Cantera  3.1.0
Loading...
Searching...
No Matches

This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemically-reacting, axisymmetric flows. More...

#include <StFlow.h>

Inheritance diagram for StFlow:
[legend]

Detailed Description

This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemically-reacting, axisymmetric flows.

Deprecated:
To be removed after Cantera 3.1; replaced by Flow1D.

Definition at line 21 of file StFlow.h.

Public Member Functions

 StFlow (ThermoPhase *ph=0, size_t nsp=1, size_t points=1)
 Create a new flow domain.
 
 StFlow (shared_ptr< ThermoPhase > th, size_t nsp=1, size_t points=1)
 Delegating constructor.
 
 StFlow (shared_ptr< Solution > sol, const string &id="", size_t points=1)
 Create a new flow domain.
 
void eval (size_t j, double *x, double *r, integer *mask, double rdt) override
 Evaluate the residual functions for axisymmetric stagnation flow.
 
virtual void evalRightBoundary (double *x, double *res, int *diag, double rdt)
 Evaluate all residual components at the right boundary.
 
void evalContinuity (size_t j, double *x, double *r, int *diag, double rdt) override
 Alternate version of evalContinuity with legacy signature.
 
- Public Member Functions inherited from Flow1D
 Flow1D (ThermoPhase *ph=0, size_t nsp=1, size_t points=1)
 Create a new flow domain.
 
 Flow1D (shared_ptr< ThermoPhase > th, size_t nsp=1, size_t points=1)
 Delegating constructor.
 
 Flow1D (shared_ptr< Solution > sol, const string &id="", size_t points=1)
 Create a new flow domain.
 
string domainType () const override
 Domain type flag.
 
string componentName (size_t n) const override
 Name of component n. May be overloaded.
 
size_t componentIndex (const string &name) const override
 index of component with name name.
 
virtual bool componentActive (size_t n) const
 Returns true if the specified component is an active part of the solver state.
 
void show (const double *x) override
 Print the solution.
 
shared_ptr< SolutionArrayasArray (const double *soln) const override
 Save the state of this domain as a SolutionArray.
 
void fromArray (SolutionArray &arr, double *soln) override
 Restore the solution for this domain from a SolutionArray.
 
void setFreeFlow ()
 Set flow configuration for freely-propagating flames, using an internal point with a fixed temperature as the condition to determine the inlet mass flux.
 
void setAxisymmetricFlow ()
 Set flow configuration for axisymmetric counterflow flames, using specified inlet mass fluxes.
 
void setUnstrainedFlow ()
 Set flow configuration for burner-stabilized flames, using specified inlet mass fluxes.
 
void solveEnergyEqn (size_t j=npos)
 Specify that the energy equation should be solved at point j.
 
virtual size_t getSolvingStage () const
 Get the solving stage (used by IonFlow specialization)
 
virtual void setSolvingStage (const size_t stage)
 Solving stage mode for handling ionized species (used by IonFlow specialization)
 
virtual void solveElectricField (size_t j=npos)
 Set to solve electric field in a point (used by IonFlow specialization)
 
virtual void fixElectricField (size_t j=npos)
 Set to fix voltage in a point (used by IonFlow specialization)
 
virtual bool doElectricField (size_t j) const
 Retrieve flag indicating whether electric field is solved or not (used by IonFlow specialization)
 
void enableRadiation (bool doRadiation)
 Turn radiation on / off.
 
bool radiationEnabled () const
 Returns true if the radiation term in the energy equation is enabled.
 
double radiativeHeatLoss (size_t j) const
 Return radiative heat loss at grid point j.
 
void setBoundaryEmissivities (double e_left, double e_right)
 Set the emissivities for the boundary values.
 
double leftEmissivity () const
 Return emissivity at left boundary.
 
double rightEmissivity () const
 Return emissivity at right boundary.
 
void fixTemperature (size_t j=npos)
 Specify that the the temperature should be held fixed at point j.
 
bool doEnergy (size_t j)
 true if the energy equation is solved at point j or false if a fixed temperature condition is imposed.
 
void resize (size_t components, size_t points) override
 Change the grid size. Called after grid refinement.
 
void setGas (const double *x, size_t j)
 Set the gas object state to be consistent with the solution at point j.
 
