Cantera  3.1.0
Loading...
Searching...
No Matches
BinarySolutionTabulatedThermo.cpp
Go to the documentation of this file.
1/**
2 * @file BinarySolutionTabulatedThermo.cpp Implementation file for an binary
3 * solution model with tabulated standard state thermodynamic data (see
4 * @ref thermoprops and class
5 * @link Cantera::BinarySolutionTabulatedThermo BinarySolutionTabulatedThermo@endlink).
6 */
7
8// This file is part of Cantera. See License.txt in the top-level directory or
9// at https://cantera.org/license.txt for license and copyright information.
10
12#include "cantera/thermo/PDSS.h"
18
19namespace Cantera
20{
21
23 const string& id_)
24{
25 initThermoFile(inputFile, id_);
26}
27
29{
32}
33
35{
36 static const int cacheId = m_cache.getId();
37 CachedScalar cached = m_cache.getScalar(cacheId);
38 bool x_changed = !cached.validate(stateMFNumber());
39
40 if (x_changed) {
41 double x_tab = moleFraction(m_kk_tab);
42 double x_other = moleFraction(1 - m_kk_tab);
43 m_h0_tab = interpolate(x_tab, m_enthalpy_tab);
44 m_s0_tab = interpolate(x_tab, m_entropy_tab);
45 if (x_tab == 0) {
47 } else if (x_other == 0) {
49 } else {
50 m_s0_tab += GasConstant*std::log(x_tab / x_other) +
53 }
54 }
55
56 double tnow = temperature();
57 if (x_changed || m_tlast != tnow) {
58 // Update the thermodynamic functions of the reference state.
59 m_spthermo.update(tnow, m_cp0_R.data(), m_h0_RT.data(), m_s0_R.data());
60 double rrt = 1.0 / RT();
61 m_h0_RT[m_kk_tab] += m_h0_tab * rrt;
63 for (size_t k = 0; k < m_kk; k++) {
64 m_g0_RT[k] = m_h0_RT[k] - m_s0_R[k];
65 }
66 m_tlast = tnow;
67 }
68}
69
70bool BinarySolutionTabulatedThermo::addSpecies(shared_ptr<Species> spec)
71{
72 if (m_kk == 2) {
73 throw CanteraError("BinarySolutionTabulatedThermo::addSpecies",
74 "No. of species should be equal to 2");
75 }
76 bool added = IdealSolidSolnPhase::addSpecies(spec);
77 return added;
78}
79
81{
82 if (m_input.hasKey("tabulated-thermo")) {
83 m_kk_tab = speciesIndex(m_input["tabulated-species"].asString());
84 if (nSpecies() != 2) {
85 throw InputFileError("BinarySolutionTabulatedThermo::initThermo",
86 m_input["species"],
87 "No. of species should be equal to 2 in phase '{}'!",name());
88 }
89 if (m_kk_tab == npos) {
90 throw InputFileError("BinarySolutionTabulatedThermo::initThermo",
91 m_input["tabulated-species"],
92 "Species '{}' is not in phase '{}'",
93 m_input["tabulated-species"].asString(), name());
94 }
95 const AnyMap& table = m_input["tabulated-thermo"].as<AnyMap>();
96 vector<double> x = table["mole-fractions"].asVector<double>();
97 size_t N = x.size();
98 vector<double> h = table.convertVector("enthalpy", "J/kmol", N);
99 vector<double> s = table.convertVector("entropy", "J/kmol/K", N);
100 vector<double> vmol(N);
101 // Check for molar-volume key in tabulatedThermo table,
102 // otherwise calculate molar volume from pure species molar volumes
103 if (table.hasKey("molar-volume")) {
104 vmol = table.convertVector("molar-volume", "m^3/kmol", N);
105 } else {
106 for(size_t i = 0; i < N; i++) {
107 vmol[i] = x[i] * m_speciesMolarVolume[m_kk_tab] + (1-x[i])
109 }
110 }
111
112 // Sort the x, h, s, vmol data in the order of increasing x
113 vector<pair<double,double>> x_h(N), x_s(N), x_vmol(N);
114 for(size_t i = 0; i < N; i++) {
115 x_h[i] = {x[i], h[i]};
116 x_s[i] = {x[i], s[i]};
117 x_vmol[i] = {x[i], vmol[i]};
118 }
119 std::sort(x_h.begin(), x_h.end());
120 std::sort(x_s.begin(), x_s.end());
121 std::sort(x_vmol.begin(), x_vmol.end());
122
123 // Store the sorted values in different arrays
124 m_molefrac_tab.resize(N);
125 m_enthalpy_tab.resize(N);
126 m_entropy_tab.resize(N);
127 m_molar_volume_tab.resize(N);
128 m_derived_molar_volume_tab.resize(N);
129
130 for (size_t i = 0; i < N; i++) {
131 m_molefrac_tab[i] = x_h[i].first;
132 m_enthalpy_tab[i] = x_h[i].second;
133 m_entropy_tab[i] = x_s[i].second;
134 m_molar_volume_tab[i] = x_vmol[i].second;
135 }
136
137 diff(m_molar_volume_tab, m_derived_molar_volume_tab);
138 }
140}
141
143{
144 return !m_molefrac_tab.empty();
145}
146
148{
150 phaseNode["tabulated-species"] = speciesName(m_kk_tab);
151 AnyMap tabThermo;
152 tabThermo["mole-fractions"] = m_molefrac_tab;
153 tabThermo["enthalpy"].setQuantity(m_enthalpy_tab, "J/kmol");
154 tabThermo["entropy"].setQuantity(m_entropy_tab, "J/kmol/K");
155 tabThermo["molar-volume"].setQuantity(m_molar_volume_tab, "m^3/kmol");
156 phaseNode["tabulated-thermo"] = std::move(tabThermo);
157}
158
160 const vector<double>& inputData) const
161{
162 double c;
163 // Check if x is out of bound
164 if (x > m_molefrac_tab.back()) {
165 c = inputData.back();
166 return c;
167 }
168 if (x < m_molefrac_tab.front()) {
169 c = inputData.front();
170 return c;
171 }
172 size_t i = std::distance(m_molefrac_tab.begin(),
173 std::lower_bound(m_molefrac_tab.begin(), m_molefrac_tab.end(), x));
174 c = inputData[i-1] + (inputData[i] - inputData[i-1])
175 * (x - m_molefrac_tab[i-1]) / (m_molefrac_tab[i] - m_molefrac_tab[i-1]);
176 return c;
177}
178
179void BinarySolutionTabulatedThermo::diff(const vector<double>& inputData,
180 vector<double>& derivedData) const
181{
182 if (inputData.size() > 1) {
183 derivedData[0] = (inputData[1] - inputData[0]) /
185 derivedData.back() = (inputData.back() - inputData[inputData.size()-2]) /
186 (m_molefrac_tab.back() - m_molefrac_tab[m_molefrac_tab.size()-2]);
187
188 if (inputData.size() > 2) {
189 for (size_t i = 1; i < inputData.size()-1; i++) {
190 derivedData[i] = (inputData[i+1] - inputData[i-1]) /
191 (m_molefrac_tab[i+1] - m_molefrac_tab[i-1]);
192 }
193 }
194 } else {
195 derivedData.front() = 0;
196 }
197}
198
200{
201 std::copy(m_speciesMolarVolume.begin(), m_speciesMolarVolume.end(), vbar);
202}
203
205{
206 double Xtab = moleFraction(m_kk_tab);
207 double Vm = interpolate(Xtab, m_molar_volume_tab);
208 double dVdX_tab = interpolate(Xtab, m_derived_molar_volume_tab);
209 m_speciesMolarVolume[m_kk_tab] = Vm + (1 - Xtab) * dVdX_tab;
210 m_speciesMolarVolume[1-m_kk_tab] = Vm - Xtab * dVdX_tab;
211
212 double dens = meanMolecularWeight() / Vm;
213
214 // Set the density in the parent State object directly, by calling the
215 // Phase::assignDensity() function.
217}
218}
Header file for an binary solution model with tabulated standard state thermodynamic data (see Thermo...
Header for a general species thermodynamic property manager for a phase (see MultiSpeciesThermo).
Declarations for the virtual base class PDSS (pressure dependent standard state) which handles calcul...
Header for factory functions to build instances of classes that manage the standard-state thermodynam...
Declaration for class Cantera::Species.
Headers for the factory class that can create known ThermoPhase objects (see Thermodynamic Properties...
A map of string keys to values whose type can vary at runtime.
Definition AnyMap.h:431
size_t size() const
Returns the number of elements in this map.
Definition AnyMap.cpp:1728
bool hasKey(const string &key) const
Returns true if the map contains an item named key.
Definition AnyMap.cpp:1477
vector< double > convertVector(const string &key, const string &units, size_t nMin=npos, size_t nMax=npos) const
Convert a vector of dimensional values.
Definition AnyMap.cpp:1615
vector< double > m_molefrac_tab
Vector for storing tabulated thermo.
double m_s0_tab
Tabulated contribution to s0[m_kk_tab] at the current composition.
void getParameters(AnyMap &phaseNode) const override
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
void initThermo() override
Initialize the ThermoPhase object after all species have been set up.
void getPartialMolarVolumes(double *vbar) const override
returns an array of partial molar volumes of the species in the solution.
double interpolate(const double x, const vector< double > &inputData) const
Species thermodynamics linear interpolation function.
size_t m_kk_tab
Current tabulated species index.
void diff(const vector< double > &inputData, vector< double > &derivedData) const
Numerical derivative of the molar volume table.
void calcDensity() override
Overloads the calcDensity() method of IdealSolidSoln to also consider non-ideal behavior.
BinarySolutionTabulatedThermo(const string &infile="", const string &id="")
Construct and initialize an BinarySolutionTabulatedThermo ThermoPhase object directly from an input f...
double m_h0_tab
Tabulated contribution to h0[m_kk_tab] at the current composition.
void compositionChanged() override
If the compositions have changed, update the tabulated thermo lookup.
bool ready() const override
Returns a bool indicating whether the object is ready for use.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
void _updateThermo() const override
This function gets called for every call to functions in this class.
Base class for exceptions thrown by Cantera classes.
vector< double > m_g0_RT
Vector containing the species reference Gibbs functions at T = m_tlast.
vector< double > m_h0_RT
Vector containing the species reference enthalpies at T = m_tlast.
void getParameters(AnyMap &phaseNode) const override
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
void initThermo() override
Initialize the ThermoPhase object after all species have been set up.
double standardConcentration(size_t k) const override
The standard concentration used to normalize the generalized concentration.
vector< double > m_s0_R
Vector containing the species reference entropies at T = m_tlast.
vector< double > m_speciesMolarVolume
Vector of molar volumes for each species in the solution.
void compositionChanged() override
Apply changes to the state which are needed after the composition changes.
vector< double > m_cp0_R
Vector containing the species reference constant pressure heat capacities at T = m_tlast.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
Error thrown for problems processing information contained in an AnyMap or AnyValue.
Definition AnyMap.h:749
virtual void update(double T, double *cp_R, double *h_RT, double *s_R) const
Compute the reference-state properties for all species.
void assignDensity(const double density_)
Set the internally stored constant density (kg/m^3) of the phase.
Definition Phase.cpp:597
ValueCache m_cache
Cached for saved calculations within each ThermoPhase.
Definition Phase.h:834
size_t nSpecies() const
Returns the number of species in the phase.
Definition Phase.h:231
size_t m_kk
Number of species in the phase.
Definition Phase.h:854
double temperature() const
Temperature (K).
Definition Phase.h:562
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
Definition Phase.h:655
string speciesName(size_t k) const
Name of the species with index k.
Definition Phase.cpp:142
size_t speciesIndex(const string &name) const
Returns the index of a species named 'name' within the Phase object.
Definition Phase.cpp:129
double moleFraction(size_t k) const
Return the mole fraction of a single species.
Definition Phase.cpp:439
int stateMFNumber() const
Return the State Mole Fraction Number.
Definition Phase.h:773
string name() const
Return the name of the phase.
Definition Phase.cpp:20
double RT() const
Return the Gas Constant multiplied by the current temperature.
double m_tlast
last value of the temperature processed by reference state
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
AnyMap m_input
Data supplied via setParameters.
CachedScalar getScalar(int id)
Get a reference to a CachedValue object representing a scalar (double) with the given id.
Definition ValueCache.h:161
int getId()
Get a unique id for a cached value.
const double Faraday
Faraday constant [C/kmol].
Definition ct_defs.h:131
const double GasConstant
Universal Gas Constant [J/kmol/K].
Definition ct_defs.h:120
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180
const double BigNumber
largest number to compare to inf.
Definition ct_defs.h:160
Contains declarations for string manipulation functions within Cantera.
A cached property value and the state at which it was evaluated.
Definition ValueCache.h:33
bool validate(double state1New)
Check whether the currently cached value is valid based on a single state variable.
Definition ValueCache.h:39