Cantera  3.1.0a1
Loading...
Searching...
No Matches
IonFlow.cpp
Go to the documentation of this file.
1//! @file IonFlow.cpp
2
3// This file is part of Cantera. See License.txt in the top-level directory or
4// at https://cantera.org/license.txt for license and copyright information.
5
8#include "cantera/oneD/refine.h"
13#include "cantera/base/global.h"
14
15namespace Cantera
16{
17
18IonFlow::IonFlow(ThermoPhase* ph, size_t nsp, size_t points) :
19 StFlow(ph, nsp, points)
20{
21 // make a local copy of species charge
22 for (size_t k = 0; k < m_nsp; k++) {
23 m_speciesCharge.push_back(m_thermo->charge(k));
24 }
25
26 // Find indices for charge of species
27 for (size_t k = 0; k < m_nsp; k++){
28 if (m_speciesCharge[k] != 0){
29 m_kCharge.push_back(k);
30 } else {
31 m_kNeutral.push_back(k);
32 }
33 }
34
35 // Find the index of electron
36 if (m_thermo->speciesIndex("E") != npos ) {
37 m_kElectron = m_thermo->speciesIndex("E");
38 }
39
40 // no bound for electric potential
41 setBounds(c_offset_E, -1.0e20, 1.0e20);
42
43 // Set tighter negative species limit on charged species to avoid
44 // instabilities. Tolerance on electrons is even tighter to account for the
45 // low "molecular" weight.
46 for (size_t k : m_kCharge) {
47 setBounds(c_offset_Y + k, -1e-14, 1.0);
48 }
49 setBounds(c_offset_Y + m_kElectron, -1e-18, 1.0);
50
51 m_refiner->setActive(c_offset_E, false);
52 m_mobility.resize(m_nsp*m_points);
53 m_do_electric_field.resize(m_points,false);
54}
55
56IonFlow::IonFlow(shared_ptr<Solution> sol, const string& id, size_t points)
57 : IonFlow(sol->thermo().get(), sol->thermo()->nSpecies(), points)
58{
59 m_solution = sol;
60 m_id = id;
61 m_kin = m_solution->kinetics().get();
62 m_trans = m_solution->transport().get();
63 if (m_trans->transportModel() == "none") {
64 throw CanteraError("IonFlow::IonFlow",
65 "An appropriate transport model\nshould be set when instantiating the "
66 "Solution ('gas') object.");
67 }
68 m_solution->registerChangedCallback(this, [this]() {
69 setKinetics(m_solution->kinetics());
70 setTransport(m_solution->transport());
71 });
72}
73
74string IonFlow::domainType() const {
75 if (m_isFree) {
76 return "free-ion-flow";
77 }
78 if (m_usesLambda) {
79 return "axisymmetric-ion-flow";
80 }
81 return "unstrained-ion-flow";
82}
83
84void IonFlow::resize(size_t components, size_t points){
85 StFlow::resize(components, points);
87 m_do_species.resize(m_nsp,true);
88 m_do_electric_field.resize(m_points,false);
89}
90
91bool IonFlow::componentActive(size_t n) const
92{
93 if (n == c_offset_E) {
94 return true;
95 } else {
97 }
98}
99
100void IonFlow::updateTransport(double* x, size_t j0, size_t j1)
101{
103 for (size_t j = j0; j < j1; j++) {
104 setGasAtMidpoint(x,j);
105 m_trans->getMobilities(&m_mobility[j*m_nsp]);
107 size_t k = m_kElectron;
108 double tlog = log(m_thermo->temperature());
109 m_mobility[k+m_nsp*j] = poly5(tlog, m_mobi_e_fix.data());
110 m_diff[k+m_nsp*j] = poly5(tlog, m_diff_e_fix.data());
111 }
112 }
113}
114
115void IonFlow::updateDiffFluxes(const double* x, size_t j0, size_t j1)
116{
117 if (m_stage == 1) {
118 frozenIonMethod(x,j0,j1);
119 }
120 if (m_stage == 2) {
121 electricFieldMethod(x,j0,j1);
122 }
123}
124
125void IonFlow::frozenIonMethod(const double* x, size_t j0, size_t j1)
126{
127 for (size_t j = j0; j < j1; j++) {
128 double wtm = m_wtm[j];
129 double rho = density(j);
130 double dz = z(j+1) - z(j);
131 double sum = 0.0;
132 for (size_t k : m_kNeutral) {
133 m_flux(k,j) = m_wt[k]*(rho*m_diff[k+m_nsp*j]/wtm);
134 m_flux(k,j) *= (X(x,k,j) - X(x,k,j+1))/dz;
135 sum -= m_flux(k,j);
136 }
137
138 // correction flux to insure that \sum_k Y_k V_k = 0.
139 for (size_t k : m_kNeutral) {
140 m_flux(k,j) += sum*Y(x,k,j);
141 }
142
143 // flux for ions
144 // Set flux to zero to prevent some fast charged species (such electrons)
145 // to run away
146 for (size_t k : m_kCharge) {
147 m_flux(k,j) = 0;
148 }
149 }
150}
151
152void IonFlow::electricFieldMethod(const double* x, size_t j0, size_t j1)
153{
154 for (size_t j = j0; j < j1; j++) {
155 double wtm = m_wtm[j];
156 double rho = density(j);
157 double dz = z(j+1) - z(j);
158
159 // mixture-average diffusion
160 for (size_t k = 0; k < m_nsp; k++) {
161 m_flux(k,j) = m_wt[k]*(rho*m_diff[k+m_nsp*j]/wtm);
162 m_flux(k,j) *= (X(x,k,j) - X(x,k,j+1))/dz;
163 }
164
165 // ambipolar diffusion
166 double E_ambi = E(x,j);
167 for (size_t k : m_kCharge) {
168 double Yav = 0.5 * (Y(x,k,j) + Y(x,k,j+1));
169 double drift = rho * Yav * E_ambi
170 * m_speciesCharge[k] * m_mobility[k+m_nsp*j];
171 m_flux(k,j) += drift;
172 }
173
174 // correction flux
175 double sum_flux = 0.0;
176 for (size_t k = 0; k < m_nsp; k++) {
177 sum_flux -= m_flux(k,j); // total net flux
178 }
179 double sum_ion = 0.0;
180 for (size_t k : m_kCharge) {
181 sum_ion += Y(x,k,j);
182 }
183 // The portion of correction for ions is taken off
184 for (size_t k : m_kNeutral) {
185 m_flux(k,j) += Y(x,k,j) / (1-sum_ion) * sum_flux;
186 }
187 }
188}
189
190void IonFlow::setSolvingStage(const size_t stage)
191{
192 if (stage == 1 || stage == 2) {
193 m_stage = stage;
194 } else {
195 throw CanteraError("IonFlow::setSolvingStage",
196 "solution stage must be set to: "
197 "1) frozenIonMethod, "
198 "2) electricFieldEqnMethod");
199 }
200}
201
202//! Evaluate the electric field equation residual
203void IonFlow::evalElectricField(double* x, double* rsd, int* diag,
204 double rdt, size_t jmin, size_t jmax)
205{
206 StFlow::evalElectricField(x, rsd, diag, rdt, jmin, jmax);
207 if (m_stage != 2) {
208 return;
209 }
210
211 if (jmin == 0) { // left boundary
212 rsd[index(c_offset_E, jmin)] = E(x,jmin);
213 }
214
215 if (jmax == m_points - 1) { // right boundary
216 rsd[index(c_offset_E, jmax)] = dEdz(x,jmax) - rho_e(x,jmax) / epsilon_0;
217 }
218
219 // j0 and j1 are constrained to only interior points
220 size_t j0 = std::max<size_t>(jmin, 1);
221 size_t j1 = std::min(jmax, m_points - 2);
222 for (size_t j = j0; j <= j1; j++) {
223 rsd[index(c_offset_E, j)] = dEdz(x,j) - rho_e(x,j) / epsilon_0;
224 diag[index(c_offset_E, j)] = 0;
225 }
226}
227
228void IonFlow::evalSpecies(double* x, double* rsd, int* diag,
229 double rdt, size_t jmin, size_t jmax)
230{
231 StFlow::evalSpecies(x, rsd, diag, rdt, jmin, jmax);
232 if (m_stage != 2) {
233 return;
234 }
235
236 if (jmin == 0) { // left boundary
237 // enforcing the flux for charged species is difficult
238 // since charged species are also affected by electric
239 // force, so Neumann boundary condition is used.
240 for (size_t k : m_kCharge) {
241 rsd[index(c_offset_Y + k, jmin)] = Y(x,k,jmin) - Y(x,k,jmin + 1);
242 }
243 }
244}
245
247{
248 bool changed = false;
249 if (j == npos) {
250 for (size_t i = 0; i < m_points; i++) {
251 if (!m_do_electric_field[i]) {
252 changed = true;
253 }
254 m_do_electric_field[i] = true;
255 }
256 } else {
257 if (!m_do_electric_field[j]) {
258 changed = true;
259 }
260 m_do_electric_field[j] = true;
261 }
262 m_refiner->setActive(c_offset_U, true);
263 m_refiner->setActive(c_offset_V, true);
264 m_refiner->setActive(c_offset_T, true);
265 m_refiner->setActive(c_offset_E, true);
266 if (changed) {
268 }
269}
270
272{
273 bool changed = false;
274 if (j == npos) {
275 for (size_t i = 0; i < m_points; i++) {
276 if (m_do_electric_field[i]) {
277 changed = true;
278 }
279 m_do_electric_field[i] = false;
280 }
281 } else {
282 if (m_do_electric_field[j]) {
283 changed = true;
284 }
285 m_do_electric_field[j] = false;
286 }
287 m_refiner->setActive(c_offset_U, false);
288 m_refiner->setActive(c_offset_V, false);
289 m_refiner->setActive(c_offset_T, false);
290 m_refiner->setActive(c_offset_E, false);
291 if (changed) {
293 }
294}
295
296void IonFlow::setElectronTransport(vector<double>& tfix, vector<double>& diff_e,
297 vector<double>& mobi_e)
298{
300 size_t degree = 5;
301 size_t n = tfix.size();
302 vector<double> tlog;
303 for (size_t i = 0; i < n; i++) {
304 tlog.push_back(log(tfix[i]));
305 }
306 vector<double> w(n, -1.0);
307 m_diff_e_fix.resize(degree + 1);
308 m_mobi_e_fix.resize(degree + 1);
309 polyfit(n, degree, tlog.data(), diff_e.data(), w.data(), m_diff_e_fix.data());
310 polyfit(n, degree, tlog.data(), mobi_e.data(), w.data(), m_mobi_e_fix.data());
311}
312
313void IonFlow::_finalize(const double* x)
314{
316
317 bool p = m_do_electric_field[0];
318 if (p) {
320 }
321}
322
323}
Headers for the Transport object, which is the virtual base class for all transport property evaluato...
Base class for exceptions thrown by Cantera classes.
shared_ptr< Solution > m_solution
Composite thermo/kinetics/transport handler.
Definition Domain1D.h:567
size_t m_points
Number of grid points.
Definition Domain1D.h:537
string m_id
Identity tag for the domain.
Definition Domain1D.h:560
void needJacUpdate()
Set this if something has changed in the governing equations (for example, the value of a constant ha...
Definition Domain1D.cpp:95
This class models the ion transportation in a flame.
Definition IonFlow.h:29
vector< size_t > m_kCharge
index of species with charges
Definition IonFlow.h:125
void electricFieldMethod(const double *x, size_t j0, size_t j1)
Solving phase two: the electric field equation is added coupled by the electrical drift.
Definition IonFlow.cpp:152
double E(const double *x, size_t j) const
electric field
Definition IonFlow.h:144
vector< bool > m_do_electric_field
flag for solving electric field or not
Definition IonFlow.h:116
size_t m_kElectron
index of electron
Definition IonFlow.h:141
void frozenIonMethod(const double *x, size_t j0, size_t j1)
Solving phase one: the fluxes of charged species are turned off.
Definition IonFlow.cpp:125
void resize(size_t components, size_t points) override
Resize the domain to have nv components and np grid points.
Definition IonFlow.cpp:84
void setElectronTransport(vector< double > &tfix, vector< double > &diff_e, vector< double > &mobi_e)
Sometimes it is desired to carry out the simulation using a specified electron transport profile,...
Definition IonFlow.cpp:296
void evalElectricField(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
Evaluate the electric field equation residual by Gauss's law.
Definition IonFlow.cpp:203
double rho_e(double *x, size_t j) const
total charge density
Definition IonFlow.h:158
void updateTransport(double *x, size_t j0, size_t j1) override
Update the transport properties at grid points in the range from j0 to j1, based on solution x.
Definition IonFlow.cpp:100
vector< double > m_mobility
mobility
Definition IonFlow.h:135
void updateDiffFluxes(const double *x, size_t j0, size_t j1) override
Update the diffusive mass fluxes.
Definition IonFlow.cpp:115
void evalSpecies(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
Evaluate the species equations' residual.
Definition IonFlow.cpp:228
size_t m_stage
solving stage
Definition IonFlow.h:138
void _finalize(const double *x) override
In some cases, a domain may need to set parameters that depend on the initial solution estimate.
Definition IonFlow.cpp:313
void setSolvingStage(const size_t stage) override
Solving stage mode for handling ionized species (used by IonFlow specialization)
Definition IonFlow.cpp:190
bool m_import_electron_transport
flag for importing transport of electron
Definition IonFlow.h:119
void solveElectricField(size_t j=npos) override
Set to solve electric field in a point (used by IonFlow specialization)
Definition IonFlow.cpp:246
void fixElectricField(size_t j=npos) override
Set to fix voltage in a point (used by IonFlow specialization)
Definition IonFlow.cpp:271
string domainType() const override
Domain type flag.
Definition IonFlow.cpp:74
vector< size_t > m_kNeutral
index of neutral species
Definition IonFlow.h:128
vector< double > m_mobi_e_fix
coefficients of polynomial fitting of fixed electron transport profile
Definition IonFlow.h:131
bool componentActive(size_t n) const override
Returns true if the specified component is an active part of the solver state.
Definition IonFlow.cpp:91
vector< double > m_speciesCharge
electrical properties
Definition IonFlow.h:122
double temperature() const
Temperature (K).
Definition Phase.h:562
void setTransport(shared_ptr< Transport > trans) override
Set transport model to existing instance.
Definition StFlow.cpp:140
void setKinetics(shared_ptr< Kinetics > kin) override
Set the kinetics manager.
Definition StFlow.cpp:134
void resize(size_t components, size_t points) override
Change the grid size. Called after grid refinement.
Definition StFlow.cpp:160
virtual bool componentActive(size_t n) const
Returns true if the specified component is an active part of the solver state.
Definition StFlow.cpp:742
virtual void evalSpecies(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
Evaluate the species equations' residuals.
Definition StFlow.cpp:560
virtual void evalElectricField(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
Evaluate the electric field equation residual to be zero everywhere.
Definition StFlow.cpp:599
void _finalize(const double *x) override
In some cases, a domain may need to set parameters that depend on the initial solution estimate.
Definition StFlow.cpp:249
size_t m_nsp
Number of species in the mechanism.
Definition StFlow.h:623
void setGasAtMidpoint(const double *x, size_t j)
Set the gas state to be consistent with the solution at the midpoint between j and j + 1.
Definition StFlow.cpp:237
virtual void updateTransport(double *x, size_t j0, size_t j1)
Update the transport properties at grid points in the range from j0 to j1, based on solution x.
Definition StFlow.cpp:608
virtual string transportModel() const
Identifies the model represented by this Transport object.
Definition Transport.h:93
virtual void getMobilities(double *const mobil_e)
Get the Electrical mobilities (m^2/V/s).
Definition Transport.h:182
Header for a file containing miscellaneous numerical functions.
This file contains definitions for utility functions and text for modules, inputfiles and logging,...
R poly5(D x, R *c)
Templated evaluation of a polynomial of order 5.
Definition utilities.h:141
double polyfit(size_t n, size_t deg, const double *xp, const double *yp, const double *wp, double *pp)
Fits a polynomial function to a set of data points.
Definition polyfit.cpp:14
const double epsilon_0
Permittivity of free space [F/m].
Definition ct_defs.h:137
Namespace for the Cantera kernel.
Definition AnyMap.cpp:564
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180
@ c_offset_U
axial velocity
Definition StFlow.h:25
@ c_offset_V
strain rate
Definition StFlow.h:26
@ c_offset_E
electric field equation
Definition StFlow.h:29
@ c_offset_Y
mass fractions
Definition StFlow.h:30
@ c_offset_T
temperature
Definition StFlow.h:27
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...