void setGasAtMidpoint (const double *x, size_t j)
 Set the gas state to be consistent with the solution at the midpoint between j and j + 1.
 
double density (size_t j) const
 Get the density [kg/m³] at point j
 
bool isFree () const
 Retrieve flag indicating whether flow is freely propagating.
 
bool isStrained () const
 Retrieve flag indicating whether flow uses radial momentum.
 
void setViscosityFlag (bool dovisc)
 Specify if the viscosity term should be included in the momentum equation.
 
void eval (size_t jGlobal, double *xGlobal, double *rsdGlobal, integer *diagGlobal, double rdt) override
 Evaluate the residual functions for axisymmetric stagnation flow.
 
size_t leftExcessSpecies () const
 Index of the species on the left boundary with the largest mass fraction.
 
size_t rightExcessSpecies () const
 Index of the species on the right boundary with the largest mass fraction.
 
void setupGrid (size_t n, const double *z) override
 called to set up initial grid, and after grid refinement
 
void resetBadValues (double *xg) override
 When called, this function should reset "bad" values in the state vector such as negative species concentrations.
 
ThermoPhasephase ()
 Access the phase object used to compute thermodynamic properties for points in this domain.
 
Kineticskinetics ()
 Access the Kinetics object used to compute reaction rates for points in this domain.
 
void setKinetics (shared_ptr< Kinetics > kin) override
 Set the Kinetics object used for reaction rate calculations.
 
void setTransport (shared_ptr< Transport > trans) override
 Set the transport manager used for transport property calculations.
 
void setTransportModel (const string &trans)
 Set the transport model.
 
string transportModel () const
 Retrieve transport model.
 
void enableSoret (bool withSoret)
 Enable thermal diffusion, also known as Soret diffusion.
 
bool withSoret () const
 Indicates if thermal diffusion (Soret effect) term is being calculated.
 
void setFluxGradientBasis (ThermoBasis fluxGradientBasis)
 Compute species diffusive fluxes with respect to their mass fraction gradients (fluxGradientBasis = ThermoBasis::mass) or mole fraction gradients (fluxGradientBasis = ThermoBasis::molar, default) when using the mixture-averaged transport model.
 
ThermoBasis fluxGradientBasis () const
 Compute species diffusive fluxes with respect to their mass fraction gradients (fluxGradientBasis = ThermoBasis::mass) or mole fraction gradients (fluxGradientBasis = ThermoBasis::molar, default) when using the mixture-averaged transport model.
 
void setPressure (double p)
 Set the pressure.
 
double pressure () const
 The current pressure [Pa].
 
void _getInitialSoln (double *x) override
 Write the initial solution estimate into array x.
 
void _finalize (const double *x) override
 In some cases, a domain may need to set parameters that depend on the initial solution estimate.
 
void setFixedTempProfile (vector< double > &zfixed, vector< double > &tfixed)
 Sometimes it is desired to carry out the simulation using a specified temperature profile, rather than computing it by solving the energy equation.
 
void setTemperature (size_t j, double t)
 Set the temperature fixed point at grid point j, and disable the energy equation so that the solution will be held to this value.
 
double T_fixed (size_t j) const
 The fixed temperature value at point j.
 
double leftControlPointTemperature () const
 Returns the temperature at the left control point.
 
double leftControlPointCoordinate () const
 Returns the z-coordinate of the left control point.
 
void setLeftControlPointTemperature (double temperature)
 Sets the temperature of the left control point.
 
void setLeftControlPointCoordinate (double z_left)
 Sets the coordinate of the left control point.
 
double rightControlPointTemperature () const
 Returns the temperature at the right control point.
 
double rightControlPointCoordinate () const
 Returns the z-coordinate of the right control point.
 
void setRightControlPointTemperature (double temperature)
 Sets the temperature of the right control point.
 
void setRightControlPointCoordinate (double z_right)
 Sets the coordinate of the right control point.
 
void enableTwoPointControl (bool twoPointControl)
 Sets the status of the two-point control.
 
bool twoPointControlEnabled () const
 Returns the status of the two-point control.
 
- Public Member Functions inherited from Domain1D
 Domain1D (size_t nv=1, size_t points=1, double time=0.0)
 Constructor.
 
 Domain1D (const Domain1D &)=delete
 
Domain1Doperator= (const Domain1D &)=delete
 
virtual string domainType () const
 Domain type flag.
 
string type () const
 String indicating the domain implemented.
 
size_t domainIndex ()
 The left-to-right location of this domain.
 
virtual bool isConnector ()
 True if the domain is a connector domain.
 
void setSolution (shared_ptr< Solution > sol)
 Set the solution manager.
 
virtual void setKinetics (shared_ptr< Kinetics > kin)
 Set the kinetics manager.
 
virtual void setTransport (shared_ptr< Transport > trans)
 Set transport model to existing instance.
 
const OneDimcontainer () const
 The container holding this domain.
 
void setContainer (OneDim *c, size_t index)
 Specify the container object for this domain, and the position of this domain in the list.
 
void setBandwidth (int bw=-1)
 Set the Jacobian bandwidth. See the discussion of method bandwidth().
 
size_t bandwidth ()
 Set the Jacobian bandwidth for this domain.
 
virtual void init ()
 Initialize.
 
virtual void setInitialState (double *xlocal=0)
 
virtual void setState (size_t point, const double *state, double *x)
 
virtual void resetBadValues (double *xg)
 When called, this function should reset "bad" values in the state vector such as negative species concentrations.
 
virtual void resize (size_t nv, size_t np)
 Resize the domain to have nv components and np grid points.
 
Refinerrefiner ()
 Return a reference to the grid refiner.
 
size_t nComponents () const
 Number of components at each grid point.
 
void checkComponentIndex (size_t n) const
 Check that the specified component index is in range.
 
void checkComponentArraySize (size_t nn) const
 Check that an array size is at least nComponents().
 
size_t nPoints () const
 Number of grid points in this domain.
 
void checkPointIndex (size_t n) const
 Check that the specified point index is in range.
 
void checkPointArraySize (size_t nn) const
 Check that an array size is at least nPoints().
 
virtual string componentName (size_t n) const
 Name of component n. May be overloaded.
 
void setComponentName (size_t n, const string &name)
 Set the name of the component n to name.
 
virtual size_t componentIndex (const string &name) const
 index of component with name name.
 
void setBounds (size_t n, double lower, double upper)
 Set the upper and lower bounds for a solution component, n.
 
void setTransientTolerances (double rtol, double atol, size_t n=npos)
 Set tolerances for time-stepping mode.
 
void setSteadyTolerances (double rtol, double atol, size_t n=npos)
 Set tolerances for steady-state mode.
 
double rtol (size_t n)
 Relative tolerance of the nth component.
 
double atol (size_t n)
 Absolute tolerance of the nth component.
 
double steady_rtol (size_t n)
 Steady relative tolerance of the nth component.
 
double steady_atol (size_t n)
 Steady absolute tolerance of the nth component.
 
double transient_rtol (size_t n)
 Transient relative tolerance of the nth component.
 
double transient_atol (size_t n)
 Transient absolute tolerance of the nth component.
 
double upperBound (size_t n) const
 Upper bound on the nth component.
 
double lowerBound (size_t n) const
 Lower bound on the nth component.
 
void initTimeInteg (double dt, const double *x0)
 Performs the setup required before starting a time-stepping solution.
 
void setSteadyMode ()
 Set the internally-stored reciprocal of the time step to 0.0, which is used to indicate that the problem is in steady-state mode.
 
bool steady ()
 True if in steady-state mode.
 
bool transient ()
 True if not in steady-state mode.
 
void needJacUpdate ()
 Set this if something has changed in the governing equations (for example, the value of a constant has been changed, so that the last-computed Jacobian is no longer valid.
 
virtual void eval (size_t j, double *x, double *r, integer *mask, double rdt=0.0)
 Evaluate the residual function at point j.
 
size_t index (size_t n, size_t j) const
 Returns the index of the solution vector, which corresponds to component n at grid point j.
 
double value (const double *x, size_t n, size_t j) const
 Returns the value of solution component n at grid point j of the solution vector x.
 
virtual void setJac (MultiJac *jac)
 
virtual shared_ptr< SolutionArrayasArray (const double *soln) const
 Save the state of this domain as a SolutionArray.
 
shared_ptr< SolutionArraytoArray (bool normalize=false) const
 Save the state of this domain to a SolutionArray.
 
virtual void fromArray (SolutionArray &arr, double *soln)
 Restore the solution for this domain from a SolutionArray.
 
void fromArray (const shared_ptr< SolutionArray > &arr)
 Restore the solution for this domain from a SolutionArray.
 
shared_ptr< Solutionsolution () const
 Return thermo/kinetics/transport manager used in the domain.
 
size_t size () const
 Return the size of the solution vector (the product of m_nv and m_points).
 
void locate ()
 Find the index of the first grid point in this domain, and the start of its variables in the global solution vector.
 
virtual size_t loc (size_t j=0) const
 Location of the start of the local solution vector in the global solution vector.
 
size_t firstPoint () const
 The index of the first (that is, left-most) grid point belonging to this domain.
 
size_t lastPoint () const
 The index of the last (that is, right-most) grid point belonging to this domain.
 
void linkLeft (Domain1D *left)
 Set the left neighbor to domain 'left.
 
void linkRight (Domain1D *right)
 Set the right neighbor to domain 'right.'.
 
void append (Domain1D *right)
 Append domain 'right' to this one, and update all links.
 
Domain1Dleft () const
 Return a pointer to the left neighbor.
 
Domain1Dright () const
 Return a pointer to the right neighbor.
 
double prevSoln (size_t n, size_t j) const
 Value of component n at point j in the previous solution.
 
void setID (const string &s)
 Specify an identifying tag for this domain.
 
string id () const
 Returns the identifying tag for this domain.
 
virtual void show (std::ostream &s, const double *x)
 Print the solution.
 
virtual void show (const double *x)
 Print the solution.
 
double z (size_t jlocal) const
 Get the coordinate [m] of the point with local index jlocal
 
double zmin () const
 Get the coordinate [m] of the first (leftmost) grid point in this domain.
 
double zmax () const
 Get the coordinate [m] of the last (rightmost) grid point in this domain.
 
void setProfile (const string &name, double *values, double *soln)
 Set initial values for a component at each grid point.
 
vector< double > & grid ()
 Access the array of grid coordinates [m].
 
const vector< double > & grid () const
 Access the array of grid coordinates [m].
 
double grid (size_t point) const
 
virtual void setupGrid (size_t n, const double *z)
 called to set up initial grid, and after grid refinement
 
virtual void _getInitialSoln (double *x)
 Writes some or all initial solution values into the global solution array, beginning at the location pointed to by x.
 
virtual double initialValue (size_t n, size_t j)
 Initial value of solution component n at grid point j.
 
virtual void _finalize (const double *x)
 In some cases, a domain may need to set parameters that depend on the initial solution estimate.
 
void forceFullUpdate (bool update)
 In some cases, for computational efficiency some properties (such as transport coefficients) may not be updated during Jacobian evaluations.
 
void setData (shared_ptr< vector< double > > &data)
 Set shared data pointer.
 

Protected Member Functions

double wdot (size_t k, size_t j) const
 
void getWdot (double *x, size_t j)
 Write the net production rates at point j into array m_wdot
 
virtual void evalResidual (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the residual function.
 
- Protected Member Functions inherited from Flow1D
AnyMap getMeta () const override
 Retrieve meta data.
 
void setMeta (const AnyMap &state) override
 Retrieve meta data.
 
virtual void evalContinuity (size_t j, double *x, double *r, int *diag, double rdt)
 Alternate version of evalContinuity with legacy signature.
 
virtual void evalUo (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the oxidizer axial velocity equation residual.
 
double shear (const double *x, size_t j) const
 Compute the shear term from the momentum equation using a central three-point differencing scheme.
 
double conduction (const double *x, size_t j) const
 Compute the conduction term from the energy equation using a central three-point differencing scheme.
 
size_t mindex (size_t k, size_t j, size_t m)
 Array access mapping for a 3D array stored in a 1D vector.
 
virtual void grad_hk (const double *x, size_t j)
 Compute the spatial derivative of species specific molar enthalpies using upwind differencing.
 
void updateThermo (const double *x, size_t j0, size_t j1)
 Update the thermodynamic properties from point j0 to point j1 (inclusive), based on solution x.
 
virtual void updateTransport (double *x, size_t j0, size_t j1)
 Update the transport properties at grid points in the range from j0 to j1, based on solution x.
 
virtual void updateDiffFluxes (const double *x, size_t j0, size_t j1)
 Update the diffusive mass fluxes.
 
virtual void updateProperties (size_t jg, double *x, size_t jmin, size_t jmax)
 Update the properties (thermo, transport, and diffusion flux).
 
void computeRadiation (double *x, size_t jmin, size_t jmax)
 Computes the radiative heat loss vector over points jmin to jmax and stores the data in the qdotRadiation variable.
 
virtual void evalContinuity (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the continuity equation residual.
 
virtual void evalMomentum (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the momentum equation residual.
 
virtual void evalLambda (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the lambda equation residual.
 
virtual void evalEnergy (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the energy equation residual.
 
virtual void evalSpecies (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the species equations' residuals.
 
virtual void evalElectricField (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the electric field equation residual to be zero everywhere.
 
double T (const double *x, size_t j) const
 Get the temperature at point j from the local state vector x.
 
double & T (double *x, size_t j)
 Get the temperature at point j from the local state vector x.
 
double T_prev (size_t j) const
 Get the temperature at point j from the previous time step.
 
double rho_u (const double *x, size_t j) const
 Get the axial mass flux [kg/m²/s] at point j from the local state vector x.
 
double u (const double *x, size_t j) const
 Get the axial velocity [m/s] at point j from the local state vector x.
 
double V (const double *x, size_t j) const
 Get the spread rate (tangential velocity gradient) [1/s] at point j from the local state vector x.
 
double V_prev (size_t j) const
 Get the spread rate [1/s] at point j from the previous time step.
 
double lambda (const double *x, size_t j) const
 Get the radial pressure gradient [N/m⁴] at point j from the local state vector x
 
double Uo (const double *x, size_t j) const
 Get the oxidizer inlet velocity [m/s] linked to point j from the local state vector x.
 
double Y (const double *x, size_t k, size_t j) const
 Get the mass fraction of species k at point j from the local state vector x.
 
double & Y (double *x, size_t k, size_t j)
 Get the mass fraction of species k at point j from the local state vector x.
 
double Y_prev (size_t k, size_t j) const
 Get the mass fraction of species k at point j from the previous time step.
 
double X (const double *x, size_t k, size_t j) const
 Get the mole fraction of species k at point j from the local state vector x.
 
double flux (size_t k, size_t j) const
 Get the diffusive mass flux [kg/m²/s] of species k at point j
 
double dVdz (const double *x, size_t j) const
 Calculates the spatial derivative of velocity V with respect to z at point j using upwind differencing.
 
double dYdz (const double *x, size_t k, size_t j) const
 Calculates the spatial derivative of the species mass fraction \( Y_k \) with respect to z for species k at point j using upwind differencing.
 
double dTdz (const double *x, size_t j) const
 Calculates the spatial derivative of temperature T with respect to z at point j using upwind differencing.
 
virtual AnyMap getMeta () const
 Retrieve meta data.
 
virtual void setMeta (const AnyMap &meta)
 Retrieve meta data.
 

Additional Inherited Members

- Public Attributes inherited from Flow1D
double m_zfixed = Undef
 Location of the point where temperature is fixed.
 
double m_tfixed = -1.0
 Temperature at the point used to fix the flame location.
 
- Protected Attributes inherited from Flow1D
double m_press = -1.0
 pressure [Pa]
 
vector< double > m_dz
 Grid spacing. Element j holds the value of z(j+1) - z(j).
 
vector< double > m_rho
 Density at each grid point.
 
vector< double > m_wtm
 Mean molecular weight at each grid point.
 
vector< double > m_wt
 Molecular weight of each species.
 
vector< double > m_cp
 Specific heat capacity at each grid point.
 
vector< double > m_visc
 Dynamic viscosity at each grid point [Pa∙s].
 
vector< double > m_tcon
 Thermal conductivity at each grid point [W/m/K].
 
vector< double > m_diff
 Coefficient used in diffusion calculations for each species at each grid point.
 
vector< double > m_multidiff
 Vector of size m_nsp × m_nsp × m_points for saving multicomponent diffusion coefficients.
 
Array2D m_dthermal
 Array of size m_nsp by m_points for saving thermal diffusion coefficients.
 
Array2D m_flux
 Array of size m_nsp by m_points for saving diffusive mass fluxes.
 
Array2D m_hk
 Array of size m_nsp by m_points for saving molar enthalpies.
 
Array2D m_dhk_dz
 Array of size m_nsp by m_points-1 for saving enthalpy fluxes.
 
Array2D m_wdot
 Array of size m_nsp by m_points for saving species production rates.
 
size_t m_nsp
 Number of species in the mechanism.
 
ThermoPhasem_thermo = nullptr
 Phase object used for calculating thermodynamic properties.
 
Kineticsm_kin = nullptr
 Kinetics object used for calculating species production rates.
 
Transportm_trans = nullptr
 Transport object used for calculating transport properties.
 
double m_epsilon_left = 0.0
 Emissivity of the surface to the left of the domain.
 
double m_epsilon_right = 0.0
 Emissivity of the surface to the right of the domain.
 
vector< size_t > m_kRadiating
 Indices within the ThermoPhase of the radiating species.
 
vector< double > m_qdotRadiation
 radiative heat loss vector
 
vector< double > m_fixedtemp
 Fixed values of the temperature at each grid point that are used when solving with the energy equation disabled.
 
vector< double > m_zfix
 Relative coordinates used to specify a fixed temperature profile.
 
vector< double > m_tfix
 Fixed temperature values at the relative coordinates specified in m_zfix.
 
size_t m_kExcessLeft = 0
 Index of species with a large mass fraction at the left boundary, for which the mass fraction may be calculated as 1 minus the sum of the other mass fractions.
 
size_t m_kExcessRight = 0
 Index of species with a large mass fraction at the right boundary, for which the mass fraction may be calculated as 1 minus the sum of the other mass fractions.
 
double m_zLeft = Undef
 Location of the left control point when two-point control is enabled.
 
double m_tLeft = Undef
 Temperature of the left control point when two-point control is enabled.
 
double m_zRight = Undef
 Location of the right control point when two-point control is enabled.
 
double m_tRight = Undef
 Temperature of the right control point when two-point control is enabled.
 
vector< bool > m_do_energy
 For each point in the domain, true if energy equation is solved or false if temperature is held constant.
 
bool m_do_soret = false
 true if the Soret diffusion term should be calculated.
 
ThermoBasis m_fluxGradientBasis = ThermoBasis::molar
 Determines whether diffusive fluxes are computed using gradients of mass fraction or mole fraction.
 
bool m_do_multicomponent = false
 true if transport fluxes are computed using the multicomponent diffusion coefficients, or false if mixture-averaged diffusion coefficients are used.
 
bool m_do_radiation = false
 Determines whether radiative heat loss is calculated.
 
bool m_dovisc
 Determines whether the viscosity term in the momentum equation is calculated.
 
bool m_isFree
 Flag that is true for freely propagating flames anchored by a temperature fixed point.
 
bool m_usesLambda
 Flag that is true for counterflow configurations that use the pressure eigenvalue \( \Lambda \) in the radial momentum equation.
 
bool m_twoPointControl = false
 Flag for activating two-point flame control.
 
- Protected Attributes inherited from Domain1D
shared_ptr< vector< double > > m_state
 data pointer shared from OneDim
 
double m_rdt = 0.0
 Reciprocal of the time step.
 
size_t m_nv = 0
 Number of solution components.
 
size_t m_points
 Number of grid points.
 
vector< double > m_slast
 Solution vector at the last time step.
 
vector< double > m_max
 Upper bounds on solution components.
 
vector< double > m_min
 Lower bounds on solution components.
 
vector< double > m_rtol_ss
 Relative tolerances for steady mode.
 
vector< double > m_rtol_ts
 Relative tolerances for transient mode.
 
vector< double > m_atol_ss
 Absolute tolerances for steady mode.
 
vector< double > m_atol_ts
 Absolute tolerances for transient mode.
 
vector< double > m_z
 1D spatial grid coordinates
 
OneDimm_container = nullptr
 Parent OneDim simulation containing this and adjacent domains.
 
size_t m_index
 Left-to-right location of this domain.
 
size_t m_iloc = 0
 Starting location within the solution vector for unknowns that correspond to this domain.
 
size_t m_jstart = 0
 Index of the first point in this domain in the global point list.
 
Domain1Dm_left = nullptr
 Pointer to the domain to the left.
 
Domain1Dm_right = nullptr
 Pointer to the domain to the right.
 
string m_id
 Identity tag for the domain.
 
unique_ptr< Refinerm_refiner
 Refiner object used for placing grid points.
 
vector< string > m_name
 Names of solution components.
 
int m_bw = -1
 See bandwidth()
 
bool m_force_full_update = false
 see forceFullUpdate()
 
shared_ptr< Solutionm_solution
 Composite thermo/kinetics/transport handler.
 

Constructor & Destructor Documentation

◆ StFlow() [1/3]

StFlow ( ThermoPhase ph = 0,
size_t  nsp = 1,
size_t  points = 1 
)

Create a new flow domain.

Parameters
phObject representing the gas phase. This object will be used to evaluate all thermodynamic, kinetic, and transport properties.
nspNumber of species.
pointsInitial number of grid points

Definition at line 14 of file StFlow.cpp.

◆ StFlow() [2/3]

StFlow ( shared_ptr< ThermoPhase th,
size_t  nsp = 1,
size_t  points = 1 
)

Delegating constructor.

Definition at line 21 of file StFlow.cpp.

◆ StFlow() [3/3]

StFlow ( shared_ptr< Solution sol,
const string &  id = "",
size_t  points = 1 
)

Create a new flow domain.

Parameters
solSolution object used to evaluate all thermodynamic, kinetic, and transport properties
idname of flow domain
pointsinitial number of grid points

Definition at line 28 of file StFlow.cpp.

Member Function Documentation

◆ eval()

void eval ( size_t  jGlobal,
double *  xGlobal,
double *  rsdGlobal,
integer *  diagGlobal,
double  rdt 
)
overridevirtual

Evaluate the residual functions for axisymmetric stagnation flow.

If jGlobal == npos, the residual function is evaluated at all grid points. Otherwise, the residual function is only evaluated at grid points j-1, j, and j+1. This option is used to efficiently evaluate the Jacobian numerically.

These residuals at all the boundary grid points are evaluated using a default boundary condition that may be modified by a boundary object that is attached to the domain. The boundary object connected will modify these equations by subtracting the boundary object's values for V, T, mdot, etc. As a result, these residual equations will force the solution variables to the values of the connected boundary object.

Parameters
jGlobalGlobal grid point at which to update the residual
[in]xGlobalGlobal state vector
[out]rsdGlobalGlobal residual vector
[out]diagGlobalGlobal boolean mask indicating whether each solution component has a time derivative (1) or not (0).
[in]rdtReciprocal of the timestep (rdt=0 implies steady-state.)

Reimplemented from Flow1D.

Definition at line 35 of file StFlow.cpp.

◆ evalRightBoundary()

void evalRightBoundary ( double *  x,
double *  res,
int *  diag,
double  rdt 
)
virtual

Evaluate all residual components at the right boundary.

Definition at line 247 of file StFlow.cpp.

◆ evalContinuity()

void evalContinuity ( size_t  j,
double *  x,
double *  r,
int *  diag,
double  rdt 
)
overridevirtual

Alternate version of evalContinuity with legacy signature.

Implemented by StFlow; included here to prevent compiler warnings about shadowed virtual functions.

Deprecated:
To be removed after Cantera 3.1.

Reimplemented from Flow1D.

Definition at line 277 of file StFlow.cpp.

◆ wdot()

double wdot ( size_t  k,
size_t  j 
) const
inlineprotected

Definition at line 49 of file StFlow.h.

◆ getWdot()

void getWdot ( double *  x,
size_t  j 
)
inlineprotected

Write the net production rates at point j into array m_wdot

Definition at line 54 of file StFlow.h.

◆ evalResidual()

void evalResidual ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Evaluate the residual function.

This function is called in eval after updateProperties is called.

Definition at line 63 of file StFlow.cpp.


The documentation for this class was generated from the following files: