Cantera  3.1.0
Loading...
Searching...
No Matches
DustyGasTransport.cpp
Go to the documentation of this file.
1/**
2 * @file DustyGasTransport.cpp
3 * Implementation file for class DustyGasTransport
4 */
5
6// This file is part of Cantera. See License.txt in the top-level directory or
7// at https://cantera.org/license.txt for license and copyright information.
8
13
14namespace Cantera
15{
16
18{
19 Transport::init(phase);
20 // constant mixture attributes
21 m_thermo = phase;
23 if (m_gastran.get() != gastr) {
24 m_gastran.reset(gastr);
25 }
26
27 // make a local copy of the molecular weights
29
32 m_dk.resize(m_nsp, 0.0);
33
34 m_x.resize(m_nsp, 0.0);
36
37 // set flags all false
38 m_knudsen_ok = false;
39 m_bulk_ok = false;
40
41 m_spwork.resize(m_nsp);
42 m_spwork2.resize(m_nsp);
43}
44
46{
47 if (m_bulk_ok) {
48 return;
49 }
50
51 // get the gaseous binary diffusion coefficients
52 m_gastran->getBinaryDiffCoeffs(m_nsp, m_d.ptrColumn(0));
53 double por2tort = m_porosity / m_tortuosity;
54 for (size_t n = 0; n < m_nsp; n++) {
55 for (size_t m = 0; m < m_nsp; m++) {
56 m_d(n,m) *= por2tort;
57 }
58 }
59 m_bulk_ok = true;
60}
61
63{
64 if (m_knudsen_ok) {
65 return;
66 }
67 double K_g = m_pore_radius * m_porosity / m_tortuosity;
68 for (size_t k = 0; k < m_nsp; k++) {
69 m_dk[k] = 2.0/3.0 * K_g * sqrt((8.0 * GasConstant * m_temp)/
70 (Pi * m_mw[k]));
71 }
72 m_knudsen_ok = true;
73}
74
76{
79 for (size_t k = 0; k < m_nsp; k++) {
80 // evaluate off-diagonal terms
81 for (size_t j = 0; j < m_nsp; j++) {
82 m_multidiff(k,j) = -m_x[k]/m_d(k,j);
83 }
84
85 // evaluate diagonal term
86 double sum = 0.0;
87 for (size_t j = 0; j < m_nsp; j++) {
88 if (j != k) {
89 sum += m_x[j]/m_d(k,j);
90 }
91 }
92 m_multidiff(k,k) = 1.0/m_dk[k] + sum;
93 }
94}
95
96void DustyGasTransport::getMolarFluxes(const double* const state1,
97 const double* const state2,
98 const double delta,
99 double* const fluxes)
100{
101 // cbar will be the average concentration between the two points
102 double* const cbar = m_spwork.data();
103 double* const gradc = m_spwork2.data();
104 const double t1 = state1[0];
105 const double t2 = state2[0];
106 const double rho1 = state1[1];
107 const double rho2 = state2[1];
108 const double* const y1 = state1 + 2;
109 const double* const y2 = state2 + 2;
110 double c1sum = 0.0, c2sum = 0.0;
111
112 for (size_t k = 0; k < m_nsp; k++) {
113 double conc1 = rho1 * y1[k] / m_mw[k];
114 double conc2 = rho2 * y2[k] / m_mw[k];
115 cbar[k] = 0.5*(conc1 + conc2);
116 gradc[k] = (conc2 - conc1) / delta;
117 c1sum += conc1;
118 c2sum += conc2;
119 }
120
121 // Calculate the pressures at p1 p2 and pbar
122 double p1 = c1sum * GasConstant * t1;
123 double p2 = c2sum * GasConstant * t2;
124 double pbar = 0.5*(p1 + p2);
125 double gradp = (p2 - p1)/delta;
126 double tbar = 0.5*(t1 + t2);
127 m_thermo->setState_TPX(tbar, pbar, cbar);
129
130 // Multiply m_multidiff and gradc together and store the result in fluxes[]
131 multiply(m_multidiff, gradc, fluxes);
132 for (size_t k = 0; k < m_nsp; k++) {
133 cbar[k] /= m_dk[k];
134 }
135
136 // if no permeability has been specified, use result for
137 // close-packed spheres
138 double b = 0.0;
139 if (m_perm < 0.0) {
140 double p = m_porosity;
141 double d = m_diam;
142 double t = m_tortuosity;
143 b = p*p*p*d*d/(72.0*t*(1.0-p)*(1.0-p));
144 } else {
145 b = m_perm;
146 }
147 b *= gradp / m_gastran->viscosity();
148 scale(cbar, cbar + m_nsp, cbar, b);
149
150 // Multiply m_multidiff with cbar and add it to fluxes
151 increment(m_multidiff, cbar, fluxes);
152 scale(fluxes, fluxes + m_nsp, fluxes, -1.0);
153}
154
156{
157 // see if temperature has changed
159
160 // update the mole fractions
163
164 // invert H
166}
167
168void DustyGasTransport::getMultiDiffCoeffs(const size_t ld, double* const d)
169{
171 for (size_t i = 0; i < m_nsp; i++) {
172 for (size_t j = 0; j < m_nsp; j++) {
173 d[ld*j + i] = m_multidiff(i,j);
174 }
175 }
176}
177
179{
180 if (m_temp == m_thermo->temperature()) {
181 return;
182 }
184 m_knudsen_ok = false;
185 m_bulk_ok = false;
186}
187
189{
191
192 // add an offset to avoid a pure species condition
193 // (check - this may be unnecessary)
194 for (size_t k = 0; k < m_nsp; k++) {
195 m_x[k] = std::max(Tiny, m_x[k]);
196 }
197 // diffusion coeffs depend on Pressure
198 m_bulk_ok = false;
199}
200
202{
203 m_porosity = porosity;
204 m_knudsen_ok = false;
205 m_bulk_ok = false;
206}
207
209{
210 m_tortuosity = tort;
211 m_knudsen_ok = false;
212 m_bulk_ok = false;
213}
214
216{
217 m_pore_radius = rbar;
218 m_knudsen_ok = false;
219}
220
222{
223 m_diam = dbar;
224}
225
227{
228 m_perm = B;
229}
230
232{
233 return *m_gastran;
234}
235
236}
Headers for the DustyGasTransport object, which models transport properties in porous media using the...
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
double * ptrColumn(size_t j)
Return a pointer to the top of column j, columns are contiguous in memory.
Definition Array.h:203
void resize(size_t n, size_t m, double v=0.0) override
Resize the matrix.
vector< double > m_mw
Local copy of the species molecular weights.
double m_diam
Particle diameter.
void getMolarFluxes(const double *const state1, const double *const state2, const double delta, double *const fluxes) override
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points.
DenseMatrix m_multidiff
Multicomponent diffusion coefficients.
bool m_bulk_ok
Update-to-date variable for Binary diffusion coefficients.
vector< double > m_x
mole fractions
vector< double > m_dk
Knudsen diffusion coefficients.
void updateTransport_T()
Update temperature-dependent quantities within the object.
bool m_knudsen_ok
Update-to-date variable for Knudsen diffusion coefficients.
void initialize(ThermoPhase *phase, Transport *gastr)
Initialization routine called by TransportFactory.
vector< double > m_spwork
work space of size m_nsp;
void updateBinaryDiffCoeffs()
Private routine to update the dusty gas binary diffusion coefficients.
double m_perm
Permeability of the media.
void eval_H_matrix()
Calculate the H matrix.
void updateTransport_C()
Update concentration-dependent quantities within the object.
void updateMultiDiffCoeffs()
Update the Multicomponent diffusion coefficients that are used in the approximation.
void updateKnudsenDiffCoeffs()
Update the Knudsen diffusion coefficients.
void setMeanParticleDiameter(double dbar)
Set the mean particle diameter.
void setTortuosity(double tort)
Set the tortuosity (dimensionless)
void setPorosity(double porosity)
Set the porosity (dimensionless)
vector< double > m_spwork2
work space of size m_nsp;
Transport & gasTransport()
Return a reference to the transport manager used to compute the gas binary diffusion coefficients and...
unique_ptr< Transport > m_gastran
Pointer to the transport object for the gas phase.
void setPermeability(double B)
Set the permeability of the media.
double m_pore_radius
Pore radius (meter)
void getMultiDiffCoeffs(const size_t ld, double *const d) override
Return the Multicomponent diffusion coefficients. Units: [m^2/s].
void setMeanPoreRadius(double rbar)
Set the mean pore radius (m)
DenseMatrix m_d
binary diffusion coefficients
size_t nSpecies() const
Returns the number of species in the phase.
Definition Phase.h:231
double temperature() const
Temperature (K).
Definition Phase.h:562
void getMoleFractions(double *const x) const
Get the species mole fraction vector.
Definition Phase.cpp:434
const vector< double > & molecularWeights() const
Return a const reference to the internal vector of molecular weights.
Definition Phase.cpp:395
Base class for a phase with thermodynamic properties.
virtual void setState_TPX(double t, double p, const double *x)
Set the temperature (K), pressure (Pa), and mole fractions.
Base class for transport property managers.
Definition Transport.h:72
ThermoPhase * m_thermo
pointer to the object representing the phase
Definition Transport.h:437
virtual void init(ThermoPhase *thermo, int mode=0, int log_level=-7)
Initialize a transport manager.
Definition Transport.h:419
size_t m_nsp
Number of species.
Definition Transport.h:440
void scale(InputIter begin, InputIter end, OutputIter out, S scale_factor)
Multiply elements of an array by a scale factor.
Definition utilities.h:104
const double GasConstant
Universal Gas Constant [J/kmol/K].
Definition ct_defs.h:120
const double Pi
Pi.
Definition ct_defs.h:68
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595
void increment(const DenseMatrix &A, const double *b, double *prod)
Multiply A*b and add it to the result in prod. Uses BLAS routine DGEMV.
const double Tiny
Small number to compare differences of mole fractions against.
Definition ct_defs.h:173
void multiply(const DenseMatrix &A, const double *const b, double *const prod)
Multiply A*b and return the result in prod. Uses BLAS routine DGEMV.
int invert(DenseMatrix &A, size_t nn)
invert A. A is overwritten with A^-1.
Contains declarations for string manipulation functions within Cantera.
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...