Cantera  3.1.0a1
Loading...
Searching...
No Matches
ThermoPhase.h
Go to the documentation of this file.
1/**
2 * @file ThermoPhase.h
3 * Header file for class ThermoPhase, the base class for phases with
4 * thermodynamic properties, and the text for the Module thermoprops
5 * (see @ref thermoprops and class @link Cantera::ThermoPhase ThermoPhase@endlink).
6 */
7
8// This file is part of Cantera. See License.txt in the top-level directory or
9// at https://cantera.org/license.txt for license and copyright information.
10
11#ifndef CT_THERMOPHASE_H
12#define CT_THERMOPHASE_H
13
14#include "Phase.h"
15#include "MultiSpeciesThermo.h"
16#include "cantera/base/Units.h"
17#include "cantera/base/AnyMap.h"
18
19namespace Cantera
20{
21
22/**
23 * @defgroup thermoprops Thermodynamic Properties
24 *
25 * These classes are used to compute the thermodynamic properties of phases of matter.
26 * The main base class for describing thermodynamic properties of phases within %Cantera
27 * is called ThermoPhase. %ThermoPhase is a large class that describes the interface
28 * within %Cantera to thermodynamic functions for a phase.
29 *
30 * ## Categorizing the Different ThermoPhase Objects
31 *
32 * ThermoPhase objects may be cataloged into four general bins.
33 *
34 * The first type are those whose underlying species have a reference state associated
35 * with them. The reference state describes the thermodynamic functions for a species at
36 * a single reference pressure, @f$ p_0 @f$. The thermodynamic functions are specified
37 * via derived objects of the SpeciesThermoInterpType object class, and usually consist
38 * of polynomials in temperature such as the NASA polynomial or the Shomate polynomial.
39 * Calculators for these reference states, which manage the calculation for all of the
40 * species in a phase, are all derived from the virtual base class
41 * SpeciesThermoInterpType. Calculators are needed because the actual calculation of the
42 * reference state thermodynamics has been shown to be relatively expensive. A great
43 * deal of work has gone into devising efficient schemes for calculating the
44 * thermodynamic polynomials of a set of species in a phase, in particular gas species
45 * in ideal gas phases whose reference state thermodynamics is specified by NASA
46 * polynomials.
47 *
48 * The reference state thermodynamics combined with the mixing rules and an assumption
49 * about the pressure dependence yields the thermodynamic functions for the phase.
50 * Expressions involving the specification of the fugacities of species would fall into
51 * this category of %ThermoPhase objects. Note, however, that at this time, we do not
52 * have any nontrivial examples of these types of phases. In general, the independent
53 * variables that completely describe the state of the system for this class are
54 * temperature, the phase density, and @f$ N - 1 @f$ species mole or mass fractions.
55 * Additionally, if the phase involves charged species, the phase electric potential is
56 * an added independent variable. Examples of this first class of %ThermoPhase models,
57 * which includes the IdealGasPhase object, the most commonly used object with %Cantera,
58 * include:
59 *
60 * - IdealGasPhase
61 * - StoichSubstance
62 * - SurfPhase
63 * - EdgePhase
64 * - LatticePhase
65 * - LatticeSolidPhase
66 * - PureFluidPhase
67 * - IdealSolidSolnPhase
68 * - VPStandardStateTP
69 *
70 * The second class of objects are all derivatives of the VPStandardStateTP class listed
71 * above. These classes assume that there exists a standard state for each species in
72 * the phase, where the thermodynamic functions are specified as a function of
73 * temperature and pressure. Standard state objects for each species are all derived
74 * from the PDSS virtual base class. In turn, these standard states may employ reference
75 * state calculation to aid in their calculations. However, there are some PDSS objects
76 * which do not employ reference state calculations. An example of this is real equation
77 * of state for liquid water used within the calculation of brine thermodynamics. In
78 * general, the independent variables that completely describe the state of the system
79 * for this class are temperature, the phase pressure, and @f$ N - 1 @f$ species mole or
80 * mass fractions or molalities. The standard state thermodynamics combined with the
81 * mixing rules yields the thermodynamic functions for the phase. Mixing rules are given
82 * in terms of specifying the molar-base activity coefficients or activities. Lists of
83 * phases which belong to this group are given below
84 *
85 * - IdealSolnGasVPSS
86 * - MolalityVPSSTP
87 *
88 * Note, the ideal gas and ideal solution approximations are lumped together in the
89 * class IdealSolnGasVPSS, because at this level they look alike having the same mixing
90 * rules with respect to the specification of the excess thermodynamic properties.
91 *
92 * The third class of objects are all derivatives of the MolalityVPSSTP object. They
93 * assume that the standard states are temperature and pressure dependent but they also
94 * assume that the standard states are molality-based. In other words, they assume that
95 * the standard state of the solute species are in a pseudo state of 1 molality but at
96 * infinite dilution. A solvent must be specified in these calculations, defined as the
97 * first species in the phase, and its standard state is the pure solvent state. Phases
98 * which belong to this group include:
99 *
100 * - DebyeHuckel
101 * - IdealMolalSoln
102 * - HMWSoln
103 *
104 * The fourth class of %ThermoPhase objects are stoichiometric phases. Stoichiometric
105 * phases are phases which consist of one and only one species. The class
106 * SingleSpeciesTP is the base class for these substances. Within the class, the general
107 * %ThermoPhase interface is dumbed down so that phases consisting of one species may be
108 * succinctly described. These phases may have PDSS classes or SpeciesThermoInterpType
109 * calculators associated with them. In general, the independent variables that
110 * completely describe the state of the system for this class are temperature and either
111 * the phase density or the phase pressure. Classes in this group include:
112 *
113 * - StoichSubstance
114 * - WaterSSTP
115 *
116 * ## Creating ThermoPhase objects
117 *
118 * Instances of subclasses of ThermoPhase should be created using the factory methods
119 * newThermo(const string&, const string&), newThermo(const AnyMap&, const AnyMap&), or
120 * newThermoModel(). This allows new classes to be used with the various %Cantera
121 * language interfaces.
122 *
123 * ## Defining new thermodynamic models
124 *
125 * To implement a new equation of state, derive a class from ThermoPhase or a relevant
126 * existing derived class and overload the virtual methods in ThermoPhase. Methods that
127 * are not needed can be left unimplemented, which will cause an exception to be thrown
128 * if they are called.
129 */
130
131//! @name CONSTANTS - Specification of the Molality convention
132//! @{
133
134//! Standard state uses the molar convention
136//! Standard state uses the molality convention
138
139//! @}
140//! @name CONSTANTS - Specification of the SS convention
141//! @{
142
143//! Standard state uses the molar convention
145//! Standard state uses the molality convention
147//! Standard state thermodynamics is obtained from slave ThermoPhase objects
149//! @}
150
151//! Differentiate between mole fractions and mass fractions for input mixture
152//! composition
153enum class ThermoBasis
154{
155 mass,
156 molar
157};
158
159//! Base class for a phase with thermodynamic properties.
160/*!
161 * Class ThermoPhase is the base class for the family of classes that represent
162 * phases of matter of any type. It defines a common public interface, and
163 * implements a few methods. Most of the methods, however, are declared virtual
164 * and are meant to be overloaded in derived classes. The standard way used
165 * throughout %Cantera to compute properties of phases of matter is through
166 * pointers of type `ThermoPhase*` that point to objects of subclasses of
167 * ThermoPhase.
168 *
169 * Class ThermoPhase extends class Phase by adding methods to compute
170 * thermodynamic properties in addition to the ones that are used to define the
171 * state of a substance (temperature, density/pressure and composition). The
172 * distinction is that the methods declared in ThermoPhase require knowing the
173 * particular equation of state of the phase of interest, while those of class
174 * Phase do not, since they only involve data values stored within the object.
175 *
176 * ## Calculating and accessing thermodynamic properties
177 *
178 * The calculation of thermodynamic functions within %ThermoPhase is broken down roughly
179 * into two or more steps. First, the standard state properties of all of the species
180 * are calculated at the current temperature and at either the current pressure or at a
181 * reference pressure. If the calculation is carried out at a reference pressure instead
182 * of at the current pressure the calculation is called a "reference state properties"
183 * calculation, just to make the distinction (even though it may be considered to be a
184 * fixed-pressure standard-state calculation). The next step is to adjust the reference
185 * state calculation to the current pressure. The thermodynamic functions then are
186 * considered to be at the standard state of each species. Lastly the mixing
187 * contributions are added to arrive at the thermodynamic functions for the solution.
188 *
189 * The %ThermoPhase class provides interfaces to thermodynamic properties calculated for
190 * the reference state of each species, the standard state values for each species, the
191 * thermodynamic functions for solution values, both on a per mole of solution basis
192 * (such as ThermoPhase::enthalpy_mole()), on a per kg of solution basis, and on a
193 * partial molar basis for each species (such as
194 * ThermoPhase::getPartialMolarEnthalpies). At each level, functions for the enthalpy,
195 * entropy, Gibbs free energy, internal energy, and volume are provided. So, 5 levels
196 * (reference state, standard state, partial molar, per mole of solution, and per mass
197 * of solution) and 5 functions multiplied together makes 25 possible functions. That's
198 * why %ThermoPhase is such a large class.
199 *
200 * ## Setting the State of the phase
201 *
202 * Typically, the way the ThermoPhase object works is that there are a set of functions
203 * that set the state of the phase via setting the internal independent variables. Then,
204 * there are another set of functions that query the thermodynamic functions evaluated
205 * at the current %State of the phase. Internally, most of the intermediate work
206 * generally occurs at the point where the internal state of the system is set and not
207 * at the time when individual thermodynamic functions are queried (though the actual
208 * breakdown in work is dependent on the individual derived ThermoPhase object).
209 * Therefore, for efficiency, the user should lump together queries of thermodynamic
210 * functions after setting the state. Moreover, in setting the state, if the density is
211 * the independent variable, the following order should be used:
212 *
213 * - Set the temperature
214 * - Set the mole or mass fractions or set the molalities
215 * - set the pressure.
216 *
217 * For classes which inherit from VPStandardStateTP, the above order may be used, or the
218 * following order may be used. It's not important.
219 *
220 * - Set the temperature
221 * - Set the pressure
222 * - Set the mole or mass fractions or set the molalities
223 *
224 * See the @ref sec-thermophase-set-state "list of methods" that can be used to set
225 * the complete state of ThermoPhase objects.
226 *
227 * ## Treatment of the phase potential and the electrochemical potential of a species
228 *
229 * The electrochemical potential of species k in a phase p, @f$ \zeta_k @f$, is related
230 * to the chemical potential as:
231 *
232 * @f[
233 * \zeta_{k}(T,P) = \mu_{k}(T,P) + z_k \phi_p
234 * @f]
235 *
236 * where @f$ \nu_k @f$ is the charge of species k, and @f$ \phi_p @f$ is the electric
237 * potential of phase p.
238 *
239 * The potential @f$ \phi_p @f$ is tracked and internally stored within the base
240 * ThermoPhase object. It constitutes a specification of the internal state of the
241 * phase; it's the third state variable, the first two being temperature and density
242 * (or, pressure, for incompressible equations of state). It may be set with the
243 * function, setElectricPotential(), and may be queried with the function
244 * electricPotential().
245 *
246 * Note, the overall electrochemical potential of a phase may not be changed by the
247 * potential because many phases enforce charge neutrality:
248 *
249 * @f[
250 * 0 = \sum_k z_k X_k
251 * @f]
252 *
253 * Whether charge neutrality is necessary for a phase is also specified within the
254 * ThermoPhase object, by the function call chargeNeutralityNecessary(). Note, that it
255 * is not necessary for the ideal gas phase, currently. However, it is necessary for
256 * liquid phases such as DebyeHuckel and HMWSoln for the proper specification of the
257 * chemical potentials.
258 *
259 * This equation, when applied to the @f$ \zeta_k @f$ equation described above, results
260 * in a zero net change in the effective Gibbs free energy of the phase. However,
261 * specific charged species in the phase may increase or decrease their electrochemical
262 * potentials, which will have an effect on interfacial reactions involving charged
263 * species, when there is a potential drop between phases. This effect is used within
264 * the InterfaceKinetics and EdgeKinetics classes.
265 *
266 * ## Specification of Activities and Activity Conventions
267 *
268 * The activity @f$ a_k @f$ and activity coefficient @f$ \gamma_k @f$ of a species in
269 * solution is related to the chemical potential by
270 *
271 * @f[
272 * \mu_k = \mu_k^0(T,P) + \hat R T \ln a_k = \mu_k^0(T,P) + \hat R T \ln x_k \gamma_k
273 * @f]
274 *
275 * The quantity @f$ \mu_k^0(T,P) @f$ is the standard chemical potential at unit
276 * activity, which depends on the temperature and pressure, but not on the composition.
277 * The activity is dimensionless. Within liquid electrolytes it's common to use a
278 * molality convention, where solute species employ the molality-based activity
279 * coefficients:
280 *
281 * @f[
282 * \mu_k = \mu_k^\triangle(T,P) + R T \ln a_k^{\triangle} =
283 * \mu_k^\triangle(T,P) + R T \ln \frac{\gamma_k^{\triangle} m_k}{m^\triangle}
284 * @f]
285 *
286 * And the solvent employs the convention
287 * @f[
288 * \mu_o = \mu^o_o(T,P) + RT \ln a_o
289 * @f]
290 *
291 * where @f$ a_o @f$ is often redefined in terms of the osmotic coefficient @f$ \phi
292 * @f$:
293 *
294 * @f[
295 * \phi = \frac{- \ln a_o}{\tilde{M}_o \sum_{i \ne o} m_i}
296 * @f]
297 *
298 * ThermoPhase classes which employ the molality based convention are all derived from
299 * the MolalityVPSSTP class. See the class description for further information on its
300 * capabilities.
301 *
302 * The activity convention used by a ThermoPhase object may be queried via the
303 * activityConvention() function. A zero means molar based, while a one
304 * means molality based.
305 *
306 * The function getActivities() returns a vector of activities. Whether these are
307 * molar-based or molality-based depends on the value of activityConvention().
308 *
309 * The function getActivityCoefficients() always returns molar-based activity
310 * coefficients regardless of the activity convention used. The function
311 * MolalityVPSSTP::getMolalityActivityCoefficients() returns molality
312 * based activity coefficients for those ThermoPhase objects derived
313 * from the MolalityVPSSTP class. The function MolalityVPSSTP::osmoticCoefficient()
314 * returns the osmotic coefficient.
315
316 * ## Activity Concentrations: Relationship of ThermoPhase to Kinetics Expressions
317 *
318 * %Cantera can handle both thermodynamics and kinetics mechanisms. Reversible kinetics
319 * mechanisms within %Cantera must be compatible with thermodynamics in the sense that
320 * at equilibrium, or at infinite times, the concentrations of species must conform to
321 * thermodynamics. This means that for every valid reversible kinetics reaction in a
322 * mechanism, it must be reducible to an expression involving the ratio of the product
323 * activity to the reactant activities being equal to the exponential of the
324 * dimensionless standard state gibbs free energies of reaction. Irreversible kinetics
325 * reactions do not have this requirement; however, their usage can yield unexpected and
326 * inconsistent results in many situations.
327 *
328 * The actual units used in a kinetics expression depend on the context or the relative
329 * field of study. For example, in gas phase kinetics, species in kinetics expressions
330 * are expressed in terms of concentrations, for example, gmol cm-3. In solid phase
331 * studies, however, kinetics is usually expressed in terms of unitless activities,
332 * which most often equate to solid phase mole fractions. In order to accommodate
333 * variability here, %Cantera has come up with the idea of activity concentrations,
334 * @f$ C^a_k @f$. Activity concentrations are the expressions used directly in kinetics
335 * expressions. These activity (or generalized) concentrations are used by kinetics
336 * manager classes to compute the forward and reverse rates of elementary reactions.
337 * Note that they may or may not have units of concentration --- they might be partial
338 * pressures, mole fractions, or surface coverages, The activity concentrations for
339 * species *k*, @f$ C^a_k @f$, are related to the activity for species *k*, @f$ a_k @f$,
340 * via the expression:
341 *
342 * @f[
343 * a_k = C^a_k / C^0_k
344 * @f]
345 *
346 * @f$ C^0_k @f$ are called standard concentrations. They serve as multiplicative
347 * factors between the activities and the generalized concentrations. Standard
348 * concentrations may be different for each species. They may depend on both the
349 * temperature and the pressure. However, they may not depend on the composition of the
350 * phase. For example, for the IdealGasPhase object the standard concentration is
351 * defined as
352 *
353 * @f[
354 * C^0_k = \frac{P}{RT}
355 * @f]
356 *
357 * while in many solid phase kinetics problems,
358 *
359 * @f[
360 * C^0_k = 1.0
361 * @f]
362 *
363 * is employed making the units for activity concentrations in solids unitless.
364 *
365 * ThermoPhase member functions dealing with this concept include
366 * getActivityConcentrations(), which provides a vector of the current activity
367 * concentrations. The function standardConcentration() returns the standard
368 * concentration of the kth species. The function logStandardConc(), returns the natural
369 * log of the kth standard concentration. The function standardConcentrationUnits()
370 * returns the units of the standard concentration.
371 *
372 * ### Equilibrium constants
373 *
374 * - @f$ K_a @f$ is the equilibrium constant defined in terms of the standard state
375 * Gibbs free energy values. It is by definition dimensionless.
376 *
377 * - @f$ K_p @f$ is the equilibrium constant defined in terms of the reference state
378 * Gibbs free energy values. It is by definition dimensionless. The pressure
379 * dependence is handled entirely on the RHS of the equilibrium expression.
380 *
381 * - @f$ K_c @f$ is the equilibrium constant defined in terms of the activity
382 * concentrations. The dimensions depend on the number of products and reactants.
383 *
384 * The kinetics manager requires the calculation of @f$ K_c @f$ for the calculation of
385 * the reverse rate constant.
386 *
387 * @ingroup thermoprops
388 */
389class ThermoPhase : public Phase
390{
391public:
392 //! Constructor. Note that ThermoPhase is meant to be used as a base class,
393 //! so this constructor should not be called explicitly.
394 ThermoPhase() = default;
395
396 //! @name Information Methods
397 //! @{
398
399 string type() const override {
400 return "none";
401 }
402
403 //! Boolean indicating whether phase is ideal
404 virtual bool isIdeal() const {
405 return false;
406 }
407
408 //! String indicating the mechanical phase of the matter in this Phase.
409 /*!
410 * Options for the string are:
411 * * `unspecified`
412 * * `supercritical`
413 * * `gas`
414 * * `liquid`
415 * * `solid`
416 * * `solid-liquid-mix`
417 * * `solid-gas-mix`
418 * * `liquid-gas-mix`
419 * * `solid-liquid-gas-mix`
420 *
421 * `unspecified` is the default and should be used when the Phase does not
422 * distinguish between mechanical phases or does not have enough information to
423 * determine which mechanical phase(s) are present.
424 *
425 * @todo Needs to be implemented for all phase types. Currently only implemented for
426 * PureFluidPhase.
427 */
428 virtual string phaseOfMatter() const {
429 return "unspecified";
430 }
431
432 /**
433 * Returns the reference pressure in Pa. This function is a wrapper
434 * that calls the species thermo refPressure function.
435 */
436 virtual double refPressure() const {
437 return m_spthermo.refPressure();
438 }
439
440 //! Minimum temperature for which the thermodynamic data for the species
441 //! or phase are valid.
442 /*!
443 * If no argument is supplied, the value returned will be the lowest
444 * temperature at which the data for @e all species are valid. Otherwise,
445 * the value will be only for species @e k. This function is a wrapper that
446 * calls the species thermo minTemp function.
447 *
448 * @param k index of the species. Default is -1, which will return the max
449 * of the min value over all species.
450 */
451 virtual double minTemp(size_t k = npos) const {
452 return m_spthermo.minTemp(k);
453 }
454
455 //! Report the 298 K Heat of Formation of the standard state of one species
456 //! (J kmol-1)
457 /*!
458 * The 298K Heat of Formation is defined as the enthalpy change to create
459 * the standard state of the species from its constituent elements in their
460 * standard states at 298 K and 1 bar.
461 *
462 * @param k species index
463 * @returns the current value of the Heat of Formation at 298K
464 * and 1 bar
465 */
466 double Hf298SS(const size_t k) const {
467 return m_spthermo.reportOneHf298(k);
468 }
469
470 //! Modify the value of the 298 K Heat of Formation of one species in the
471 //! phase (J kmol-1)
472 /*!
473 * The 298K heat of formation is defined as the enthalpy change to create
474 * the standard state of the species from its constituent elements in their
475 * standard states at 298 K and 1 bar.
476 *
477 * @param k Species k
478 * @param Hf298New Specify the new value of the Heat of Formation at
479 * 298K and 1 bar
480 */
481 virtual void modifyOneHf298SS(const size_t k, const double Hf298New) {
482 m_spthermo.modifyOneHf298(k, Hf298New);
484 }
485
486 //! Restore the original heat of formation of one or more species
487 /*!
488 * Resets changes made by modifyOneHf298SS(). If the species index is not
489 * specified, the heats of formation for all species are restored.
490 */
491 virtual void resetHf298(const size_t k=npos);
492
493 //! Maximum temperature for which the thermodynamic data for the species
494 //! are valid.
495 /*!
496 * If no argument is supplied, the value returned will be the highest
497 * temperature at which the data for @e all species are valid. Otherwise,
498 * the value will be only for species @e k. This function is a wrapper that
499 * calls the species thermo maxTemp function.
500 *
501 * @param k index of the species. Default is -1, which will return the min
502 * of the max value over all species.
503 */
504 virtual double maxTemp(size_t k = npos) const {
505 return m_spthermo.maxTemp(k);
506 }
507
508 //! Returns the chargeNeutralityNecessity boolean
509 /*!
510 * Some phases must have zero net charge in order for their thermodynamics
511 * functions to be valid. If this is so, then the value returned from this
512 * function is true. If this is not the case, then this is false. Now, ideal
513 * gases have this parameter set to false, while solution with molality-
514 * based activity coefficients have this parameter set to true.
515 */
518 }
519
520 //! @}
521 //! @name Molar Thermodynamic Properties of the Solution
522 //! @{
523
524 //! Molar enthalpy. Units: J/kmol.
525 virtual double enthalpy_mole() const {
526 throw NotImplementedError("ThermoPhase::enthalpy_mole");
527 }
528
529 //! Molar internal energy. Units: J/kmol.
530 virtual double intEnergy_mole() const {
531 return enthalpy_mole() - pressure()* molarVolume();
532 }
533
534 //! Molar entropy. Units: J/kmol/K.
535 virtual double entropy_mole() const {
536 throw NotImplementedError("ThermoPhase::entropy_mole");
537 }
538
539 //! Molar Gibbs function. Units: J/kmol.
540 virtual double gibbs_mole() const {
542 }
543
544 //! Molar heat capacity at constant pressure. Units: J/kmol/K.
545 virtual double cp_mole() const {
546 throw NotImplementedError("ThermoPhase::cp_mole");
547 }
548
549 //! Molar heat capacity at constant volume. Units: J/kmol/K.
550 virtual double cv_mole() const {
551 throw NotImplementedError("ThermoPhase::cv_mole");
552 }
553
554 //! @}
555 //! @name Mechanical Properties
556 //! @{
557
558 //! Returns the isothermal compressibility. Units: 1/Pa.
559 /*!
560 * The isothermal compressibility is defined as
561 * @f[
562 * \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T
563 * @f]
564 * or
565 * @f[
566 * \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T
567 * @f]
568 */
569 virtual double isothermalCompressibility() const {
570 throw NotImplementedError("ThermoPhase::isothermalCompressibility");
571 }
572
573 //! Return the volumetric thermal expansion coefficient. Units: 1/K.
574 /*!
575 * The thermal expansion coefficient is defined as
576 * @f[
577 * \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P
578 * @f]
579 */
580 virtual double thermalExpansionCoeff() const {
581 throw NotImplementedError("ThermoPhase::thermalExpansionCoeff");
582 }
583
584 //! Return the speed of sound. Units: m/s.
585 /*!
586 * The speed of sound is defined as
587 * @f[
588 * c = \sqrt{\left(\frac{\partial P}{\partial\rho}\right)_s}
589 * @f]
590 */
591 virtual double soundSpeed() const {
592 throw NotImplementedError("ThermoPhase::soundSpeed");
593 }
594
595 //! @}
596 //! @name Electric Potential
597 //!
598 //! The phase may be at some non-zero electrical potential. These methods
599 //! set or get the value of the electric potential.
600 //! @{
601
602 //! Set the electric potential of this phase (V).
603 /*!
604 * This is used by classes InterfaceKinetics and EdgeKinetics to
605 * compute the rates of charge-transfer reactions, and in computing
606 * the electrochemical potentials of the species.
607 *
608 * Each phase may have its own electric potential.
609 *
610 * @param v Input value of the electric potential in Volts
611 */
612 void setElectricPotential(double v) {
613 m_phi = v;
615 }
616
617 //! Returns the electric potential of this phase (V).
618 /*!
619 * Units are Volts (which are Joules/coulomb)
620 */
621 double electricPotential() const {
622 return m_phi;
623 }
624
625 //! @}
626 //! @name Activities, Standard States, and Activity Concentrations
627 //!
628 //! The activity @f$ a_k @f$ of a species in solution is related to the
629 //! chemical potential by @f[ \mu_k = \mu_k^0(T,P) + \hat R T \ln a_k. @f]
630 //! The quantity @f$ \mu_k^0(T,P) @f$ is the standard chemical potential at
631 //! unit activity, which depends on temperature and pressure, but not on
632 //! composition. The activity is dimensionless.
633 //! @{
634
635 //! This method returns the convention used in specification of the
636 //! activities, of which there are currently two, molar- and molality-based
637 //! conventions.
638 /*!
639 * Currently, there are two activity conventions:
640 * - Molar-based activities
641 * %Unit activity of species at either a hypothetical pure
642 * solution of the species or at a hypothetical
643 * pure ideal solution at infinite dilution
644 * cAC_CONVENTION_MOLAR 0
645 * - default
646 *
647 * - Molality-based activities
648 * (unit activity of solutes at a hypothetical 1 molal
649 * solution referenced to infinite dilution at all
650 * pressures and temperatures).
651 * cAC_CONVENTION_MOLALITY 1
652 */
653 virtual int activityConvention() const;
654
655 //! This method returns the convention used in specification of the standard
656 //! state, of which there are currently two, temperature based, and variable
657 //! pressure based.
658 /*!
659 * Currently, there are two standard state conventions:
660 * - Temperature-based activities
661 * cSS_CONVENTION_TEMPERATURE 0
662 * - default
663 *
664 * - Variable Pressure and Temperature -based activities
665 * cSS_CONVENTION_VPSS 1
666 *
667 * - Thermodynamics is set via slave ThermoPhase objects with
668 * nothing being carried out at this ThermoPhase object level
669 * cSS_CONVENTION_SLAVE 2
670 */
671 virtual int standardStateConvention() const;
672
673 //! Returns the units of the "standard concentration" for this phase
674 /*!
675 * These are the units of the values returned by the functions
676 * getActivityConcentrations() and standardConcentration(), which can
677 * vary between different ThermoPhase-derived classes, or change within
678 * a single class depending on input options. See the documentation for
679 * standardConcentration() for the derived class for specific details.
680 */
681 virtual Units standardConcentrationUnits() const;
682
683 //! This method returns an array of generalized concentrations
684 /*!
685 * @f$ C^a_k @f$ are defined such that @f$ a_k = C^a_k / C^0_k, @f$ where
686 * @f$ C^0_k @f$ is a standard concentration defined below and @f$ a_k @f$
687 * are activities used in the thermodynamic functions. These activity (or
688 * generalized) concentrations are used by kinetics manager classes to
689 * compute the forward and reverse rates of elementary reactions. Note that
690 * they may or may not have units of concentration --- they might be partial
691 * pressures, mole fractions, or surface coverages, for example.
692 *
693 * @param c Output array of generalized concentrations. The units depend
694 * upon the implementation of the reaction rate expressions within
695 * the phase.
696 */
697 virtual void getActivityConcentrations(double* c) const {
698 throw NotImplementedError("ThermoPhase::getActivityConcentrations");
699 }
700
701 //! Return the standard concentration for the kth species
702 /*!
703 * The standard concentration @f$ C^0_k @f$ used to normalize the activity
704 * (that is, generalized) concentration. In many cases, this quantity will be
705 * the same for all species in a phase - for example, for an ideal gas @f$
706 * C^0_k = P/\hat R T @f$. For this reason, this method returns a single
707 * value, instead of an array. However, for phases in which the standard
708 * concentration is species-specific (such as surface species of different
709 * sizes), this method may be called with an optional parameter indicating
710 * the species.
711 *
712 * @param k Optional parameter indicating the species. The default
713 * is to assume this refers to species 0.
714 * @return
715 * Returns the standard concentration. The units are by definition
716 * dependent on the ThermoPhase and kinetics manager representation.
717 */
718 virtual double standardConcentration(size_t k=0) const {
719 throw NotImplementedError("ThermoPhase::standardConcentration");
720 }
721
722 //! Natural logarithm of the standard concentration of the kth species.
723 /*!
724 * @param k index of the species (defaults to zero)
725 */
726 virtual double logStandardConc(size_t k=0) const;
727
728 //! Get the array of non-dimensional activities at the current solution
729 //! temperature, pressure, and solution concentration.
730 /*!
731 * Note, for molality based formulations, this returns the molality based
732 * activities.
733 *
734 * We resolve this function at this level by calling on the
735 * activityConcentration function. However, derived classes may want to
736 * override this default implementation.
737 *
738 * @param a Output vector of activities. Length: m_kk.
739 */
740 virtual void getActivities(double* a) const;
741
742 //! Get the array of non-dimensional molar-based activity coefficients at
743 //! the current solution temperature, pressure, and solution concentration.
744 /*!
745 * @param ac Output vector of activity coefficients. Length: m_kk.
746 */
747 virtual void getActivityCoefficients(double* ac) const {
748 if (m_kk == 1) {
749 ac[0] = 1.0;
750 } else {
751 throw NotImplementedError("ThermoPhase::getActivityCoefficients");
752 }
753 }
754
755 //! Get the array of non-dimensional molar-based ln activity coefficients at
756 //! the current solution temperature, pressure, and solution concentration.
757 /*!
758 * @param lnac Output vector of ln activity coefficients. Length: m_kk.
759 */
760 virtual void getLnActivityCoefficients(double* lnac) const;
761
762 //! @}
763 //! @name Partial Molar Properties of the Solution
764 //! @{
765
766 //! Get the species chemical potentials. Units: J/kmol.
767 /*!
768 * This function returns a vector of chemical potentials of the species in
769 * solution at the current temperature, pressure and mole fraction of the
770 * solution.
771 *
772 * @param mu Output vector of species chemical
773 * potentials. Length: m_kk. Units: J/kmol
774 */
775 virtual void getChemPotentials(double* mu) const {
776 throw NotImplementedError("ThermoPhase::getChemPotentials");
777 }
778
779 //! Get the species electrochemical potentials.
780 /*!
781 * These are partial molar quantities. This method adds a term @f$ F z_k
782 * \phi_p @f$ to each chemical potential. The electrochemical potential of
783 * species k in a phase p, @f$ \zeta_k @f$, is related to the chemical
784 * potential via the following equation,
785 *
786 * @f[
787 * \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p
788 * @f]
789 *
790 * @param mu Output vector of species electrochemical
791 * potentials. Length: m_kk. Units: J/kmol
792 */
793 void getElectrochemPotentials(double* mu) const;
794
795 //! Returns an array of partial molar enthalpies for the species
796 //! in the mixture. Units (J/kmol)
797 /*!
798 * @param hbar Output vector of species partial molar enthalpies.
799 * Length: m_kk. units are J/kmol.
800 */
801 virtual void getPartialMolarEnthalpies(double* hbar) const {
802 throw NotImplementedError("ThermoPhase::getPartialMolarEnthalpies");
803 }
804
805 //! Returns an array of partial molar entropies of the species in the
806 //! solution. Units: J/kmol/K.
807 /*!
808 * @param sbar Output vector of species partial molar entropies.
809 * Length = m_kk. units are J/kmol/K.
810 */
811 virtual void getPartialMolarEntropies(double* sbar) const {
812 throw NotImplementedError("ThermoPhase::getPartialMolarEntropies");
813 }
814
815 //! Return an array of partial molar internal energies for the
816 //! species in the mixture. Units: J/kmol.
817 /*!
818 * @param ubar Output vector of species partial molar internal energies.
819 * Length = m_kk. units are J/kmol.
820 */
821 virtual void getPartialMolarIntEnergies(double* ubar) const {
822 throw NotImplementedError("ThermoPhase::getPartialMolarIntEnergies");
823 }
824
825 //! Return an array of partial molar heat capacities for the
826 //! species in the mixture. Units: J/kmol/K
827 /*!
828 * @param cpbar Output vector of species partial molar heat
829 * capacities at constant pressure.
830 * Length = m_kk. units are J/kmol/K.
831 */
832 virtual void getPartialMolarCp(double* cpbar) const {
833 throw NotImplementedError("ThermoPhase::getPartialMolarCp");
834 }
835
836 //! Return an array of partial molar volumes for the
837 //! species in the mixture. Units: m^3/kmol.
838 /*!
839 * @param vbar Output vector of species partial molar volumes.
840 * Length = m_kk. units are m^3/kmol.
841 */
842 virtual void getPartialMolarVolumes(double* vbar) const {
843 throw NotImplementedError("ThermoPhase::getPartialMolarVolumes");
844 }
845
846 //! @}
847 //! @name Properties of the Standard State of the Species in the Solution
848 //! @{
849
850 //! Get the array of chemical potentials at unit activity for the species at
851 //! their standard states at the current *T* and *P* of the solution.
852 /*!
853 * These are the standard state chemical potentials @f$ \mu^0_k(T,P)
854 * @f$. The values are evaluated at the current temperature and pressure of
855 * the solution
856 *
857 * @param mu Output vector of chemical potentials.
858 * Length: m_kk.
859 */
860 virtual void getStandardChemPotentials(double* mu) const {
861 throw NotImplementedError("ThermoPhase::getStandardChemPotentials");
862 }
863
864 //! Get the nondimensional Enthalpy functions for the species at their
865 //! standard states at the current *T* and *P* of the solution.
866 /*!
867 * @param hrt Output vector of nondimensional standard state enthalpies.
868 * Length: m_kk.
869 */
870 virtual void getEnthalpy_RT(double* hrt) const {
871 throw NotImplementedError("ThermoPhase::getEnthalpy_RT");
872 }
873
874 //! Get the array of nondimensional Entropy functions for the standard state
875 //! species at the current *T* and *P* of the solution.
876 /*!
877 * @param sr Output vector of nondimensional standard state entropies.
878 * Length: m_kk.
879 */
880 virtual void getEntropy_R(double* sr) const {
881 throw NotImplementedError("ThermoPhase::getEntropy_R");
882 }
883
884 //! Get the nondimensional Gibbs functions for the species in their standard
885 //! states at the current *T* and *P* of the solution.
886 /*!
887 * @param grt Output vector of nondimensional standard state Gibbs free
888 * energies. Length: m_kk.
889 */
890 virtual void getGibbs_RT(double* grt) const {
891 throw NotImplementedError("ThermoPhase::getGibbs_RT");
892 }
893
894 //! Get the Gibbs functions for the standard state of the species at the
895 //! current *T* and *P* of the solution
896 /*!
897 * Units are Joules/kmol
898 * @param gpure Output vector of standard state Gibbs free energies.
899 * Length: m_kk.
900 */
901 virtual void getPureGibbs(double* gpure) const {
902 throw NotImplementedError("ThermoPhase::getPureGibbs");
903 }
904
905 //! Returns the vector of nondimensional Internal Energies of the standard
906 //! state species at the current *T* and *P* of the solution
907 /*!
908 * @param urt output vector of nondimensional standard state internal energies
909 * of the species. Length: m_kk.
910 */
911 virtual void getIntEnergy_RT(double* urt) const {
912 throw NotImplementedError("ThermoPhase::getIntEnergy_RT");
913 }
914
915 //! Get the nondimensional Heat Capacities at constant pressure for the
916 //! species standard states at the current *T* and *P* of the
917 //! solution
918 /*!
919 * @param cpr Output vector of nondimensional standard state heat
920 * capacities. Length: m_kk.
921 */
922 virtual void getCp_R(double* cpr) const {
923 throw NotImplementedError("ThermoPhase::getCp_R");
924 }
925
926 //! Get the molar volumes of the species standard states at the current
927 //! *T* and *P* of the solution.
928 /*!
929 * units = m^3 / kmol
930 *
931 * @param vol Output vector containing the standard state volumes.
932 * Length: m_kk.
933 */
934 virtual void getStandardVolumes(double* vol) const {
935 throw NotImplementedError("ThermoPhase::getStandardVolumes");
936 }
937
938 //! @}
939 //! @name Thermodynamic Values for the Species Reference States
940 //! @{
941
942 //! Returns the vector of nondimensional enthalpies of the reference state
943 //! at the current temperature of the solution and the reference pressure
944 //! for the species.
945 /*!
946 * @param hrt Output vector containing the nondimensional reference
947 * state enthalpies. Length: m_kk.
948 */
949 virtual void getEnthalpy_RT_ref(double* hrt) const {
950 throw NotImplementedError("ThermoPhase::getEnthalpy_RT_ref");
951 }
952
953 //! Returns the vector of nondimensional Gibbs Free Energies of the
954 //! reference state at the current temperature of the solution and the
955 //! reference pressure for the species.
956 /*!
957 * @param grt Output vector containing the nondimensional reference state
958 * Gibbs Free energies. Length: m_kk.
959 */
960 virtual void getGibbs_RT_ref(double* grt) const {
961 throw NotImplementedError("ThermoPhase::getGibbs_RT_ref");
962 }
963
964 //! Returns the vector of the Gibbs function of the reference state at the
965 //! current temperature of the solution and the reference pressure for the
966 //! species.
967 /*!
968 * @param g Output vector containing the reference state
969 * Gibbs Free energies. Length: m_kk. Units: J/kmol.
970 */
971 virtual void getGibbs_ref(double* g) const {
972 throw NotImplementedError("ThermoPhase::getGibbs_ref");
973 }
974
975 //! Returns the vector of nondimensional entropies of the reference state at
976 //! the current temperature of the solution and the reference pressure for
977 //! each species.
978 /*!
979 * @param er Output vector containing the nondimensional reference
980 * state entropies. Length: m_kk.
981 */
982 virtual void getEntropy_R_ref(double* er) const {
983 throw NotImplementedError("ThermoPhase::getEntropy_R_ref");
984 }
985
986 //! Returns the vector of nondimensional internal Energies of the reference
987 //! state at the current temperature of the solution and the reference
988 //! pressure for each species.
989 /*!
990 * @param urt Output vector of nondimensional reference state internal
991 * energies of the species. Length: m_kk
992 */
993 virtual void getIntEnergy_RT_ref(double* urt) const {
994 throw NotImplementedError("ThermoPhase::getIntEnergy_RT_ref");
995 }
996
997 //! Returns the vector of nondimensional constant pressure heat capacities
998 //! of the reference state at the current temperature of the solution and
999 //! reference pressure for each species.
1000 /*!
1001 * @param cprt Output vector of nondimensional reference state
1002 * heat capacities at constant pressure for the species.
1003 * Length: m_kk
1004 */
1005 virtual void getCp_R_ref(double* cprt) const {
1006 throw NotImplementedError("ThermoPhase::getCp_R_ref");
1007 }
1008
1009 //! Get the molar volumes of the species reference states at the current
1010 //! *T* and *P_ref* of the solution.
1011 /*!
1012 * units = m^3 / kmol
1013 *
1014 * @param vol Output vector containing the standard state volumes.
1015 * Length: m_kk.
1016 */
1017 virtual void getStandardVolumes_ref(double* vol) const {
1018 throw NotImplementedError("ThermoPhase::getStandardVolumes_ref");
1019 }
1020
1021 // The methods below are not virtual, and should not be overloaded.
1022
1023 //! @}
1024 //! @name Specific Properties
1025 //! @{
1026
1027 //! Specific enthalpy. Units: J/kg.
1028 double enthalpy_mass() const {
1030 }
1031
1032 //! Specific internal energy. Units: J/kg.
1033 double intEnergy_mass() const {
1035 }
1036
1037 //! Specific entropy. Units: J/kg/K.
1038 double entropy_mass() const {
1040 }
1041
1042 //! Specific Gibbs function. Units: J/kg.
1043 double gibbs_mass() const {
1045 }
1046
1047 //! Specific heat at constant pressure. Units: J/kg/K.
1048 double cp_mass() const {
1049 return cp_mole()/meanMolecularWeight();
1050 }
1051
1052 //! Specific heat at constant volume. Units: J/kg/K.
1053 double cv_mass() const {
1054 return cv_mole()/meanMolecularWeight();
1055 }
1056 //! @}
1057
1058 //! Return the Gas Constant multiplied by the current temperature
1059 /*!
1060 * The units are Joules kmol-1
1061 */
1062 double RT() const {
1063 return temperature() * GasConstant;
1064 }
1065
1066 //! @name Setting the State
1067 //! @anchor sec-thermophase-set-state
1068 //!
1069 //! These methods set all or part of the thermodynamic state.
1070 //! @{
1071
1072 //! Set the temperature (K), pressure (Pa), and mole fractions.
1073 /*!
1074 * Note, the mole fractions are set first before the pressure is set.
1075 * Setting the pressure may involve the solution of a nonlinear equation.
1076 *
1077 * @param t Temperature (K)
1078 * @param p Pressure (Pa)
1079 * @param x Vector of mole fractions.
1080 * Length is equal to m_kk.
1081 */
1082 virtual void setState_TPX(double t, double p, const double* x);
1083
1084 //! Set the temperature (K), pressure (Pa), and mole fractions.
1085 /*!
1086 * Note, the mole fractions are set first before the pressure is set.
1087 * Setting the pressure may involve the solution of a nonlinear equation.
1088 *
1089 * @param t Temperature (K)
1090 * @param p Pressure (Pa)
1091 * @param x Composition map of mole fractions. Species not in
1092 * the composition map are assumed to have zero mole fraction
1093 */
1094 virtual void setState_TPX(double t, double p, const Composition& x);
1095
1096 //! Set the temperature (K), pressure (Pa), and mole fractions.
1097 /*!
1098 * Note, the mole fractions are set first before the pressure is set.
1099 * Setting the pressure may involve the solution of a nonlinear equation.
1100 *
1101 * @param t Temperature (K)
1102 * @param p Pressure (Pa)
1103 * @param x String containing a composition map of the mole fractions.
1104 * Species not in the composition map are assumed to have zero
1105 * mole fraction
1106 */
1107 virtual void setState_TPX(double t, double p, const string& x);
1108
1109 //! Set the internally stored temperature (K), pressure (Pa), and mass
1110 //! fractions of the phase.
1111 /*!
1112 * Note, the mass fractions are set first before the pressure is set.
1113 * Setting the pressure may involve the solution of a nonlinear equation.
1114 *
1115 * @param t Temperature (K)
1116 * @param p Pressure (Pa)
1117 * @param y Vector of mass fractions.
1118 * Length is equal to m_kk.
1119 */
1120 virtual void setState_TPY(double t, double p, const double* y);
1121
1122 //! Set the internally stored temperature (K), pressure (Pa), and mass
1123 //! fractions of the phase
1124 /*!
1125 * Note, the mass fractions are set first before the pressure is set.
1126 * Setting the pressure may involve the solution of a nonlinear equation.
1127 *
1128 * @param t Temperature (K)
1129 * @param p Pressure (Pa)
1130 * @param y Composition map of mass fractions. Species not in
1131 * the composition map are assumed to have zero mass fraction
1132 */
1133 virtual void setState_TPY(double t, double p, const Composition& y);
1134
1135 //! Set the internally stored temperature (K), pressure (Pa), and mass
1136 //! fractions of the phase
1137 /*!
1138 * Note, the mass fractions are set first before the pressure is set.
1139 * Setting the pressure may involve the solution of a nonlinear equation.
1140 *
1141 * @param t Temperature (K)
1142 * @param p Pressure (Pa)
1143 * @param y String containing a composition map of the mass fractions.
1144 * Species not in the composition map are assumed to have zero
1145 * mass fraction
1146 */
1147 virtual void setState_TPY(double t, double p, const string& y);
1148
1149 //! Set the temperature (K) and pressure (Pa)
1150 /*!
1151 * Setting the pressure may involve the solution of a nonlinear equation.
1152 *
1153 * @param t Temperature (K)
1154 * @param p Pressure (Pa)
1155 */
1156 virtual void setState_TP(double t, double p);
1157
1158 //! Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of
1159 //! the phase.
1160 /*!
1161 * @param h Specific enthalpy (J/kg)
1162 * @param p Pressure (Pa)
1163 * @param tol Optional parameter setting the tolerance of the calculation.
1164 * Important for some applications where numerical Jacobians
1165 * are being calculated.
1166 */
1167 virtual void setState_HP(double h, double p, double tol=1e-9);
1168
1169 //! Set the specific internal energy (J/kg) and specific volume (m^3/kg).
1170 /*!
1171 * This function fixes the internal state of the phase so that the specific
1172 * internal energy and specific volume have the value of the input
1173 * parameters.
1174 *
1175 * @param u specific internal energy (J/kg)
1176 * @param v specific volume (m^3/kg).
1177 * @param tol Optional parameter setting the tolerance of the calculation.
1178 * Important for some applications where numerical Jacobians
1179 * are being calculated.
1180 */
1181 virtual void setState_UV(double u, double v, double tol=1e-9);
1182
1183 //! Set the specific entropy (J/kg/K) and pressure (Pa).
1184 /*!
1185 * This function fixes the internal state of the phase so that the specific
1186 * entropy and the pressure have the value of the input parameters.
1187 *
1188 * @param s specific entropy (J/kg/K)
1189 * @param p specific pressure (Pa).
1190 * @param tol Optional parameter setting the tolerance of the calculation.
1191 * Important for some applications where numerical Jacobians
1192 * are being calculated.
1193 */
1194 virtual void setState_SP(double s, double p, double tol=1e-9);
1195
1196 //! Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
1197 /*!
1198 * This function fixes the internal state of the phase so that the specific
1199 * entropy and specific volume have the value of the input parameters.
1200 *
1201 * @param s specific entropy (J/kg/K)
1202 * @param v specific volume (m^3/kg).
1203 * @param tol Optional parameter setting the tolerance of the calculation.
1204 * Important for some applications where numerical Jacobians
1205 * are being calculated.
1206 */
1207 virtual void setState_SV(double s, double v, double tol=1e-9);
1208
1209 //! Set the specific entropy (J/kg/K) and temperature (K).
1210 /*!
1211 * This function fixes the internal state of the phase so that the specific
1212 * entropy and temperature have the value of the input parameters.
1213 * This base class function will throw an exception if not overridden.
1214 *
1215 * @param s specific entropy (J/kg/K)
1216 * @param t temperature (K)
1217 * @param tol Optional parameter setting the tolerance of the calculation.
1218 * Important for some applications where numerical Jacobians
1219 * are being calculated.
1220 */
1221 virtual void setState_ST(double s, double t, double tol=1e-9) {
1222 throw NotImplementedError("ThermoPhase::setState_ST");
1223 }
1224
1225 //! Set the temperature (K) and specific volume (m^3/kg).
1226 /*!
1227 * This function fixes the internal state of the phase so that the
1228 * temperature and specific volume have the value of the input parameters.
1229 * This base class function will throw an exception if not overridden.
1230 *
1231 * @param t temperature (K)
1232 * @param v specific volume (m^3/kg)
1233 * @param tol Optional parameter setting the tolerance of the calculation.
1234 * Important for some applications where numerical Jacobians
1235 * are being calculated.
1236 */
1237 virtual void setState_TV(double t, double v, double tol=1e-9) {
1238 throw NotImplementedError("ThermoPhase::setState_TV");
1239 }
1240
1241 //! Set the pressure (Pa) and specific volume (m^3/kg).
1242 /*!
1243 * This function fixes the internal state of the phase so that the
1244 * pressure and specific volume have the value of the input parameters.
1245 * This base class function will throw an exception if not overridden.
1246 *
1247 * @param p pressure (Pa)
1248 * @param v specific volume (m^3/kg)
1249 * @param tol Optional parameter setting the tolerance of the calculation.
1250 * Important for some applications where numerical Jacobians
1251 * are being calculated.
1252 */
1253 virtual void setState_PV(double p, double v, double tol=1e-9) {
1254 throw NotImplementedError("ThermoPhase::setState_PV");
1255 }
1256
1257 //! Set the specific internal energy (J/kg) and pressure (Pa).
1258 /*!
1259 * This function fixes the internal state of the phase so that the specific
1260 * internal energy and pressure have the value of the input parameters.
1261 * This base class function will throw an exception if not overridden.
1262 *
1263 * @param u specific internal energy (J/kg)
1264 * @param p pressure (Pa)
1265 * @param tol Optional parameter setting the tolerance of the calculation.
1266 * Important for some applications where numerical Jacobians
1267 * are being calculated.
1268 */
1269 virtual void setState_UP(double u, double p, double tol=1e-9) {
1270 throw NotImplementedError("ThermoPhase::setState_UP");
1271 }
1272
1273 //! Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
1274 /*!
1275 * This function fixes the internal state of the phase so that the specific
1276 * volume and the specific enthalpy have the value of the input parameters.
1277 * This base class function will throw an exception if not overridden.
1278 *
1279 * @param v specific volume (m^3/kg)
1280 * @param h specific enthalpy (J/kg)
1281 * @param tol Optional parameter setting the tolerance of the calculation.
1282 * Important for some applications where numerical Jacobians
1283 * are being calculated.
1284 */
1285 virtual void setState_VH(double v, double h, double tol=1e-9) {
1286 throw NotImplementedError("ThermoPhase::setState_VH");
1287 }
1288
1289 //! Set the temperature (K) and the specific enthalpy (J/kg)
1290 /*!
1291 * This function fixes the internal state of the phase so that the
1292 * temperature and specific enthalpy have the value of the input parameters.
1293 * This base class function will throw an exception if not overridden.
1294 *
1295 * @param t temperature (K)
1296 * @param h specific enthalpy (J/kg)
1297 * @param tol Optional parameter setting the tolerance of the calculation.
1298 * Important for some applications where numerical Jacobians
1299 * are being calculated.
1300 */
1301 virtual void setState_TH(double t, double h, double tol=1e-9) {
1302 throw NotImplementedError("ThermoPhase::setState_TH");
1303 }
1304
1305 //! Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
1306 /*!
1307 * This function fixes the internal state of the phase so that the
1308 * temperature and pressure have the value of the input parameters.
1309 * This base class function will throw an exception if not overridden.
1310 *
1311 * @param s specific entropy (J/kg/K)
1312 * @param h specific enthalpy (J/kg)
1313 * @param tol Optional parameter setting the tolerance of the calculation.
1314 * Important for some applications where numerical Jacobians
1315 * are being calculated.
1316 */
1317 virtual void setState_SH(double s, double h, double tol=1e-9) {
1318 throw NotImplementedError("ThermoPhase::setState_SH");
1319 }
1320
1321 //! Set the density (kg/m**3) and pressure (Pa) at constant composition
1322 /*!
1323 * This method must be reimplemented in derived classes, where it may
1324 * involve the solution of a nonlinear equation. Within %Cantera, the
1325 * independent variable is the density. Therefore, this function solves for
1326 * the temperature that will yield the desired input pressure and density.
1327 * The composition is held constant during this process.
1328 *
1329 * This base class function will print an error, if not overridden.
1330 *
1331 * @param rho Density (kg/m^3)
1332 * @param p Pressure (Pa)
1333 * @since New in %Cantera 3.0.
1334 */
1335 virtual void setState_DP(double rho, double p) {
1336 throw NotImplementedError("ThermoPhase::setState_DP");
1337 }
1338
1339 //! Set the state using an AnyMap containing any combination of properties
1340 //! supported by the thermodynamic model
1341 /*!
1342 * Accepted keys are:
1343 * * `X` (mole fractions)
1344 * * `Y` (mass fractions)
1345 * * `T` or `temperature`
1346 * * `P` or `pressure` [Pa]
1347 * * `H` or `enthalpy` [J/kg]
1348 * * `U` or `internal-energy` [J/kg]
1349 * * `S` or `entropy` [J/kg/K]
1350 * * `V` or `specific-volume` [m^3/kg]
1351 * * `D` or `density` [kg/m^3]
1352 *
1353 * Composition can be specified as either an AnyMap of species names to
1354 * values or as a composition string. All other values can be given as
1355 * floating point values in Cantera's default units, or as strings with the
1356 * units specified, which will be converted using the Units class.
1357 *
1358 * If no thermodynamic property pair is given, or only one of temperature or
1359 * pressure is given, then 298.15 K and 101325 Pa will be used as necessary
1360 * to fully set the state.
1361 */
1362 virtual void setState(const AnyMap& state);
1363
1364 //! @}
1365 //! @name Set Mixture Composition by Mixture Fraction
1366 //! @{
1367
1368 //! Set the mixture composition according to the
1369 //! mixture fraction = kg fuel / (kg oxidizer + kg fuel)
1370 /*!
1371 * Fuel and oxidizer compositions are given either as
1372 * mole fractions or mass fractions (specified by `basis`)
1373 * and do not need to be normalized. Pressure and temperature are
1374 * kept constant. Elements C, S, H and O are considered for the oxidation.
1375 *
1376 * @param mixFrac mixture fraction (between 0 and 1)
1377 * @param fuelComp composition of the fuel
1378 * @param oxComp composition of the oxidizer
1379 * @param basis either ThermoPhase::molar or ThermoPhase::mass.
1380 * Fuel and oxidizer composition are interpreted
1381 * as mole or mass fractions (default: molar)
1382 */
1383 void setMixtureFraction(double mixFrac, const double* fuelComp,
1384 const double* oxComp, ThermoBasis basis=ThermoBasis::molar);
1385 //! @copydoc ThermoPhase::setMixtureFraction
1386 void setMixtureFraction(double mixFrac, const string& fuelComp,
1387 const string& oxComp, ThermoBasis basis=ThermoBasis::molar);
1388 //! @copydoc ThermoPhase::setMixtureFraction
1389 void setMixtureFraction(double mixFrac, const Composition& fuelComp,
1390 const Composition& oxComp, ThermoBasis basis=ThermoBasis::molar);
1391 //! @}
1392 //! @name Compute Mixture Fraction
1393 //! @{
1394
1395 //! Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for
1396 //! the current mixture given fuel and oxidizer compositions.
1397 /*!
1398 * Fuel and oxidizer compositions are given either as
1399 * mole fractions or mass fractions (specified by `basis`)
1400 * and do not need to be normalized.
1401 * The mixture fraction @f$ Z @f$ can be computed from a single element
1402 * @f[ Z_m = \frac{Z_{\mathrm{mass},m}-Z_{\mathrm{mass},m,\mathrm{ox}}}
1403 * {Z_{\mathrm{mass},\mathrm{fuel}}-Z_{\mathrm{mass},m,\mathrm{ox}}} @f] where
1404 * @f$ Z_{\mathrm{mass},m} @f$ is the elemental mass fraction of element m
1405 * in the mixture, and @f$ Z_{\mathrm{mass},m,\mathrm{ox}} @f$ and
1406 * @f$ Z_{\mathrm{mass},m,\mathrm{fuel}} @f$ are the elemental mass fractions
1407 * of the oxidizer and fuel, or from the Bilger mixture fraction,
1408 * which considers the elements C, S, H and O @cite bilger1979
1409 * @f[ Z_{\mathrm{Bilger}} = \frac{\beta-\beta_{\mathrm{ox}}}
1410 * {\beta_{\mathrm{fuel}}-\beta_{\mathrm{ox}}} @f]
1411 * with @f$ \beta = 2\frac{Z_C}{M_C}+2\frac{Z_S}{M_S}+\frac{1}{2}\frac{Z_H}{M_H}
1412 * -\frac{Z_O}{M_O} @f$
1413 * and @f$ M_m @f$ the atomic weight of element @f$ m @f$.
1414 *
1415 * @param fuelComp composition of the fuel
1416 * @param oxComp composition of the oxidizer
1417 * @param basis either ThermoBasis::molar or ThermoBasis::mass.
1418 * Fuel and oxidizer composition are interpreted
1419 * as mole or mass fractions (default: molar)
1420 * @param element either "Bilger" to compute the mixture fraction
1421 * in terms of the Bilger mixture fraction, or
1422 * an element name, to compute the mixture fraction
1423 * based on a single element (default: "Bilger")
1424 * @returns mixture fraction (kg fuel / kg mixture)
1425 */
1426 double mixtureFraction(const double* fuelComp, const double* oxComp,
1427 ThermoBasis basis=ThermoBasis::molar,
1428 const string& element="Bilger") const;
1429 //! @copydoc ThermoPhase::mixtureFraction
1430 double mixtureFraction(const string& fuelComp, const string& oxComp,
1431 ThermoBasis basis=ThermoBasis::molar,
1432 const string& element="Bilger") const;
1433 //! @copydoc ThermoPhase::mixtureFraction
1434 double mixtureFraction(const Composition& fuelComp, const Composition& oxComp,
1435 ThermoBasis basis=ThermoBasis::molar,
1436 const string& element="Bilger") const;
1437 //! @}
1438 //! @name Set Mixture Composition by Equivalence Ratio
1439 //! @{
1440
1441 //! Set the mixture composition according to the equivalence ratio.
1442 /*!
1443 * Fuel and oxidizer compositions are given either as
1444 * mole fractions or mass fractions (specified by `basis`)
1445 * and do not need to be normalized. Pressure and temperature are
1446 * kept constant. Elements C, S, H and O are considered for the oxidation.
1447 *
1448 * @param phi equivalence ratio
1449 * @param fuelComp composition of the fuel
1450 * @param oxComp composition of the oxidizer
1451 * @param basis either ThermoBasis::mole or ThermoBasis::mass.
1452 * Fuel and oxidizer composition are interpreted
1453 * as mole or mass fractions (default: molar)
1454 */
1455 void setEquivalenceRatio(double phi, const double* fuelComp, const double* oxComp,
1456 ThermoBasis basis=ThermoBasis::molar);
1457 //! @copydoc ThermoPhase::setEquivalenceRatio
1458 void setEquivalenceRatio(double phi, const string& fuelComp,
1459 const string& oxComp, ThermoBasis basis=ThermoBasis::molar);
1460 //! @copydoc ThermoPhase::setEquivalenceRatio
1461 void setEquivalenceRatio(double phi, const Composition& fuelComp,
1462 const Composition& oxComp, ThermoBasis basis=ThermoBasis::molar);
1463 //! @}
1464
1465 //! @name Compute Equivalence Ratio
1466 //! @{
1467
1468 //! Compute the equivalence ratio for the current mixture
1469 //! given the compositions of fuel and oxidizer
1470 /*!
1471 * The equivalence ratio @f$ \phi @f$ is computed from
1472 * @f[ \phi = \frac{Z}{1-Z}\frac{1-Z_{\mathrm{st}}}{Z_{\mathrm{st}}} @f]
1473 * where @f$ Z @f$ is the Bilger mixture fraction @cite bilger1979 of the mixture
1474 * given the specified fuel and oxidizer compositions
1475 * @f$ Z_{\mathrm{st}} @f$ is the mixture fraction at stoichiometric
1476 * conditions. Fuel and oxidizer compositions are given either as
1477 * mole fractions or mass fractions (specified by `basis`)
1478 * and do not need to be normalized.
1479 * Elements C, S, H and O are considered for the oxidation.
1480 * If fuel and oxidizer composition are unknown or not specified,
1481 * use the version that takes no arguments.
1482 *
1483 * @param fuelComp composition of the fuel
1484 * @param oxComp composition of the oxidizer
1485 * @param basis either ThermoPhase::mole or ThermoPhase::mass.
1486 * Fuel and oxidizer composition are interpreted
1487 * as mole or mass fractions (default: molar)
1488 * @returns equivalence ratio
1489 * @see mixtureFraction for the definition of the Bilger mixture fraction
1490 * @see equivalenceRatio() for the computation of @f$ \phi @f$ without arguments
1491 */
1492 double equivalenceRatio(const double* fuelComp, const double* oxComp,
1493 ThermoBasis basis=ThermoBasis::molar) const;
1494 //! @copydoc ThermoPhase::equivalenceRatio
1495 double equivalenceRatio(const string& fuelComp, const string& oxComp,
1496 ThermoBasis basis=ThermoBasis::molar) const;
1497 //! @copydoc ThermoPhase::equivalenceRatio
1498 double equivalenceRatio(const Composition& fuelComp,
1499 const Composition& oxComp, ThermoBasis basis=ThermoBasis::molar) const;
1500 //! @}
1501
1502 //! Compute the equivalence ratio for the current mixture
1503 //! from available oxygen and required oxygen
1504 /*!
1505 * Computes the equivalence ratio @f$ \phi @f$ from
1506 * @f[ \phi =
1507 * \frac{Z_{\mathrm{mole},C} + Z_{\mathrm{mole},S} + \frac{1}{4}Z_{\mathrm{mole},H}}
1508 * {\frac{1}{2}Z_{\mathrm{mole},O}} @f]
1509 * where @f$ Z_{\mathrm{mole},m} @f$ is the elemental mole fraction
1510 * of element @f$ m @f$. In this special case, the equivalence ratio
1511 * is independent of a fuel or oxidizer composition because it only
1512 * considers the locally available oxygen compared to the required oxygen
1513 * for complete oxidation. It is the same as assuming that the oxidizer
1514 * only contains O (and inert elements) and the fuel contains only
1515 * H, C and S (and inert elements). If either of these conditions is
1516 * not met, use the version of this functions which takes the fuel and
1517 * oxidizer compositions as input
1518 *
1519 * @returns equivalence ratio
1520 * @see equivalenceRatio compute the equivalence ratio from specific
1521 * fuel and oxidizer compositions
1522 */
1523 double equivalenceRatio() const;
1524
1525 //! @name Compute Stoichiometric Air to Fuel Ratio
1526 //! @{
1527
1528 //! Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel)
1529 //! given fuel and oxidizer compositions.
1530 /*!
1531 * Fuel and oxidizer compositions are given either as
1532 * mole fractions or mass fractions (specified by `basis`)
1533 * and do not need to be normalized.
1534 * Elements C, S, H and O are considered for the oxidation.
1535 * Note that the stoichiometric air to fuel ratio @f$ \mathit{AFR}_{\mathrm{st}} @f$
1536 * does not depend on the current mixture composition. The current air to fuel ratio
1537 * can be computed from @f$ \mathit{AFR} = \mathit{AFR}_{\mathrm{st}}/\phi @f$
1538 * where @f$ \phi @f$ is the equivalence ratio of the current mixture
1539 *
1540 * @param fuelComp composition of the fuel
1541 * @param oxComp composition of the oxidizer
1542 * @param basis either ThermoPhase::mole or ThermoPhase::mass.
1543 * Fuel and oxidizer composition are interpreted
1544 * as mole or mass fractions (default: molar)
1545 * @returns Stoichiometric Air to Fuel Ratio (kg oxidizer / kg fuel)
1546 */
1547 double stoichAirFuelRatio(const double* fuelComp, const double* oxComp,
1548 ThermoBasis basis=ThermoBasis::molar) const;
1549 //! @copydoc ThermoPhase::stoichAirFuelRatio
1550 double stoichAirFuelRatio(const string& fuelComp, const string& oxComp,
1551 ThermoBasis basis=ThermoBasis::molar) const;
1552 //! @copydoc ThermoPhase::stoichAirFuelRatio
1553 double stoichAirFuelRatio(const Composition& fuelComp,
1554 const Composition& oxComp, ThermoBasis basis=ThermoBasis::molar) const;
1555 //! @}
1556
1557private:
1558
1559 //! Carry out work in HP and UV calculations.
1560 /*!
1561 * @param h Specific enthalpy or internal energy (J/kg)
1562 * @param p Pressure (Pa) or specific volume (m^3/kg)
1563 * @param tol Optional parameter setting the tolerance of the calculation.
1564 * Important for some applications where numerical Jacobians
1565 * are being calculated.
1566 * @param doUV True if solving for UV, false for HP.
1567 */
1568 void setState_HPorUV(double h, double p, double tol=1e-9, bool doUV = false);
1569
1570 //! Carry out work in SP and SV calculations.
1571 /*!
1572 * @param s Specific entropy (J/kg)
1573 * @param p Pressure (Pa) or specific volume (m^3/kg)
1574 * @param tol Optional parameter setting the tolerance of the calculation.
1575 * Important for some applications where numerical Jacobians
1576 * are being calculated.
1577 * @param doSV True if solving for SV, false for SP.
1578 */
1579 void setState_SPorSV(double s, double p, double tol=1e-9, bool doSV = false);
1580
1581 //! Helper function used by setState_HPorUV and setState_SPorSV.
1582 //! Sets the temperature and (if set_p is true) the pressure.
1583 void setState_conditional_TP(double t, double p, bool set_p);
1584
1585 //! Helper function for computing the amount of oxygen required for complete
1586 //! oxidation.
1587 /*!
1588 * @param y array of (possibly non-normalized) mass fractions (length m_kk)
1589 * @returns amount of required oxygen in kmol O / kg mixture
1590 */
1591 double o2Required(const double* y) const;
1592
1593 //! Helper function for computing the amount of oxygen
1594 //! available in the current mixture.
1595 /*!
1596 * @param y array of (possibly non-normalized) mass fractions (length m_kk)
1597 * @returns amount of O in kmol O / kg mixture
1598 */
1599 double o2Present(const double* y) const;
1600
1601public:
1602 //! @name Chemical Equilibrium
1603 //!
1604 //! Chemical equilibrium.
1605 //! @{
1606
1607 //! Equilibrate a ThermoPhase object
1608 /*!
1609 * Set this phase to chemical equilibrium by calling one of several
1610 * equilibrium solvers. The XY parameter indicates what two thermodynamic
1611 * quantities are to be held constant during the equilibration process.
1612 *
1613 * @param XY String representation of what two properties are being
1614 * held constant
1615 * @param solver Name of the solver to be used to equilibrate the phase.
1616 * If solver = 'element_potential', the ChemEquil element potential
1617 * solver will be used. If solver = 'vcs', the VCS solver will be used.
1618 * If solver = 'gibbs', the MultiPhaseEquil solver will be used. If
1619 * solver = 'auto', the solvers will be tried in order if the initial
1620 * solver(s) fail.
1621 * @param rtol Relative tolerance
1622 * @param max_steps Maximum number of steps to take to find the solution
1623 * @param max_iter For the 'gibbs' and 'vcs' solvers, this is the maximum
1624 * number of outer temperature or pressure iterations to take when T
1625 * and/or P is not held fixed.
1626 * @param estimate_equil For MultiPhaseEquil solver, an integer indicating
1627 * whether the solver should estimate its own initial condition. If 0,
1628 * the initial mole fraction vector in the ThermoPhase object is used
1629 * as the initial condition. If 1, the initial mole fraction vector is
1630 * used if the element abundances are satisfied. If -1, the initial
1631 * mole fraction vector is thrown out, and an estimate is formulated.
1632 * @param log_level loglevel Controls amount of diagnostic output.
1633 * log_level=0 suppresses diagnostics, and increasingly-verbose
1634 * messages are written as loglevel increases.
1635 *
1636 * @ingroup equilGroup
1637 */
1638 void equilibrate(const string& XY, const string& solver="auto",
1639 double rtol=1e-9, int max_steps=50000, int max_iter=100,
1640 int estimate_equil=0, int log_level=0);
1641
1642 //!This method is used by the ChemEquil equilibrium solver.
1643 /*!
1644 * It sets the state such that the chemical potentials satisfy
1645 * @f[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m}
1646 * \left(\frac{\lambda_m} {\hat R T}\right) @f] where
1647 * @f$ \lambda_m @f$ is the element potential of element m. The
1648 * temperature is unchanged. Any phase (ideal or not) that
1649 * implements this method can be equilibrated by ChemEquil.
1650 *
1651 * @param mu_RT Input vector of dimensionless chemical potentials
1652 * The length is equal to nSpecies().
1653 */
1654 virtual void setToEquilState(const double* mu_RT) {
1655 throw NotImplementedError("ThermoPhase::setToEquilState");
1656 }
1657
1658 //! Indicates whether this phase type can be used with class MultiPhase for
1659 //! equilibrium calculations. Returns `false` for special phase types which
1660 //! already represent multi-phase mixtures, namely PureFluidPhase.
1661 virtual bool compatibleWithMultiPhase() const {
1662 return true;
1663 }
1664
1665 //! @}
1666 //! @name Critical State Properties
1667 //!
1668 //! These methods are only implemented by subclasses that implement
1669 //! liquid-vapor equations of state.
1670 //! @{
1671
1672 //! Critical temperature (K).
1673 virtual double critTemperature() const {
1674 throw NotImplementedError("ThermoPhase::critTemperature");
1675 }
1676
1677 //! Critical pressure (Pa).
1678 virtual double critPressure() const {
1679 throw NotImplementedError("ThermoPhase::critPressure");
1680 }
1681
1682 //! Critical volume (m3/kmol).
1683 virtual double critVolume() const {
1684 throw NotImplementedError("ThermoPhase::critVolume");
1685 }
1686
1687 //! Critical compressibility (unitless).
1688 virtual double critCompressibility() const {
1689 throw NotImplementedError("ThermoPhase::critCompressibility");
1690 }
1691
1692 //! Critical density (kg/m3).
1693 virtual double critDensity() const {
1694 throw NotImplementedError("ThermoPhase::critDensity");
1695 }
1696
1697 //! @}
1698 //! @name Saturation Properties
1699 //!
1700 //! These methods are only implemented by subclasses that implement full
1701 //! liquid-vapor equations of state.
1702 //! @{
1703
1704 //! Return the saturation temperature given the pressure
1705 /*!
1706 * @param p Pressure (Pa)
1707 */
1708 virtual double satTemperature(double p) const {
1709 throw NotImplementedError("ThermoPhase::satTemperature");
1710 }
1711
1712 //! Return the saturation pressure given the temperature
1713 /*!
1714 * @param t Temperature (Kelvin)
1715 */
1716 virtual double satPressure(double t) {
1717 throw NotImplementedError("ThermoPhase::satPressure");
1718 }
1719
1720 //! Return the fraction of vapor at the current conditions
1721 virtual double vaporFraction() const {
1722 throw NotImplementedError("ThermoPhase::vaporFraction");
1723 }
1724
1725 //! Set the state to a saturated system at a particular temperature
1726 /*!
1727 * @param t Temperature (kelvin)
1728 * @param x Fraction of vapor
1729 */
1730 virtual void setState_Tsat(double t, double x) {
1731 throw NotImplementedError("ThermoPhase::setState_Tsat");
1732 }
1733
1734 //! Set the state to a saturated system at a particular pressure
1735 /*!
1736 * @param p Pressure (Pa)
1737 * @param x Fraction of vapor
1738 */
1739 virtual void setState_Psat(double p, double x) {
1740 throw NotImplementedError("ThermoPhase::setState_Psat");
1741 }
1742
1743 //! Set the temperature, pressure, and vapor fraction (quality).
1744 /*!
1745 * An exception is thrown if the thermodynamic state is not consistent.
1746 *
1747 * For temperatures below the critical temperature, if the vapor fraction is
1748 * not 0 or 1, the pressure and temperature must fall on the saturation
1749 * line.
1750 *
1751 * Above the critical temperature, the vapor fraction must be 1 if the
1752 * pressure is less than the critical pressure. Above the critical pressure,
1753 * the vapor fraction is not defined, and its value is ignored.
1754 *
1755 * @param T Temperature (K)
1756 * @param P Pressure (Pa)
1757 * @param Q vapor fraction
1758 */
1759 void setState_TPQ(double T, double P, double Q);
1760
1761 //! @}
1762 //! @name Initialization Methods - For Internal Use (ThermoPhase)
1763 //!
1764 //! The following methods are used in the process of constructing
1765 //! the phase and setting its parameters from a specification in an
1766 //! input file. They are not normally used in application programs.
1767 //! To see how they are used, see importPhase().
1768 //! @{
1769
1770 bool addSpecies(shared_ptr<Species> spec) override;
1771
1772 void modifySpecies(size_t k, shared_ptr<Species> spec) override;
1773
1774 //! Return a changeable reference to the calculation manager for species
1775 //! reference-state thermodynamic properties
1776 /*!
1777 * @param k Species id. The default is -1, meaning return the default
1778 */
1779 virtual MultiSpeciesThermo& speciesThermo(int k = -1);
1780
1781 virtual const MultiSpeciesThermo& speciesThermo(int k = -1) const;
1782
1783 /**
1784 * Initialize a ThermoPhase object using an input file.
1785 *
1786 * Used to implement constructors for derived classes which take a
1787 * file name and phase name as arguments.
1788 *
1789 * @param inputFile Input file containing the description of the phase. If blank,
1790 * no setup will be performed.
1791 * @param id Optional parameter identifying the name of the phase. If
1792 * blank, the first phase definition encountered will be used.
1793 */
1794 void initThermoFile(const string& inputFile, const string& id);
1795
1796 //! Initialize the ThermoPhase object after all species have been set up
1797 /*!
1798 * This method is provided to allow subclasses to perform any initialization
1799 * required after all species have been added. For example, it might be used
1800 * to resize internal work arrays that must have an entry for each species.
1801 * The base class implementation does nothing, and subclasses that do not
1802 * require initialization do not need to overload this method. Derived
1803 * classes which do override this function should call their parent class's
1804 * implementation of this function as their last action.
1805 *
1806 * When importing from an AnyMap phase description (or from a YAML file),
1807 * setupPhase() adds all the species, stores the input data in #m_input, and then
1808 * calls this method to set model parameters from the data stored in #m_input.
1809 */
1810 virtual void initThermo();
1811
1812 //! Set equation of state parameters from an AnyMap phase description.
1813 //! Phases that need additional parameters from the root node should
1814 //! override this method.
1815 virtual void setParameters(const AnyMap& phaseNode,
1816 const AnyMap& rootNode=AnyMap());
1817
1818 //! Returns the parameters of a ThermoPhase object such that an identical
1819 //! one could be reconstructed using the newThermo(AnyMap&) function.
1820 //! @param withInput If true, include additional input data fields associated
1821 //! with the phase description, such as user-defined fields from a YAML input
1822 //! file, as returned by the input() method.
1823 AnyMap parameters(bool withInput=true) const;
1824
1825 //! Get phase-specific parameters of a Species object such that an
1826 //! identical one could be reconstructed and added to this phase.
1827 /*!
1828 * @param name Name of the species
1829 * @param speciesNode Mapping to be populated with parameters
1830 */
1831 virtual void getSpeciesParameters(const string& name, AnyMap& speciesNode) const {}
1832
1833 //! Access input data associated with the phase description
1834 const AnyMap& input() const;
1835 AnyMap& input();
1836
1837 void invalidateCache() override;
1838
1839 //! @}
1840 //! @name Derivatives of Thermodynamic Variables needed for Applications
1841 //!
1842 //! Derivatives of the activity coefficients are needed to evaluate terms arising
1843 //! in multicomponent transport models for non-ideal systems. While %Cantera does
1844 //! not currently implement such models, these derivatives are provided by a few
1845 //! phase models.
1846 //! @{
1847
1848 //! Get the change in activity coefficients wrt changes in state (temp, mole
1849 //! fraction, etc) along a line in parameter space or along a line in
1850 //! physical space
1851 /*!
1852 * @param dTds Input of temperature change along the path
1853 * @param dXds Input vector of changes in mole fraction along the
1854 * path. length = m_kk Along the path length it must
1855 * be the case that the mole fractions sum to one.
1856 * @param dlnActCoeffds Output vector of the directional derivatives of the
1857 * log Activity Coefficients along the path. length =
1858 * m_kk units are 1/units(s). if s is a physical
1859 * coordinate then the units are 1/m.
1860 */
1861 virtual void getdlnActCoeffds(const double dTds, const double* const dXds,
1862 double* dlnActCoeffds) const {
1863 throw NotImplementedError("ThermoPhase::getdlnActCoeffds");
1864 }
1865
1866 //! Get the array of ln mole fraction derivatives of the log activity
1867 //! coefficients - diagonal component only
1868 /*!
1869 * For ideal mixtures (unity activity coefficients), this can return zero.
1870 * Implementations should take the derivative of the logarithm of the
1871 * activity coefficient with respect to the logarithm of the mole fraction
1872 * variable that represents the standard state. This quantity is to be used
1873 * in conjunction with derivatives of that mole fraction variable when the
1874 * derivative of the chemical potential is taken.
1875 *
1876 * units = dimensionless
1877 *
1878 * @param dlnActCoeffdlnX_diag Output vector of derivatives of the log
1879 * Activity Coefficients wrt the mole fractions. length = m_kk
1880 */
1881 virtual void getdlnActCoeffdlnX_diag(double* dlnActCoeffdlnX_diag) const {
1882 throw NotImplementedError("ThermoPhase::getdlnActCoeffdlnX_diag");
1883 }
1884
1885 //! Get the array of log species mole number derivatives of the log activity
1886 //! coefficients
1887 /*!
1888 * For ideal mixtures (unity activity coefficients), this can return zero.
1889 * Implementations should take the derivative of the logarithm of the
1890 * activity coefficient with respect to the logarithm of the concentration-
1891 * like variable (for example, moles) that represents the standard state. This
1892 * quantity is to be used in conjunction with derivatives of that species
1893 * mole number variable when the derivative of the chemical potential is
1894 * taken.
1895 *
1896 * units = dimensionless
1897 *
1898 * @param dlnActCoeffdlnN_diag Output vector of derivatives of the
1899 * log Activity Coefficients. length = m_kk
1900 */
1901 virtual void getdlnActCoeffdlnN_diag(double* dlnActCoeffdlnN_diag) const {
1902 throw NotImplementedError("ThermoPhase::getdlnActCoeffdlnN_diag");
1903 }
1904
1905 //! Get the array of derivatives of the log activity coefficients with
1906 //! respect to the log of the species mole numbers
1907 /*!
1908 * Implementations should take the derivative of the logarithm of the
1909 * activity coefficient with respect to a species log mole number (with all
1910 * other species mole numbers held constant). The default treatment in the
1911 * ThermoPhase object is to set this vector to zero.
1912 *
1913 * units = 1 / kmol
1914 *
1915 * dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log
1916 * act_coeff for the *m*-th species with respect to the number of moles of
1917 * the *k*-th species.
1918 *
1919 * @f[
1920 * \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i}
1921 * @f]
1922 *
1923 * When implemented, this method is used within the VCS equilibrium solver to
1924 * calculate the Jacobian elements, which accelerates convergence of the algorithm.
1925 *
1926 * @param ld Number of rows in the matrix
1927 * @param dlnActCoeffdlnN Output vector of derivatives of the
1928 * log Activity Coefficients. length = m_kk * m_kk
1929 */
1930 virtual void getdlnActCoeffdlnN(const size_t ld, double* const dlnActCoeffdlnN);
1931
1932 virtual void getdlnActCoeffdlnN_numderiv(const size_t ld,
1933 double* const dlnActCoeffdlnN);
1934
1935 //! @}
1936 //! @name Printing
1937 //! @{
1938
1939 //! returns a summary of the state of the phase as a string
1940 /*!
1941 * @param show_thermo If true, extra information is printed out
1942 * about the thermodynamic state of the system.
1943 * @param threshold Show information about species with mole fractions
1944 * greater than *threshold*.
1945 */
1946 virtual string report(bool show_thermo=true, double threshold=-1e-14) const;
1947
1948 //! @}
1949
1950protected:
1951 //! Store the parameters of a ThermoPhase object such that an identical
1952 //! one could be reconstructed using the newThermo(AnyMap&) function. This
1953 //! does not include user-defined fields available in input().
1954 virtual void getParameters(AnyMap& phaseNode) const;
1955
1956 //! Pointer to the calculation manager for species reference-state
1957 //! thermodynamic properties
1958 /*!
1959 * This class is called when the reference-state thermodynamic properties
1960 * of all the species in the phase needs to be evaluated.
1961 */
1963
1964 //! Data supplied via setParameters. When first set, this may include
1965 //! parameters used by different phase models when initThermo() is called.
1967
1968 //! Stored value of the electric potential for this phase. Units are Volts.
1969 double m_phi = 0.0;
1970
1971 //! Boolean indicating whether a charge neutrality condition is a necessity
1972 /*!
1973 * Note, the charge neutrality condition is not a necessity for ideal gas
1974 * phases. There may be a net charge in those phases, because the NASA
1975 * polynomials for ionized species in Ideal gases take this condition into
1976 * account. However, liquid phases usually require charge neutrality in
1977 * order for their derived thermodynamics to be valid.
1978 */
1980
1981 //! Contains the standard state convention
1983
1984 //! last value of the temperature processed by reference state
1985 mutable double m_tlast = 0.0;
1986};
1987
1988}
1989
1990#endif
Header for a general species thermodynamic property manager for a phase (see MultiSpeciesThermo).
Header file for class Phase.
Header for unit conversion utilities, which are used to translate user input from input files (See In...
A map of string keys to values whose type can vary at runtime.
Definition AnyMap.h:427
A species thermodynamic property manager for a phase.
virtual double refPressure() const
The reference-state pressure (Pa) for all species.
virtual double minTemp(size_t k=npos) const
Minimum temperature.
virtual double maxTemp(size_t k=npos) const
Maximum temperature.
virtual void modifyOneHf298(const size_t k, const double Hf298New)
Modify the value of the 298 K Heat of Formation of the standard state of one species in the phase (J ...
virtual double reportOneHf298(const size_t k) const
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
An error indicating that an unimplemented function has been called.
Class Phase is the base class for phases of matter, managing the species and elements in a phase,...
Definition Phase.h:95
size_t m_kk
Number of species in the phase.
Definition Phase.h:842
double temperature() const
Temperature (K).
Definition Phase.h:562
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
Definition Phase.h:655
virtual double molarVolume() const
Molar volume (m^3/kmol).
Definition Phase.cpp:581
virtual double pressure() const
Return the thermodynamic pressure (Pa).
Definition Phase.h:580
string name() const
Return the name of the phase.
Definition Phase.cpp:20
Base class for a phase with thermodynamic properties.
int m_ssConvention
Contains the standard state convention.
virtual void getPartialMolarEnthalpies(double *hbar) const
Returns an array of partial molar enthalpies for the species in the mixture.
virtual double critTemperature() const
Critical temperature (K).
virtual void setState_HP(double h, double p, double tol=1e-9)
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
double electricPotential() const
Returns the electric potential of this phase (V).
virtual void getEntropy_R(double *sr) const
Get the array of nondimensional Entropy functions for the standard state species at the current T and...
virtual void setState_UV(double u, double v, double tol=1e-9)
Set the specific internal energy (J/kg) and specific volume (m^3/kg).
bool chargeNeutralityNecessary() const
Returns the chargeNeutralityNecessity boolean.
virtual double cp_mole() const
Molar heat capacity at constant pressure. Units: J/kmol/K.
double equivalenceRatio() const
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
virtual void setParameters(const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
Set equation of state parameters from an AnyMap phase description.
virtual double thermalExpansionCoeff() const
Return the volumetric thermal expansion coefficient. Units: 1/K.
virtual void getEnthalpy_RT_ref(double *hrt) const
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
virtual void getParameters(AnyMap &phaseNode) const
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
virtual double enthalpy_mole() const
Molar enthalpy. Units: J/kmol.
virtual void setState_TP(double t, double p)
Set the temperature (K) and pressure (Pa)
virtual double standardConcentration(size_t k=0) const
Return the standard concentration for the kth species.
virtual void getCp_R_ref(double *cprt) const
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
virtual void setState_TV(double t, double v, double tol=1e-9)
Set the temperature (K) and specific volume (m^3/kg).
virtual double logStandardConc(size_t k=0) const
Natural logarithm of the standard concentration of the kth species.
double o2Present(const double *y) const
Helper function for computing the amount of oxygen available in the current mixture.
virtual void setState_PV(double p, double v, double tol=1e-9)
Set the pressure (Pa) and specific volume (m^3/kg).
virtual void setState(const AnyMap &state)
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic...
virtual double minTemp(size_t k=npos) const
Minimum temperature for which the thermodynamic data for the species or phase are valid.
virtual void getdlnActCoeffdlnN_diag(double *dlnActCoeffdlnN_diag) const
Get the array of log species mole number derivatives of the log activity coefficients.
virtual void setState_TPX(double t, double p, const double *x)
Set the temperature (K), pressure (Pa), and mole fractions.
void setState_SPorSV(double s, double p, double tol=1e-9, bool doSV=false)
Carry out work in SP and SV calculations.
double RT() const
Return the Gas Constant multiplied by the current temperature.
virtual void getPartialMolarCp(double *cpbar) const
Return an array of partial molar heat capacities for the species in the mixture.
virtual double critPressure() const
Critical pressure (Pa).
virtual void getGibbs_RT_ref(double *grt) const
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
virtual double soundSpeed() const
Return the speed of sound. Units: m/s.
virtual void setState_TPY(double t, double p, const double *y)
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
double m_tlast
last value of the temperature processed by reference state
virtual void setState_ST(double s, double t, double tol=1e-9)
Set the specific entropy (J/kg/K) and temperature (K).
void setState_HPorUV(double h, double p, double tol=1e-9, bool doUV=false)
Carry out work in HP and UV calculations.
double gibbs_mass() const
Specific Gibbs function. Units: J/kg.
virtual void getActivityConcentrations(double *c) const
This method returns an array of generalized concentrations.
double stoichAirFuelRatio(const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer composit...
string type() const override
String indicating the thermodynamic model implemented.
AnyMap parameters(bool withInput=true) const
Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed usin...
bool m_chargeNeutralityNecessary
Boolean indicating whether a charge neutrality condition is a necessity.
virtual void getPureGibbs(double *gpure) const
Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
virtual string report(bool show_thermo=true, double threshold=-1e-14) const
returns a summary of the state of the phase as a string
virtual void getPartialMolarIntEnergies(double *ubar) const
Return an array of partial molar internal energies for the species in the mixture.
virtual void getIntEnergy_RT(double *urt) const
Returns the vector of nondimensional Internal Energies of the standard state species at the current T...
virtual void getCp_R(double *cpr) const
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the cu...
virtual double maxTemp(size_t k=npos) const
Maximum temperature for which the thermodynamic data for the species are valid.
double m_phi
Stored value of the electric potential for this phase. Units are Volts.
virtual double isothermalCompressibility() const
Returns the isothermal compressibility. Units: 1/Pa.
double mixtureFraction(const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel a...
double o2Required(const double *y) const
Helper function for computing the amount of oxygen required for complete oxidation.
virtual double satTemperature(double p) const
Return the saturation temperature given the pressure.
virtual void getdlnActCoeffds(const double dTds, const double *const dXds, double *dlnActCoeffds) const
Get the change in activity coefficients wrt changes in state (temp, mole fraction,...
void getElectrochemPotentials(double *mu) const
Get the species electrochemical potentials.
virtual void getdlnActCoeffdlnN(const size_t ld, double *const dlnActCoeffdlnN)
Get the array of derivatives of the log activity coefficients with respect to the log of the species ...
virtual void getGibbs_RT(double *grt) const
Get the nondimensional Gibbs functions for the species in their standard states at the current T and ...
virtual double critVolume() const
Critical volume (m3/kmol).
virtual void getActivityCoefficients(double *ac) const
Get the array of non-dimensional molar-based activity coefficients at the current solution temperatur...
virtual string phaseOfMatter() const
String indicating the mechanical phase of the matter in this Phase.
virtual void getStandardVolumes(double *vol) const
Get the molar volumes of the species standard states at the current T and P of the solution.
virtual void setState_Tsat(double t, double x)
Set the state to a saturated system at a particular temperature.
virtual double entropy_mole() const
Molar entropy. Units: J/kmol/K.
void setElectricPotential(double v)
Set the electric potential of this phase (V).
double cv_mass() const
Specific heat at constant volume. Units: J/kg/K.
virtual int activityConvention() const
This method returns the convention used in specification of the activities, of which there are curren...
virtual void initThermo()
Initialize the ThermoPhase object after all species have been set up.
double entropy_mass() const
Specific entropy. Units: J/kg/K.
virtual double critDensity() const
Critical density (kg/m3).
virtual void getGibbs_ref(double *g) const
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
virtual MultiSpeciesThermo & speciesThermo(int k=-1)
Return a changeable reference to the calculation manager for species reference-state thermodynamic pr...
virtual void setState_UP(double u, double p, double tol=1e-9)
Set the specific internal energy (J/kg) and pressure (Pa).
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
virtual void setState_SP(double s, double p, double tol=1e-9)
Set the specific entropy (J/kg/K) and pressure (Pa).
virtual void modifyOneHf298SS(const size_t k, const double Hf298New)
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
virtual int standardStateConvention() const
This method returns the convention used in specification of the standard state, of which there are cu...
void modifySpecies(size_t k, shared_ptr< Species > spec) override
Modify the thermodynamic data associated with a species.
virtual void setState_SH(double s, double h, double tol=1e-9)
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
virtual void getdlnActCoeffdlnX_diag(double *dlnActCoeffdlnX_diag) const
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component o...
void invalidateCache() override
Invalidate any cached values which are normally updated only when a change in state is detected.
virtual void getActivities(double *a) const
Get the array of non-dimensional activities at the current solution temperature, pressure,...
void setMixtureFraction(double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
virtual void getStandardVolumes_ref(double *vol) const
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
virtual double vaporFraction() const
Return the fraction of vapor at the current conditions.
virtual void resetHf298(const size_t k=npos)
Restore the original heat of formation of one or more species.
virtual void getStandardChemPotentials(double *mu) const
Get the array of chemical potentials at unit activity for the species at their standard states at the...
virtual void getEnthalpy_RT(double *hrt) const
Get the nondimensional Enthalpy functions for the species at their standard states at the current T a...
virtual void getEntropy_R_ref(double *er) const
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
virtual void getChemPotentials(double *mu) const
Get the species chemical potentials. Units: J/kmol.
double cp_mass() const
Specific heat at constant pressure. Units: J/kg/K.
virtual void setState_TH(double t, double h, double tol=1e-9)
Set the temperature (K) and the specific enthalpy (J/kg)
virtual void getLnActivityCoefficients(double *lnac) const
Get the array of non-dimensional molar-based ln activity coefficients at the current solution tempera...
double intEnergy_mass() const
Specific internal energy. Units: J/kg.
virtual void getSpeciesParameters(const string &name, AnyMap &speciesNode) const
Get phase-specific parameters of a Species object such that an identical one could be reconstructed a...
virtual Units standardConcentrationUnits() const
Returns the units of the "standard concentration" for this phase.
virtual void getIntEnergy_RT_ref(double *urt) const
Returns the vector of nondimensional internal Energies of the reference state at the current temperat...
double Hf298SS(const size_t k) const
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
ThermoPhase()=default
Constructor.
virtual bool isIdeal() const
Boolean indicating whether phase is ideal.
virtual double cv_mole() const
Molar heat capacity at constant volume. Units: J/kmol/K.
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
virtual double satPressure(double t)
Return the saturation pressure given the temperature.
virtual double refPressure() const
Returns the reference pressure in Pa.
virtual double critCompressibility() const
Critical compressibility (unitless).
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
AnyMap m_input
Data supplied via setParameters.
virtual double intEnergy_mole() const
Molar internal energy. Units: J/kmol.
virtual void setState_DP(double rho, double p)
Set the density (kg/m**3) and pressure (Pa) at constant composition.
void setEquivalenceRatio(double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
Set the mixture composition according to the equivalence ratio.
void setState_TPQ(double T, double P, double Q)
Set the temperature, pressure, and vapor fraction (quality).
virtual void setState_VH(double v, double h, double tol=1e-9)
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
virtual void getPartialMolarEntropies(double *sbar) const
Returns an array of partial molar entropies of the species in the solution.
virtual double gibbs_mole() const
Molar Gibbs function. Units: J/kmol.
virtual void setState_SV(double s, double v, double tol=1e-9)
Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
const AnyMap & input() const
Access input data associated with the phase description.
virtual void setState_Psat(double p, double x)
Set the state to a saturated system at a particular pressure.
void setState_conditional_TP(double t, double p, bool set_p)
Helper function used by setState_HPorUV and setState_SPorSV.
virtual void getPartialMolarVolumes(double *vbar) const
Return an array of partial molar volumes for the species in the mixture.
double enthalpy_mass() const
Specific enthalpy. Units: J/kg.
A representation of the units associated with a dimensional quantity.
Definition Units.h:35
void equilibrate(const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
Equilibrate a ThermoPhase object.
virtual bool compatibleWithMultiPhase() const
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
virtual void setToEquilState(const double *mu_RT)
This method is used by the ChemEquil equilibrium solver.
const double GasConstant
Universal Gas Constant [J/kmol/K].
Definition ct_defs.h:120
Namespace for the Cantera kernel.
Definition AnyMap.cpp:564
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180
const int cSS_CONVENTION_VPSS
Standard state uses the molality convention.
const int cAC_CONVENTION_MOLAR
Standard state uses the molar convention.
const int cSS_CONVENTION_TEMPERATURE
Standard state uses the molar convention.
ThermoBasis
Differentiate between mole fractions and mass fractions for input mixture composition.
const int cSS_CONVENTION_SLAVE
Standard state thermodynamics is obtained from slave ThermoPhase objects.
map< string, double > Composition
Map from string names to doubles.
Definition ct_defs.h:177
const int cAC_CONVENTION_MOLALITY
Standard state uses the molality convention.