Cantera  3.0.0
Loading...
Searching...
No Matches
WaterSSTP Class Reference

Class for single-component water. More...

#include <WaterSSTP.h>

Inheritance diagram for WaterSSTP:
[legend]

Detailed Description

Class for single-component water.

This is designed to cover just the liquid and supercritical phases of water.

The reference is W. Wagner, A. Pruss, "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use," J. Phys. Chem. Ref. Dat, 31, 387, 2002.

Specification of Species Standard State Properties

The offsets used in the steam tables are different than NIST's. They assume u_liq(TP) = 0.0, s_liq(TP) = 0.0, where TP is the triple point conditions:

 -  u(273.16, rho)    = 0.0
 -  s(273.16, rho)    = 0.0
 -  psat(273.16)      = 611.655 Pascal
 -  rho(273.16, psat) = 999.793 kg m-3

These "steam table" assumptions are used by the WaterPropsIAPWS class. Therefore, offsets must be calculated to make the thermodynamic properties calculated within this class to be consistent with thermo properties within Cantera.

The thermodynamic base state for water is set to the NIST basis here by specifying constants, EW_Offset and SW_Offset, one for energy quantities and one for entropy quantities. The offsets are specified so that the following properties hold:

  • Delta_Hfo_idealgas(298.15) = -241.826 kJ/gmol
  • So_idealgas(298.15, 1bar) = 188.835 J/gmolK

(From http://webbook.nist.gov)

The "o" here refers to a hypothetical ideal gas state. The way we achieve this in practice is to evaluate at a very low pressure and then use the theoretical ideal gas results to scale up to higher pressures:

Ho(1bar) = H(P0)

So(1bar) = S(P0) + RT ln(1bar/P0)

Application within Kinetics Managers

This is unimplemented.

Definition at line 68 of file WaterSSTP.h.

Public Member Functions

 WaterSSTP (const string &inputFile="", const string &id="")
 Full constructor for a water phase.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
string phaseOfMatter () const override
 String indicating the mechanical phase of the matter in this Phase.
 
double critTemperature () const override
 Critical temperature (K).
 
double critPressure () const override
 Critical pressure (Pa).
 
double critDensity () const override
 Critical density (kg/m3).
 
double satPressure (double t) override
 Return the saturation pressure given the temperature.
 
bool compatibleWithMultiPhase () const override
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
 
double vaporFraction () const override
 Return the fraction of vapor at the current conditions.
 
void setTemperature (const double temp) override
 Set the temperature of the phase.
 
void setDensity (const double dens) override
 Set the density of the phase.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
WaterPropsIAPWSgetWater ()
 Get a pointer to a changeable WaterPropsIAPWS object.
 
WaterPropsgetWaterProps ()
 Get a pointer to a changeable WaterPropsIAPWS object.
 
void _allowGasPhase (bool flag)
 Switch that enables calculations in the gas phase.
 
Molar Thermodynamic Properties of the Solution
double cv_mole () const override
 Molar heat capacity at constant volume. Units: J/kmol/K.
 
Mechanical Equation of State Properties
double pressure () const override
 Return the thermodynamic pressure (Pa).
 
void setPressure (double p) override
 Set the internally stored pressure (Pa) at constant temperature and composition.
 
double isothermalCompressibility () const override
 Returns the isothermal compressibility. Units: 1/Pa.
 
double thermalExpansionCoeff () const override
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
double dthermalExpansionCoeffdT () const
 Return the derivative of the volumetric thermal expansion coefficient.
 
Properties of the Standard State of the Species in the Solution
void getStandardChemPotentials (double *gss) const override
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
 
void getGibbs_RT (double *grt) const override
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
 
void getEnthalpy_RT (double *hrt) const override
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
void getEntropy_R (double *sr) const override
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
 
void getCp_R (double *cpr) const override
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
 
void getIntEnergy_RT (double *urt) const override
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
Thermodynamic Values for the Species Reference State

All functions in this group need to be overridden, because the m_spthermo MultiSpeciesThermo function is not adequate for the real equation of state.

void getEnthalpy_RT_ref (double *hrt) const override
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_ref (double *g) const override
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getEntropy_R_ref (double *er) const override
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
void getCp_R_ref (double *cprt) const override
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
void getStandardVolumes_ref (double *vol) const override
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
- Public Member Functions inherited from SingleSpeciesTP
 SingleSpeciesTP ()=default
 Base empty constructor.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
bool isPure () const override
 Return whether phase represents a pure (single species) substance.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
double enthalpy_mole () const override
 Molar enthalpy. Units: J/kmol.
 
double intEnergy_mole () const override
 Molar internal energy. Units: J/kmol.
 
double entropy_mole () const override
 Molar entropy. Units: J/kmol/K.
 
double gibbs_mole () const override
 Molar Gibbs function. Units: J/kmol.
 
double cp_mole () const override
 Molar heat capacity at constant pressure. Units: J/kmol/K.
 
void getActivities (double *a) const override
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
void getActivityCoefficients (double *ac) const override
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getChemPotentials_RT (double *murt) const override
 Get the array of non-dimensional species chemical potentials.
 
void getChemPotentials (double *mu) const override
 Get the array of chemical potentials.
 
void getPartialMolarEnthalpies (double *hbar) const override
 Get the species partial molar enthalpies. Units: J/kmol.
 
void getPartialMolarIntEnergies (double *ubar) const override
 Get the species partial molar internal energies. Units: J/kmol.
 
void getPartialMolarEntropies (double *sbar) const override
 Get the species partial molar entropy. Units: J/kmol K.
 
void getPartialMolarCp (double *cpbar) const override
 Get the species partial molar Heat Capacities. Units: J/ kmol /K.
 
void getPartialMolarVolumes (double *vbar) const override
 Get the species partial molar volumes. Units: m^3/kmol.
 
void getPureGibbs (double *gpure) const override
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
 
void getStandardVolumes (double *vbar) const override
 Get the molar volumes of each species in their standard states at the current T and P of the solution.
 
void setMassFractions (const double *const y) override
 Mass fractions are fixed, with Y[0] = 1.0.
 
void setMoleFractions (const double *const x) override
 Mole fractions are fixed, with x[0] = 1.0.
 
void setState_HP (double h, double p, double tol=1e-9) override
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
void setState_UV (double u, double v, double tol=1e-9) override
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
void setState_SP (double s, double p, double tol=1e-9) override
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
void setState_SV (double s, double v, double tol=1e-9) override
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor.
 
double RT () const
 Return the Gas Constant multiplied by the current temperature.
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal.
 
virtual double refPressure () const
 Returns the reference pressure in Pa.
 
virtual double minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const size_t k, const double Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species.
 
virtual double maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
virtual double soundSpeed () const
 Return the speed of sound. Units: m/s.
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V).
 
double electricPotential () const
 Returns the electric potential of this phase (V).
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase.
 
virtual void getActivityConcentrations (double *c) const
 This method returns an array of generalized concentrations.
 
virtual double standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species.
 
virtual double logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species.
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials.
 
virtual void getIntEnergy_RT_ref (double *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg.
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg.
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K.
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg.
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K.
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K.
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa)
 
virtual void setState_PX (double p, double *x)
 Set the pressure (Pa) and mole fractions.
 
virtual void setState_PY (double p, double *y)
 Set the internally stored pressure (Pa) and mass fractions.
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K).
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg).
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg).
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa).
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg)
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
 
void setState_RP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
virtual void setState_DP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
virtual void setState_RPX (double rho, double p, const double *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPX (double rho, double p, const Composition &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPX (double rho, double p, const string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions.
 
virtual void setState_RPY (double rho, double p, const double *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState_RPY (double rho, double p, const Composition &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState_RPY (double rho, double p, const string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions.
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object.
 
virtual void setToEquilState (const double *mu_RT)
 This method is used by the ChemEquil equilibrium solver.
 
virtual double critVolume () const
 Critical volume (m3/kmol).
 
virtual double critCompressibility () const
 Critical compressibility (unitless).
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure.
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure.
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality).
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species.
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file.
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description.
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
virtual void getSpeciesParameters (const string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
 
const AnyMapinput () const
 Access input data associated with the phase description.
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
virtual string report (bool show_thermo=true, double threshold=-1e-14) const
 returns a summary of the state of the phase as a string
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file.
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor.
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance.
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions.
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance.
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance.
 
string nativeMode () const
 Return string acronym representing the native state of a Phase.
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase.
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase.
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase.
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase.
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState.
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector.
 
double molecularWeight (size_t k) const
 Molecular weight of species k.
 
void getMolecularWeights (vector< double > &weights) const
 Copy the vector of molecular weights into vector weights.
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges.
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol].
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m.
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m.
 
const double * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array.
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
double chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use.
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced.
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex.
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector.
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions.
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions.
 
string name () const
 Return the name of the phase.
 
void setName (const string &nm)
 Sets the string name for the phase.
 
string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'.
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
double atomicWeight (size_t m) const
 Atomic weight of element m.
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements().
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k.
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object.
 
string speciesName (size_t k) const
 Name of the species with index k.
 
string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies().
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name.
 
void setState_TRX (double t, double dens, const double *x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRX (double t, double dens, const Composition &x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRY (double t, double dens, const double *y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TRY (double t, double dens, const Composition &y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TNX (double t, double n, const double *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
 
void setState_TR (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
void setState_TX (double t, double *x)
 Set the internally stored temperature (K) and mole fractions.
 
void setState_TY (double t, double *y)
 Set the internally stored temperature (K) and mass fractions.
 
void setState_RX (double rho, double *x)
 Set the density (kg/m^3) and mole fractions.
 
void setState_RY (double rho, double *y)
 Set the density (kg/m^3) and mass fractions.
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name.
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species.
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name.
 
double massFraction (size_t k) const
 Return the mass fraction of a single species.
 
double massFraction (const string &name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (double *const y) const
 Get the species mass fractions.
 
const double * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing.
 
virtual void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3).
 
virtual double concentration (const size_t k) const
 Concentration of species k.
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase.
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations.
 
double temperature () const
 Temperature (K).
 
virtual double electronTemperature () const
 Electron Temperature (K)
 
virtual double density () const
 Density (kg/m^3).
 
virtual double molarDensity () const
 Molar density (kmol/m^3).
 
virtual double molarVolume () const
 Molar volume (m^3/kmol).
 
virtual void setMolarDensity (const double molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase.
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K).
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \).
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element.
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name).
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map.
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string.
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species.
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k.
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species.
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase.
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception.
 

Protected Member Functions

void _updateThermo () const
 This routine must be overridden because it is not applicable.
 
- Protected Member Functions inherited from SingleSpeciesTP
void _updateThermo () const
 This internal routine calculates new species Cp0, H0, and S0 whenever the temperature has changed.
 
- Protected Member Functions inherited from ThermoPhase
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
virtual void getCsvReportData (vector< string > &names, vector< vector< double > > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method.
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible.
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase.
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes.
 

Private Attributes

WaterPropsIAPWS m_sub
 WaterPropsIAPWS that calculates the real properties of water.
 
unique_ptr< WaterPropsm_waterProps
 Pointer to the WaterProps object.
 
double m_mw = 0.0
 Molecular weight of Water -> Cantera assumption.
 
double EW_Offset = 0.0
 Offset constants used to obtain consistency with the NIST database.
 
double SW_Offset = 0.0
 Offset constant used to obtain consistency with NIST convention.
 
bool m_ready = false
 Boolean is true if object has been properly initialized for calculation.
 
bool m_allowGasPhase = false
 Since this phase represents a liquid (or supercritical) phase, it is an error to return a gas-phase answer.
 

Additional Inherited Members

- Protected Attributes inherited from SingleSpeciesTP
double m_press = OneAtm
 The current pressure of the solution (Pa). It gets initialized to 1 atm.
 
double m_p0 = OneAtm
 
double m_h0_RT
 Dimensionless enthalpy at the (mtlast, m_p0)
 
double m_cp0_R
 Dimensionless heat capacity at the (mtlast, m_p0)
 
double m_s0_R
 Dimensionless entropy at the (mtlast, m_p0)
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
AnyMap m_input
 Data supplied via setParameters.
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts.
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention.
 
double m_tlast = 0.0
 last value of the temperature processed by reference state
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase.
 
size_t m_kk = 0
 Number of species in the phase.
 
size_t m_ndim = 3
 Dimensionality of the phase.
 
vector< double > m_speciesComp
 Atomic composition of the species.
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk.
 
map< string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element.
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced.
 

Constructor & Destructor Documentation

◆ WaterSSTP()

WaterSSTP ( const string &  inputFile = "",
const string &  id = "" 
)
explicit

Full constructor for a water phase.

Parameters
inputFileString name of the input file
idstring id of the phase name

Definition at line 16 of file WaterSSTP.cpp.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from SingleSpeciesTP.

Definition at line 78 of file WaterSSTP.h.

◆ phaseOfMatter()

string phaseOfMatter ( ) const
overridevirtual

String indicating the mechanical phase of the matter in this Phase.

Options for the string are:

  • unspecified
  • supercritical
  • gas
  • liquid
  • solid
  • solid-liquid-mix
  • solid-gas-mix
  • liquid-gas-mix
  • solid-liquid-gas-mix

unspecified is the default and should be used when the Phase does not distinguish between mechanical phases or does not have enough information to determine which mechanical phase(s) are present.

Todo:
Needs to be implemented for all phase types. Currently only implemented for PureFluidPhase.

Reimplemented from ThermoPhase.

Definition at line 21 of file WaterSSTP.cpp.

◆ cv_mole()

double cv_mole ( ) const
overridevirtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from SingleSpeciesTP.

Definition at line 126 of file WaterSSTP.cpp.

◆ pressure()

double pressure ( ) const
overridevirtual

Return the thermodynamic pressure (Pa).

This method must be overloaded in derived classes. Within Cantera, the independent variable is either density or pressure. If the state is defined by temperature, density, and mass fractions, this method should use these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \). Alternatively, it returns a stored value.

Reimplemented from Phase.

Definition at line 238 of file WaterSSTP.cpp.

◆ setPressure()

void setPressure ( double  p)
overridevirtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method must be reimplemented in derived classes, where it may involve the solution of a nonlinear equation. Within Cantera, the independent variable is either density or pressure. Therefore, this function may either solve for the density that will yield the desired input pressure or set an independent variable. The temperature and composition are held constant during this process.

Parameters
pinput Pressure (Pa)

Reimplemented from Phase.

Definition at line 243 of file WaterSSTP.cpp.

◆ isothermalCompressibility()

double isothermalCompressibility ( ) const
overridevirtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

or

\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 267 of file WaterSSTP.cpp.

◆ thermalExpansionCoeff()

double thermalExpansionCoeff ( ) const
overridevirtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented from ThermoPhase.

Definition at line 272 of file WaterSSTP.cpp.

◆ dthermalExpansionCoeffdT()

double dthermalExpansionCoeffdT ( ) const

Return the derivative of the volumetric thermal expansion coefficient.

Units: 1/K2.

Definition at line 277 of file WaterSSTP.cpp.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( double *  mu) const
overridevirtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 112 of file WaterSSTP.cpp.

◆ getGibbs_RT()

void getGibbs_RT ( double *  grt) const
overridevirtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 103 of file WaterSSTP.cpp.

◆ getEnthalpy_RT()

void getEnthalpy_RT ( double *  hrt) const
overridevirtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 88 of file WaterSSTP.cpp.

◆ getEntropy_R()

void getEntropy_R ( double *  sr) const
overridevirtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 98 of file WaterSSTP.cpp.

◆ getCp_R()

void getCp_R ( double *  cpr) const
overridevirtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

Parameters
cprOutput vector of nondimensional standard state heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 121 of file WaterSSTP.cpp.

◆ getIntEnergy_RT()

void getIntEnergy_RT ( double *  urt) const
overridevirtual

Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.

Parameters
urtoutput vector of nondimensional standard state internal energies of the species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 93 of file WaterSSTP.cpp.

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( double *  hrt) const
overridevirtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from SingleSpeciesTP.

Definition at line 131 of file WaterSSTP.cpp.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( double *  grt) const
overridevirtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from SingleSpeciesTP.

Definition at line 150 of file WaterSSTP.cpp.

◆ getGibbs_ref()

void getGibbs_ref ( double *  g) const
overridevirtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from SingleSpeciesTP.

Definition at line 170 of file WaterSSTP.cpp.

◆ getEntropy_R_ref()

void getEntropy_R_ref ( double *  er) const
overridevirtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from SingleSpeciesTP.

Definition at line 178 of file WaterSSTP.cpp.

◆ getCp_R_ref()

void getCp_R_ref ( double *  cprt) const
overridevirtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from SingleSpeciesTP.

Definition at line 200 of file WaterSSTP.cpp.

◆ getStandardVolumes_ref()

void getStandardVolumes_ref ( double *  vol) const
overridevirtual

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 220 of file WaterSSTP.cpp.

◆ critTemperature()

double critTemperature ( ) const
overridevirtual

Critical temperature (K).

Reimplemented from ThermoPhase.

Definition at line 294 of file WaterSSTP.cpp.

◆ critPressure()

double critPressure ( ) const
overridevirtual

Critical pressure (Pa).

Reimplemented from ThermoPhase.

Definition at line 299 of file WaterSSTP.cpp.

◆ critDensity()

double critDensity ( ) const
overridevirtual

Critical density (kg/m3).

Reimplemented from ThermoPhase.

Definition at line 304 of file WaterSSTP.cpp.

◆ satPressure()

double satPressure ( double  t)
overridevirtual

Return the saturation pressure given the temperature.

Parameters
tTemperature (Kelvin)

Reimplemented from ThermoPhase.

Definition at line 326 of file WaterSSTP.cpp.

◆ compatibleWithMultiPhase()

bool compatibleWithMultiPhase ( ) const
inlineoverridevirtual

Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.

Returns false for special phase types which already represent multi-phase mixtures, namely PureFluidPhase.

Reimplemented from ThermoPhase.

Definition at line 135 of file WaterSSTP.h.

◆ vaporFraction()

double vaporFraction ( ) const
overridevirtual

Return the fraction of vapor at the current conditions.

Below Tcrit, this routine will always return 0, by definition of the functionality of the routine. Above Tcrit, we query the density to toggle between 0 and 1.

Reimplemented from ThermoPhase.

Definition at line 334 of file WaterSSTP.cpp.

◆ setTemperature()

void setTemperature ( const double  temp)
overridevirtual

Set the temperature of the phase.

The density and composition of the phase is constant during this operator.

Parameters
tempTemperature (Kelvin)

Reimplemented from Phase.

Definition at line 309 of file WaterSSTP.cpp.

◆ setDensity()

void setDensity ( const double  dens)
overridevirtual

Set the density of the phase.

The temperature and composition of the phase is constant during this operator.

Parameters
densvalue of the density in kg m-3

Reimplemented from Phase.

Definition at line 320 of file WaterSSTP.cpp.

◆ initThermo()

void initThermo ( )
overridevirtual

Initialize the ThermoPhase object after all species have been set up.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 28 of file WaterSSTP.cpp.

◆ getWater()

WaterPropsIAPWS * getWater ( )
inline

Get a pointer to a changeable WaterPropsIAPWS object.

Definition at line 168 of file WaterSSTP.h.

◆ getWaterProps()

WaterProps * getWaterProps ( )
inline

Get a pointer to a changeable WaterPropsIAPWS object.

Definition at line 173 of file WaterSSTP.h.

◆ _allowGasPhase()

void _allowGasPhase ( bool  flag)
inline

Switch that enables calculations in the gas phase.

Since this phase represents a liquid (or supercritical) phase, it is an error to return a gas-phase answer. The sole intended use for this member function is to check the thermodynamic consistency of the underlying WaterProps class with ideal-gas thermo functions.

Definition at line 184 of file WaterSSTP.h.

◆ _updateThermo()

void _updateThermo ( ) const
protected

This routine must be overridden because it is not applicable.

Member Data Documentation

◆ m_sub

WaterPropsIAPWS m_sub
mutableprivate

WaterPropsIAPWS that calculates the real properties of water.

Definition at line 192 of file WaterSSTP.h.

◆ m_waterProps

unique_ptr<WaterProps> m_waterProps
private

Pointer to the WaterProps object.

This class is used to house several approximation routines for properties of water. This object owns m_waterProps, and the WaterPropsIAPWS object used by WaterProps is m_sub, which is defined above.

Definition at line 200 of file WaterSSTP.h.

◆ m_mw

double m_mw = 0.0
private

Molecular weight of Water -> Cantera assumption.

Definition at line 203 of file WaterSSTP.h.

◆ EW_Offset

double EW_Offset = 0.0
private

Offset constants used to obtain consistency with the NIST database.

This is added to all internal energy and enthalpy results. units = J kmol-1.

Definition at line 210 of file WaterSSTP.h.

◆ SW_Offset

double SW_Offset = 0.0
private

Offset constant used to obtain consistency with NIST convention.

This is added to all internal entropy results. units = J kmol-1 K-1.

Definition at line 217 of file WaterSSTP.h.

◆ m_ready

bool m_ready = false
private

Boolean is true if object has been properly initialized for calculation.

Definition at line 220 of file WaterSSTP.h.

◆ m_allowGasPhase

bool m_allowGasPhase = false
private

Since this phase represents a liquid (or supercritical) phase, it is an error to return a gas-phase answer.

However, if the below is true, then a gas-phase answer is allowed. This is used to check the thermodynamic consistency with ideal-gas thermo functions for example.

Definition at line 228 of file WaterSSTP.h.


The documentation for this class was generated from the following files: