Cantera  3.0.0
Loading...
Searching...
No Matches
BinarySolutionTabulatedThermo Class Reference

Overloads the virtual methods of class IdealSolidSolnPhase to implement tabulated standard state thermodynamics for one species in a binary solution. More...

#include <BinarySolutionTabulatedThermo.h>

Inheritance diagram for BinarySolutionTabulatedThermo:
[legend]

Detailed Description

Overloads the virtual methods of class IdealSolidSolnPhase to implement tabulated standard state thermodynamics for one species in a binary solution.

BinarySolutionTabulatedThermo is derived from IdealSolidSolnPhase, but overwrites the standard state thermodynamic data using tabulated data, as provided by the user in the input file. This ends up being useful for certain non-ideal / non-dilute species where the interaction potentials, as a function of composition / solute mole fraction, are not easily represented by any closed-form equation of state.

A good example of this type of phase is intercalation-based lithium storage materials used for lithium-ion battery electrodes. Measuring the open circuit voltage \( E_eq \), relative to a reference electrode, as a function of lithium mole fraction and as a function of temperature, provides a means to evaluate the gibbs free energy of reaction:

\[ \Delta g_{\rm rxn} = -\frac{E_eq}{nF} \]

where \( n \) is the charge number transferred to the phase, via the reaction, and \( F \) is Faraday's constant. The gibbs energy of reaction, in turn, can be separated into enthalpy and entropy of reaction components:

\[ \Delta g_{\rm rxn} = \Delta h_{\rm rxn} - T\Delta s_{\rm rxn} \]

\[ \frac{d\Delta g_{\rm rxn}}{dT} = - \Delta s_{\rm rxn} \]

For the tabulated binary phase, the user identifies a 'tabulated' species, while the other is considered the 'reference' species. The standard state thermo variables for the tabulated species therefore incorporate any and all excess energy contributions, and are calculated according to the reaction energy terms:

\[ \Delta h_{\rm rxn} = \sum_k \nu_k h^{\rm o}_k \]

\[ \Delta s_{\rm rxn} = \sum_k \nu_k s^{\rm o}_k + RT\ln\left(\prod_k\left(\frac{c_k}{c^{\rm o}_k} \right)^{\nu_k}\right) \]

Where the 'reference' species is automatically assigned standard state thermo variables \( h^{\rm o} = 0 \) and \( s^{\rm o} = 0 \), and standard state thermo variables for species in any other phases are calculated according to the rules specified in that phase definition.

The present model is intended for modeling non-ideal, tabulated thermodynamics for binary solutions where the tabulated species is incorporated via an electrochemical reaction, such that the open circuit voltage can be measured, relative to a counter electrode species with standard state thermo properties \( h^{\rm o} = 0 \). It is possible that this can be generalized such that this assumption about the counter-electrode is not required. At present, this is left as future work.

The user therefore provides a table of three equally-sized vectors of tabulated data:

  • \( x_{\rm tab} \) = array of mole fractions for the tabulated species at which measurements were conducted and thermo data are provided.
  • \( h_{\rm tab} \) = \( F\left(-E_{\rm eq}\left(x,T^{\rm o} \right) + T^{\rm o} \frac{dE_{\rm eq}\left(x,T^{\rm o} \right)}{dT}\right) \)
  • \( s_{\rm tab} \) = \( F \left(\frac{dE_{\rm eq}\left(x,T^{\rm o} \right)}{dT} + s_{\rm counter}^{\rm o} \right) \)

where \( E_{\rm eq}\left(x,T^{\rm o} \right) \) and \( \frac{dE_{\rm eq}\left(x,T^{\rm o} \right)}{dT} \) are the experimentally-measured open circuit voltage and derivative in open circuit voltage with respect to temperature, respectively, both measured as a mole fraction of \( x \) for the tabulated species and at a temperature of \( T^{\rm o} \). The arrays \( h_{\rm tab} \) and \( s_{\rm tab} \) must be the same length as the \( x_{\rm tab} \) array.

From these tabulated inputs, the standard state thermodynamic properties for the tabulated species (subscript \( k \), tab) are calculated as:

\[ h^{\rm o}_{k,\,{\rm tab}} = h_{\rm tab} \]

\[ s^{\rm o}_{k,\,{\rm tab}} = s_{\rm tab} + R\ln\frac{x_{k,\,{\rm tab}}}{1-x_{k,\,{\rm tab}}} + \frac{R}{F} \ln\left(\frac{c^{\rm o}_{k,\,{\rm ref}}}{c^{\rm o}_{k,\,{\rm tab}}}\right) \]

Now, whenever the composition has changed, the lookup/interpolation of the tabulated thermo data is performed to update the standard state thermodynamic data for the tabulated species.

Furthermore, there is an optional feature to include non-ideal effects regarding partial molar volumes of the species, \( \bar V_k \). Being derived from IdealSolidSolnPhase, the default assumption in BinarySolutionTabulatedThermo is that the species comprising the binary solution have constant partial molar volumes equal to their pure species molar volumes. However, this assumption only holds true if there is no or only weak interactions between the two species in the binary mixture. In non-ideal solid materials, for example intercalation-based lithium storage materials, the partial molar volumes of the species typically show a strong non-linear dependency on the composition of the mixture. These dependencies can most often only be determined experimentally, for example via X-ray diffraction (XRD) measurements of the unit cell volume. Therefore, the user can provide an optional fourth vector of tabulated molar volume data with the same size as the other tabulated data:

  • \( V_{\mathrm{m,tab}} \) = array of the molar volume of the binary solution phase at the tabulated mole fractions.

The partial molar volumes \( \bar V_1 \) of the tabulated species and \( \bar V_2 \) of the 'reference' species, respectively, can then be derived from the provided molar volume:

\[ \bar V_1 = V_{\mathrm{m,tab}} + \left(1-x_{\mathrm {tab}}\right) \cdot \frac{\mathrm{d}V_{\mathrm{m,tab}}}{\mathrm{d}x_{\mathrm {tab}}} \\ \bar V_2 = V_{\mathrm{m,tab}} - x_{\mathrm {tab}} \cdot \frac{\mathrm{d}V_{\mathrm{m,tab}}}{\mathrm{d}x_{\mathrm {tab}}} \]

The derivation is implemented using forward differences at the boundaries of the input vector and a central differencing scheme at interior points. As the derivative is determined numerically, the input data should be relatively smooth (recommended is one data point for every mole fraction per cent). The calculated partial molar volumes are accessible to the user via getPartialMolarVolumes().

The calculation of the mass density incorporates the non-ideal behavior by using the provided molar volume in the equation:

\[ \rho = \frac{\sum_k{x_k W_k}}{V_\mathrm{m}} \]

where \( x_k \) are the mole fractions, \( W_k \) are the molecular weights, and \( V_\mathrm{m} \) is the molar volume interpolated from \( V_{\mathrm{m,tab}} \).

If the optional fourth input vector is not specified, the molar volume is calculated by using the pure species molar volumes, as in IdealSolidSolnPhase. Regardless if the molarVolume key is provided or not, the equation-of-state field in the pure species entries has to be defined.

Definition at line 161 of file BinarySolutionTabulatedThermo.h.

Public Member Functions

 BinarySolutionTabulatedThermo (const string &infile="", const string &id="")
 Construct and initialize an BinarySolutionTabulatedThermo ThermoPhase object directly from an input file.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
bool ready () const override
 Returns a bool indicating whether the object is ready for use.
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
void getPartialMolarVolumes (double *vbar) const override
 returns an array of partial molar volumes of the species in the solution.
 
void calcDensity () override
 Overloads the calcDensity() method of IdealSolidSoln to also consider non-ideal behavior.
 
- Public Member Functions inherited from IdealSolidSolnPhase
 IdealSolidSolnPhase (const string &infile="", const string &id="")
 Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an input file.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
bool isIdeal () const override
 Boolean indicating whether phase is ideal.
 
bool isCompressible () const override
 Return whether phase represents a compressible substance.
 
double enthalpy_mole () const override
 Molar enthalpy of the solution.
 
double entropy_mole () const override
 Molar entropy of the solution.
 
double gibbs_mole () const override
 Molar Gibbs free energy of the solution.
 
double cp_mole () const override
 Molar heat capacity at constant pressure of the solution.
 
double cv_mole () const override
 Molar heat capacity at constant volume of the solution.
 
double pressure () const override
 Pressure.
 
void setPressure (double p) override
 Set the pressure at constant temperature.
 
Units standardConcentrationUnits () const override
 Returns the units of the "standard concentration" for this phase.
 
void getActivityConcentrations (double *c) const override
 This method returns the array of generalized concentrations.
 
double standardConcentration (size_t k) const override
 The standard concentration \( C^0_k \) used to normalize the generalized concentration.
 
void getActivityCoefficients (double *ac) const override
 Get the array of species activity coefficients.
 
void getChemPotentials (double *mu) const override
 Get the species chemical potentials.
 
void getChemPotentials_RT (double *mu) const override
 Get the array of non-dimensional species solution chemical potentials at the current T and P \( \mu_k / \hat R T \).
 
void getPartialMolarEnthalpies (double *hbar) const override
 Returns an array of partial molar enthalpies for the species in the mixture.
 
void getPartialMolarEntropies (double *sbar) const override
 Returns an array of partial molar entropies of the species in the solution.
 
void getPartialMolarCp (double *cpbar) const override
 Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.
 
void getPartialMolarVolumes (double *vbar) const override
 returns an array of partial molar volumes of the species in the solution.
 
void getStandardChemPotentials (double *mu0) const override
 Get the standard state chemical potentials of the species.
 
void getEnthalpy_RT (double *hrt) const override
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.
 
void getEntropy_R (double *sr) const override
 Get the nondimensional Entropies for the species standard states at the current T and P of the solution.
 
void getGibbs_RT (double *grt) const override
 Get the nondimensional Gibbs function for the species standard states at the current T and P of the solution.
 
void getPureGibbs (double *gpure) const override
 Get the Gibbs functions for the pure species at the current T and P of the solution.
 
void getIntEnergy_RT (double *urt) const override
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
void getCp_R (double *cpr) const override
 Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.
 
void getStandardVolumes (double *vol) const override
 Get the molar volumes of the species standard states at the current T and P of the solution.
 
void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_ref (double *g) const override
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getIntEnergy_RT_ref (double *urt) const override
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getCp_R_ref (double *cprt) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
const vector< double > & enthalpy_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
 
const vector< double > & gibbs_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
 
const vector< double > & entropy_R_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
 
const vector< double > & cp_R_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
void getSpeciesParameters (const string &name, AnyMap &speciesNode) const override
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
 
void setToEquilState (const double *mu_RT) override
 This method is used by the ChemEquil equilibrium solver.
 
void setStandardConcentrationModel (const string &model)
 Set the form for the standard and generalized concentrations.
 
double speciesMolarVolume (int k) const
 Report the molar volume of species k.
 
void getSpeciesMolarVolumes (double *smv) const
 Fill in a return vector containing the species molar volumes.
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor.
 
double RT () const
 Return the Gas Constant multiplied by the current temperature.
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
virtual string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase.
 
virtual double refPressure () const
 Returns the reference pressure in Pa.
 
virtual double minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species.
 
virtual double maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
virtual double intEnergy_mole () const
 Molar internal energy. Units: J/kmol.
 
virtual double isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa.
 
virtual double thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
virtual double soundSpeed () const
 Return the speed of sound. Units: m/s.
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V).
 
double electricPotential () const
 Returns the electric potential of this phase (V).
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual double logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species.
 
virtual void getActivities (double *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials.
 
virtual void getPartialMolarIntEnergies (double *ubar) const
 Return an array of partial molar internal energies for the species in the mixture.
 
virtual void getStandardVolumes_ref (double *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg.
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg.
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K.
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg.
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K.
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K.
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa)
 
virtual void setState_PX (double p, double *x)
 Set the pressure (Pa) and mole fractions.
 
virtual void setState_PY (double p, double *y)
 Set the internally stored pressure (Pa) and mass fractions.
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K).
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg).
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg).
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa).
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg)
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
 
void setState_RP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
virtual void setState_DP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
virtual void setState_RPX (double rho, double p, const double *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPX (double rho, double p, const Composition &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPX (double rho, double p, const string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPY (double rho, double p, const double *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState_RPY (double rho, double p, const Composition &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState_RPY (double rho, double p, const string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object.
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
 
virtual double critTemperature () const
 Critical temperature (K).
 
virtual double critPressure () const
 Critical pressure (Pa).
 
virtual double critVolume () const
 Critical volume (m3/kmol).
 
virtual double critCompressibility () const
 Critical compressibility (unitless).
 
virtual double critDensity () const
 Critical density (kg/m3).
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure.
 
virtual double satPressure (double t)
 Return the saturation pressure given the temperature.
 
virtual double vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure.
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality).
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species.
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file.
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description.
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
const AnyMapinput () const
 Access input data associated with the phase description.
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
virtual string report (bool show_thermo=true, double threshold=-1e-14) const
 returns a summary of the state of the phase as a string
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file.
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor.
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance.
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions.
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance.
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance.
 
string nativeMode () const
 Return string acronym representing the native state of a Phase.
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase.
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase.
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase.
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase.
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState.
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector.
 
double molecularWeight (size_t k) const
 Molecular weight of species k.
 
void getMolecularWeights (vector< double > &weights) const
 Copy the vector of molecular weights into vector weights.
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges.
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol].
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m.
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m.
 
const double * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array.
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
double chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use.
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced.
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex.
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector.
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions.
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions.
 
string name () const
 Return the name of the phase.
 
void setName (const string &nm)
 Sets the string name for the phase.
 
string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'.
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
double atomicWeight (size_t m) const
 Atomic weight of element m.
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements().
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k.
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object.
 
string speciesName (size_t k) const
 Name of the species with index k.
 
string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies().
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name.
 
void setState_TRX (double t, double dens, const double *x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRX (double t, double dens, const Composition &x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRY (double t, double dens, const double *y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TRY (double t, double dens, const Composition &y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TNX (double t, double n, const double *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
 
void setState_TR (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
void setState_TX (double t, double *x)
 Set the internally stored temperature (K) and mole fractions.
 
void setState_TY (double t, double *y)
 Set the internally stored temperature (K) and mass fractions.
 
void setState_RX (double rho, double *x)
 Set the density (kg/m^3) and mole fractions.
 
void setState_RY (double rho, double *y)
 Set the density (kg/m^3) and mass fractions.
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name.
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species.
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name.
 
double massFraction (size_t k) const
 Return the mass fraction of a single species.
 
double massFraction (const string &name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values.
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (double *const y) const
 Get the species mass fractions.
 
const double * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them.
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing.
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3).
 
virtual double concentration (const size_t k) const
 Concentration of species k.
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase.
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations.
 
double temperature () const
 Temperature (K).
 
virtual double electronTemperature () const
 Electron Temperature (K)
 
virtual double density () const
 Density (kg/m^3).
 
virtual double molarDensity () const
 Molar density (kmol/m^3).
 
virtual double molarVolume () const
 Molar volume (m^3/kmol).
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase.
 
virtual void setMolarDensity (const double molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase.
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K).
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K).
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \).
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element.
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name).
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map.
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string.
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species.
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k.
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species.
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase.
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception.
 

Protected Member Functions

void compositionChanged () override
 If the compositions have changed, update the tabulated thermo lookup.
 
double interpolate (const double x, const vector< double > &inputData) const
 Species thermodynamics linear interpolation function.
 
void diff (const vector< double > &inputData, vector< double > &derivedData) const
 Numerical derivative of the molar volume table.
 
- Protected Member Functions inherited from IdealSolidSolnPhase
void compositionChanged () override
 Apply changes to the state which are needed after the composition changes.
 
- Protected Member Functions inherited from ThermoPhase
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
virtual void getCsvReportData (vector< string > &names, vector< vector< double > > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method.
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible.
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase.
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes.
 

Protected Attributes

size_t m_kk_tab = npos
 Current tabulated species index.
 
double m_h0_tab
 Tabulated contribution to h0[m_kk_tab] at the current composition.
 
double m_s0_tab
 Tabulated contribution to s0[m_kk_tab] at the current composition.
 
vector< double > m_molefrac_tab
 Vector for storing tabulated thermo.
 
vector< double > m_enthalpy_tab
 
vector< double > m_entropy_tab
 
vector< double > m_molar_volume_tab
 
vector< double > m_derived_molar_volume_tab
 
- Protected Attributes inherited from IdealSolidSolnPhase
int m_formGC = 0
 The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'species-molar-volume', 2 = 'solvent-molar-volume'.
 
double m_Pref = OneAtm
 Value of the reference pressure for all species in this phase.
 
double m_Pcurrent = OneAtm
 m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure.
 
vector< double > m_speciesMolarVolume
 Vector of molar volumes for each species in the solution.
 
vector< double > m_h0_RT
 Vector containing the species reference enthalpies at T = m_tlast.
 
vector< double > m_cp0_R
 Vector containing the species reference constant pressure heat capacities at T = m_tlast.
 
vector< double > m_g0_RT
 Vector containing the species reference Gibbs functions at T = m_tlast.
 
vector< double > m_s0_R
 Vector containing the species reference entropies at T = m_tlast.
 
vector< double > m_expg0_RT
 Vector containing the species reference exp(-G/RT) functions at T = m_tlast.
 
vector< double > m_pp
 Temporary array used in equilibrium calculations.
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
AnyMap m_input
 Data supplied via setParameters.
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts.
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention.
 
double m_tlast = 0.0
 last value of the temperature processed by reference state
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase.
 
size_t m_kk = 0
 Number of species in the phase.
 
size_t m_ndim = 3
 Dimensionality of the phase.
 
vector< double > m_speciesComp
 Atomic composition of the species.
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk.
 
map< string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element.
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced.
 

Private Member Functions

void _updateThermo () const override
 This function gets called for every call to functions in this class.
 

Constructor & Destructor Documentation

◆ BinarySolutionTabulatedThermo()

BinarySolutionTabulatedThermo ( const string &  infile = "",
const string &  id = "" 
)
explicit

Construct and initialize an BinarySolutionTabulatedThermo ThermoPhase object directly from an input file.

This constructor will also fully initialize the object.

Parameters
infileFile name for the input file containing information for this phase. If not specified, an empty phase will be created.
idThe name of this phase. This is used to look up the phase in the input file.

Definition at line 22 of file BinarySolutionTabulatedThermo.cpp.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from Phase.

Definition at line 176 of file BinarySolutionTabulatedThermo.h.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
overridevirtual

Add a Species to this Phase.

Returns true if the species was successfully added, or false if the species was ignored.

Derived classes which need to size arrays according to the number of species should overload this method. The derived class implementation should call the base class method, and, if this returns true (indicating that the species has been added), adjust their array sizes accordingly.

See also
ignoreUndefinedElements addUndefinedElements throwUndefinedElements

Reimplemented from Phase.

Definition at line 70 of file BinarySolutionTabulatedThermo.cpp.

◆ initThermo()

void initThermo ( )
overridevirtual

Initialize the ThermoPhase object after all species have been set up.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 80 of file BinarySolutionTabulatedThermo.cpp.

◆ ready()

bool ready ( ) const
overridevirtual

Returns a bool indicating whether the object is ready for use.

Returns
true if the object is ready for calculation, false otherwise.

Reimplemented from Phase.

Definition at line 142 of file BinarySolutionTabulatedThermo.cpp.

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
overridevirtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Definition at line 147 of file BinarySolutionTabulatedThermo.cpp.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( double *  vbar) const
overridevirtual

returns an array of partial molar volumes of the species in the solution.

Units: m^3 kmol-1.

The partial molar volumes are derived as shown in the equations in the detailed description section.

Parameters
vbarOutput vector of partial molar volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 199 of file BinarySolutionTabulatedThermo.cpp.

◆ calcDensity()

void calcDensity ( )
overridevirtual

Overloads the calcDensity() method of IdealSolidSoln to also consider non-ideal behavior.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{V_\mathrm{m}} \]

where \( X_k \) are the mole fractions, \( W_k \) are the molecular weights, and \( V_\mathrm{m} \) is the molar volume interpolated from \( V_{\mathrm{m,tab}} \).

Reimplemented from IdealSolidSolnPhase.

Definition at line 204 of file BinarySolutionTabulatedThermo.cpp.

◆ compositionChanged()

void compositionChanged ( )
overrideprotectedvirtual

If the compositions have changed, update the tabulated thermo lookup.

Reimplemented from Phase.

Definition at line 28 of file BinarySolutionTabulatedThermo.cpp.

◆ interpolate()

double interpolate ( const double  x,
const vector< double > &  inputData 
) const
protected

Species thermodynamics linear interpolation function.

Tabulated values are only interpolated within the limits of the provided mole fraction. If these limits are exceeded, the values are capped at the lower or the upper limit.

Parameters
xCurrent mole fraction at which to interpolate.
inputDataInput vector of the data to be interpolated.
Returns
Linear interpolation of tabulated data at the current mole fraction x.

Definition at line 159 of file BinarySolutionTabulatedThermo.cpp.

◆ diff()

void diff ( const vector< double > &  inputData,
vector< double > &  derivedData 
) const
protected

Numerical derivative of the molar volume table.

Tabulated values are only interpolated within the limits of the provided mole fraction. If these limits are exceeded, the values are capped at the lower or the upper limit.

Parameters
inputDataInput vector of tabulated data to be derived.
derivedDataOutput vector of tabulated data that is numerically derived with respect to the mole fraction.

Definition at line 179 of file BinarySolutionTabulatedThermo.cpp.

◆ _updateThermo()

void _updateThermo ( ) const
overrideprivatevirtual

This function gets called for every call to functions in this class.

It checks to see whether the temperature has changed and thus the reference thermodynamics functions for all of the species must be recalculated. If the temperature has changed, the species thermo manager is called to recalculate G, Cp, H, and S at the current temperature.

Reimplemented from IdealSolidSolnPhase.

Definition at line 34 of file BinarySolutionTabulatedThermo.cpp.

Member Data Documentation

◆ m_kk_tab

size_t m_kk_tab = npos
protected

Current tabulated species index.

Definition at line 241 of file BinarySolutionTabulatedThermo.h.

◆ m_h0_tab

double m_h0_tab
mutableprotected

Tabulated contribution to h0[m_kk_tab] at the current composition.

Definition at line 244 of file BinarySolutionTabulatedThermo.h.

◆ m_s0_tab

double m_s0_tab
mutableprotected

Tabulated contribution to s0[m_kk_tab] at the current composition.

Definition at line 247 of file BinarySolutionTabulatedThermo.h.

◆ m_molefrac_tab

vector<double> m_molefrac_tab
protected

Vector for storing tabulated thermo.

Definition at line 250 of file BinarySolutionTabulatedThermo.h.

◆ m_enthalpy_tab

vector<double> m_enthalpy_tab
protected

Definition at line 251 of file BinarySolutionTabulatedThermo.h.

◆ m_entropy_tab

vector<double> m_entropy_tab
protected

Definition at line 252 of file BinarySolutionTabulatedThermo.h.

◆ m_molar_volume_tab

vector<double> m_molar_volume_tab
protected

Definition at line 253 of file BinarySolutionTabulatedThermo.h.

◆ m_derived_molar_volume_tab

vector<double> m_derived_molar_volume_tab
protected

Definition at line 254 of file BinarySolutionTabulatedThermo.h.


The documentation for this class was generated from the following files: