satTemperature (doublereal p) const
 saturation temperature More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual ~ThermoPhase ()
 Destructor. Deletes the species thermo manager. More...
 
 ThermoPhase (const ThermoPhase &right)
 Copy Constructor for the ThermoPhase object. More...
 
ThermoPhaseoperator= (const ThermoPhase &right)
 Assignment operator. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal cv_vib (int, double) const
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. More...
 
doublereal entropy_mass () const
 Specific entropy. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. More...
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
virtual ~Phase ()
 Destructor. More...
 
 Phase (const Phase &right)
 Copy Constructor. More...
 
Phaseoperator= (const Phase &right)
 Assignment operator. More...
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual void freezeSpecies ()
 Call when finished adding species. More...
 
bool speciesFrozen ()
 True if freezeSpecies has been called. More...
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More...
 
void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setTemperature (const doublereal temp)
 Set the internally stored temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \). More...
 
void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element. More...
 
void addElement (const XML_Node &e)
 Add an element from an XML specification. More...
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree. More...
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species. More...
 
bool elementsFrozen ()
 True if freezeElements has been called. More...
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More...
 

Protected Member Functions

void Set (tpx::PropertyPair::type n, double x, double y) const
 Main call to the tpx level to set the state of the system. More...
 
void setTPXState () const
 Sets the state using a TPX::TV call. More...
 
- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Private Attributes

tpx::Substancem_sub
 Pointer to the underlying tpx object Substance that does the work. More...
 
int m_subflag
 Int indicating the type of the fluid. More...
 
doublereal m_mw
 Molecular weight of the substance (kg kmol-1) More...
 
bool m_verbose
 flag to turn on some printing. More...
 

Additional Inherited Members

- Protected Attributes inherited from ThermoPhase
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition. More...
 
- Protected Attributes inherited from Phase
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 

Detailed Description

This phase object consists of a single component that can be a gas, a liquid, a mixed gas-liquid fluid, or a fluid beyond its critical point.

The object inherits from ThermoPhase. However, it's built on top of the tpx package.

Definition at line 31 of file PureFluidPhase.h.

Constructor & Destructor Documentation

Empty Base Constructor.

Definition at line 22 of file PureFluidPhase.cpp.

Referenced by PureFluidPhase::duplMyselfAsThermoPhase().

PureFluidPhase ( const PureFluidPhase right)

Copy Constructor.

Parameters
rightObject to be copied

Definition at line 31 of file PureFluidPhase.cpp.

~PureFluidPhase ( )
virtual

Destructor.

Definition at line 59 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub.

Member Function Documentation

PureFluidPhase & operator= ( const PureFluidPhase right)

Assignment operator.

Parameters
rightObject to be copied

Definition at line 41 of file PureFluidPhase.cpp.

References PureFluidPhase::m_mw, PureFluidPhase::m_sub, PureFluidPhase::m_subflag, PureFluidPhase::m_verbose, and ThermoPhase::operator=().

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplication function.

This virtual function is used to create a duplicate of the current phase. It's used to duplicate the phase when given a ThermoPhase pointer to the phase.

Returns
It returns a ThermoPhase pointer.

Reimplemented from ThermoPhase.

Definition at line 54 of file PureFluidPhase.cpp.

References PureFluidPhase::PureFluidPhase().

virtual int eosType ( ) const
inlinevirtual

Equation of state type.

Reimplemented from ThermoPhase.

Definition at line 64 of file PureFluidPhase.h.

doublereal enthalpy_mole ( ) const
virtual
doublereal intEnergy_mole ( ) const
virtual

Molar internal energy. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 114 of file PureFluidPhase.cpp.

References PureFluidPhase::m_mw, PureFluidPhase::m_sub, PureFluidPhase::setTPXState(), and Substance::u().

Referenced by PureFluidPhase::getPartialMolarIntEnergies(), and PureFluidPhase::report().

doublereal entropy_mole ( ) const
virtual
doublereal gibbs_mole ( ) const
virtual
doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 135 of file PureFluidPhase.cpp.

References Substance::cp(), PureFluidPhase::m_mw, PureFluidPhase::m_sub, and PureFluidPhase::setTPXState().

Referenced by PureFluidPhase::getPartialMolarCp(), and PureFluidPhase::report().

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 142 of file PureFluidPhase.cpp.

References Substance::cv(), PureFluidPhase::m_mw, PureFluidPhase::m_sub, and PureFluidPhase::setTPXState().

Referenced by PureFluidPhase::report().

doublereal pressure ( ) const
virtual

Return the thermodynamic pressure (Pa).

This method calculates the current pressure consistent with the independent variables, T, rho.

Reimplemented from ThermoPhase.

Definition at line 149 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, Substance::P(), and PureFluidPhase::setTPXState().

Referenced by PureFluidPhase::getEnthalpy_RT_ref(), PureFluidPhase::getEntropy_R_ref(), PureFluidPhase::getGibbs_RT_ref(), and PureFluidPhase::report().

void setPressure ( doublereal  p)
virtual

sets the thermodynamic pressure (Pa).

This method calculates the density that is consistent with the desired pressure, given the temperature.

Parameters
pPressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 155 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::Set(), Phase::setDensity(), Phase::temperature(), and Substance::v().

virtual void getChemPotentials ( doublereal *  mu) const
inlinevirtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 111 of file PureFluidPhase.h.

References PureFluidPhase::gibbs_mole().

Referenced by PureFluidPhase::getElectrochemPotentials().

void getElectrochemPotentials ( doublereal *  mu) const
inline

Get the species electrochemical potentials.

These are partial molar quantities. This method adds a term \( F z_k \phi_p \) to each chemical potential. The electrochemical potential of species k in a phase p, \( \zeta_k \), is related to the chemical potential via the following equation,

\[ \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p \]

Parameters
muOutput vector of species electrochemical potentials. Length: m_kk. Units: J/kmol

Definition at line 130 of file PureFluidPhase.h.

References Phase::charge(), ThermoPhase::electricPotential(), PureFluidPhase::getChemPotentials(), and Phase::m_kk.

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 186 of file PureFluidPhase.cpp.

References PureFluidPhase::enthalpy_mole().

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 191 of file PureFluidPhase.cpp.

References PureFluidPhase::entropy_mole().

void getPartialMolarIntEnergies ( doublereal *  ubar) const
virtual

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 196 of file PureFluidPhase.cpp.

References PureFluidPhase::intEnergy_mole().

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 201 of file PureFluidPhase.cpp.

References PureFluidPhase::cp_mole().

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 206 of file PureFluidPhase.cpp.

References Phase::molarDensity().

int standardStateConvention ( ) const
virtual

This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.

Currently, there are two standard state conventions:

  • Temperature-based activities cSS_CONVENTION_TEMPERATURE 0
    • default
  • Variable Pressure and Temperature -based activities cSS_CONVENTION_VPSS 1
  • Thermodynamics is set via slave ThermoPhase objects with nothing being carried out at this ThermoPhase object level cSS_CONVENTION_SLAVE 2

Reimplemented from ThermoPhase.

Definition at line 211 of file PureFluidPhase.cpp.

References Cantera::cSS_CONVENTION_TEMPERATURE.

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 216 of file PureFluidPhase.cpp.

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (e.g. surface species of different sizes), this method may be called with an optional parameter indicating the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard concentration. The units are by definition dependent on the ThermoPhase and kinetics manager representation.

Reimplemented from ThermoPhase.

Definition at line 221 of file PureFluidPhase.cpp.

void getActivities ( doublereal *  a) const
virtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

Note, for molality based formulations, this returns the molality based activities.

We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.

Parameters
aOutput vector of activities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 226 of file PureFluidPhase.cpp.

doublereal isothermalCompressibility ( ) const
virtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 171 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub.

doublereal thermalExpansionCoeff ( ) const
virtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented from ThermoPhase.

Definition at line 176 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub.

tpx::Substance & TPX_Substance ( )

Returns a reference to the substance object.

Definition at line 181 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub.

void getStandardChemPotentials ( doublereal *  mu) const
virtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

The standard state of the pure fluid is defined as the real properties of the pure fluid at the most stable state of the fluid at the current temperature and pressure of the solution. With this definition, the activity of the fluid is always then defined to be equal to one.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 231 of file PureFluidPhase.cpp.

References PureFluidPhase::gibbs_mole().

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 236 of file PureFluidPhase.cpp.

References ThermoPhase::_RT(), and PureFluidPhase::enthalpy_mole().

Referenced by PureFluidPhase::getEnthalpy_RT_ref().

void getEntropy_R ( doublereal *  sr) const
virtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 243 of file PureFluidPhase.cpp.

References PureFluidPhase::entropy_mole(), and Cantera::GasConstant.

Referenced by PureFluidPhase::getEntropy_R_ref().

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state gibbs free energies Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 249 of file PureFluidPhase.cpp.

References ThermoPhase::_RT(), and PureFluidPhase::gibbs_mole().

Referenced by PureFluidPhase::getGibbs_RT_ref().

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

The species reference state for pure fluids is defined as an ideal gas at the reference pressure and current temperature of the fluid.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 256 of file PureFluidPhase.cpp.

References PureFluidPhase::getEnthalpy_RT(), PureFluidPhase::pressure(), PureFluidPhase::Set(), and Phase::temperature().

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 268 of file PureFluidPhase.cpp.

References PureFluidPhase::getGibbs_RT(), ThermoPhase::m_spthermo, PureFluidPhase::pressure(), SpeciesThermo::refPressure(), PureFluidPhase::Set(), and Phase::temperature().

Referenced by PureFluidPhase::getGibbs_ref().

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

units = J/kmol

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 280 of file PureFluidPhase.cpp.

References Cantera::GasConstant, PureFluidPhase::getGibbs_RT_ref(), and Phase::temperature().

void getEntropy_R_ref ( doublereal *  er) const
virtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 286 of file PureFluidPhase.cpp.

References PureFluidPhase::getEntropy_R(), ThermoPhase::m_spthermo, PureFluidPhase::pressure(), SpeciesThermo::refPressure(), PureFluidPhase::Set(), and Phase::temperature().

void setState_HP ( doublereal  h,
doublereal  p,
doublereal  tol = 1.e-8 
)
virtual

Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.

Parameters
hSpecific enthalpy (J/kg)
pPressure (Pa)
tolOptional parameter setting the tolerance of the calculation.

Reimplemented from ThermoPhase.

Definition at line 318 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::Set(), Phase::setState_TR(), Substance::Temp(), and Substance::v().

void setState_UV ( doublereal  u,
doublereal  v,
doublereal  tol = 1.e-8 
)
virtual

Set the specific internal energy (J/kg) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.

Parameters
uspecific internal energy (J/kg)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation.

Reimplemented from ThermoPhase.

Definition at line 325 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::Set(), Phase::setState_TR(), Substance::Temp(), and Substance::v().

void setState_SV ( doublereal  s,
doublereal  v,
doublereal  tol = 1.e-8 
)
virtual

Set the specific entropy (J/kg/K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation.

Reimplemented from ThermoPhase.

Definition at line 332 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::Set(), Phase::setState_TR(), Substance::Temp(), and Substance::v().

void setState_SP ( doublereal  s,
doublereal  p,
doublereal  tol = 1.e-8 
)
virtual

Set the specific entropy (J/kg/K) and pressure (Pa).

This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
pspecific pressure (Pa).
tolOptional parameter setting the tolerance of the calculation.

Reimplemented from ThermoPhase.

Definition at line 339 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::Set(), Phase::setState_TR(), Substance::Temp(), and Substance::v().

doublereal critTemperature ( ) const
virtual

critical temperature

Reimplemented from ThermoPhase.

Definition at line 298 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, and Substance::Tcrit().

doublereal critPressure ( ) const
virtual

critical pressure

Reimplemented from ThermoPhase.

Definition at line 303 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, and Substance::Pcrit().

doublereal critDensity ( ) const
virtual

critical density

Reimplemented from ThermoPhase.

Definition at line 308 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, and Substance::Vcrit().

doublereal satTemperature ( doublereal  p) const
virtual

saturation temperature

Parameters
pPressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 313 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, and Substance::Tsat().

doublereal satPressure ( doublereal  t)
virtual

Return the saturation pressure given the temperature.

Parameters
tTemperature (Kelvin)

Reimplemented from ThermoPhase.

Definition at line 346 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::Set(), and Substance::v().

doublereal vaporFraction ( ) const
virtual

Return the fraction of vapor at the current conditions.

Reimplemented from ThermoPhase.

Definition at line 353 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::setTPXState(), and Substance::x().

Referenced by PureFluidPhase::report().

void setState_Tsat ( doublereal  t,
doublereal  x 
)
virtual

Set the state to a saturated system at a particular temperature.

Parameters
tTemperature (kelvin)
xFraction of vapor

Reimplemented from ThermoPhase.

Definition at line 359 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::Set(), Phase::setDensity(), Phase::setTemperature(), PureFluidPhase::setTPXState(), and Substance::v().

void setState_Psat ( doublereal  p,
doublereal  x 
)
virtual

Set the state to a saturated system at a particular pressure.

Parameters
pPressure (Pa)
xFraction of vapor

Reimplemented from ThermoPhase.

Definition at line 367 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, PureFluidPhase::Set(), Phase::setDensity(), Phase::setTemperature(), PureFluidPhase::setTPXState(), Substance::Temp(), and Substance::v().

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called from ThermoPhase::initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().

See Also
importCTML.cpp

Reimplemented from ThermoPhase.

Definition at line 65 of file PureFluidPhase.cpp.

References Cantera::GasConstant, PureFluidPhase::m_mw, ThermoPhase::m_spthermo, PureFluidPhase::m_sub, PureFluidPhase::m_subflag, PureFluidPhase::m_verbose, Substance::MolWt(), Substance::P(), Substance::Pcrit(), ThermoPhase::refPressure(), Substance::Set(), Phase::setMolecularWeight(), Phase::setMoleFractions(), SpeciesThermo::update_one(), and Cantera::writelog().

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented from ThermoPhase.

Definition at line 97 of file PureFluidPhase.cpp.

References XML_Node::_require(), and PureFluidPhase::m_subflag.

std::string report ( bool  show_thermo = true) const
virtual
void Set ( tpx::PropertyPair::type  n,
double  x,
double  y 
) const
protected

Main call to the tpx level to set the state of the system.

Parameters
nInteger indicating which 2 thermo components are held constant
xValue of the first component
yValue of the second component

Definition at line 161 of file PureFluidPhase.cpp.

References PureFluidPhase::m_sub, and Substance::Set().

Referenced by PureFluidPhase::getEnthalpy_RT_ref(), PureFluidPhase::getEntropy_R_ref(), PureFluidPhase::getGibbs_RT_ref(), PureFluidPhase::satPressure(), PureFluidPhase::setPressure(), PureFluidPhase::setState_HP(), PureFluidPhase::setState_Psat(), PureFluidPhase::setState_SP(), PureFluidPhase::setState_SV(), PureFluidPhase::setState_Tsat(), PureFluidPhase::setState_UV(), and PureFluidPhase::setTPXState().

void setTPXState ( ) const
protected

Member Data Documentation

tpx::Substance* m_sub
mutableprivate
int m_subflag
private

Int indicating the type of the fluid.

The tpx package uses an int to indicate what fluid is being sought.

Definition at line 526 of file PureFluidPhase.h.

Referenced by PureFluidPhase::initThermo(), PureFluidPhase::operator=(), and PureFluidPhase::setParametersFromXML().

doublereal m_mw
private
bool m_verbose
private

flag to turn on some printing.

Definition at line 532 of file PureFluidPhase.h.

Referenced by PureFluidPhase::initThermo(), and PureFluidPhase::operator=().


The documentation for this class was generated from the following files: