Cantera  3.0.0
Loading...
Searching...
No Matches
WaterTransport.cpp
Go to the documentation of this file.
1//! @file WaterTransport.cpp
2
3// This file is part of Cantera. See License.txt in the top-level directory or
4// at https://cantera.org/license.txt for license and copyright information.
5
10
11namespace {
12
13const double Tstar = 647.27;
14const double rhoStar = 317.763; // kg / m3
15const double presStar = 22.115E6; // Pa
16const double muStar = 55.071E-6; //Pa s
17
18const double H[4] = {1., 0.978197, 0.579829, -0.202354};
19const double Hij[6][7] = {
20 { 0.5132047, 0.2151778, -0.2818107, 0.1778064, -0.04176610, 0., 0.},
21 { 0.3205656, 0.7317883, -1.070786 , 0.4605040, 0., -0.01578386, 0.},
22 { 0., 1.241044 , -1.263184 , 0.2340379, 0., 0., 0.},
23 { 0., 1.476783 , 0., -0.4924179, 0.1600435, 0., -0.003629481},
24 {-0.7782567, 0.0 , 0., 0. , 0., 0., 0.},
25 { 0.1885447, 0.0 , 0., 0. , 0., 0., 0.},
26};
27
28}
29
30namespace Cantera
31{
32
34 Transport(thermo, ndim)
35{
36 if (thermo) {
37 init(thermo);
38 }
39}
40
41void WaterTransport::init(ThermoPhase* thermo, int mode, int log_level)
42{
44}
45
47{
48 static const double TStar = 647.27; // Kelvin
49 double temp = m_thermo->temperature();
50 double dens = m_thermo->density();
51
52 double rhobar = dens/rhoStar;
53 double tbar = temp / TStar;
54 double tbar2 = tbar * tbar;
55 double tbar3 = tbar2 * tbar;
56 double mu0bar = std::sqrt(tbar) / (H[0] + H[1]/tbar + H[2]/tbar2 + H[3]/tbar3);
57
58 double tfac1 = 1.0 / tbar - 1.0;
59 double tfac2 = tfac1 * tfac1;
60 double tfac3 = tfac2 * tfac1;
61 double tfac4 = tfac3 * tfac1;
62 double tfac5 = tfac4 * tfac1;
63
64 double rfac1 = rhobar - 1.0;
65 double rfac2 = rfac1 * rfac1;
66 double rfac3 = rfac2 * rfac1;
67 double rfac4 = rfac3 * rfac1;
68 double rfac5 = rfac4 * rfac1;
69 double rfac6 = rfac5 * rfac1;
70
71 double sum = Hij[0][0] + Hij[1][0]*tfac1 + Hij[4][0]*tfac4 + Hij[5][0]*tfac5 +
72 Hij[0][1]*rfac1 + Hij[1][1]*tfac1*rfac1 + Hij[2][1]*tfac2*rfac1 + Hij[3][1]*tfac3*rfac1 +
73 Hij[0][2]*rfac2 + Hij[1][2]*tfac1*rfac2 + Hij[2][2]*tfac2*rfac2 +
74 Hij[0][3]*rfac3 + Hij[1][3]*tfac1*rfac3 + Hij[2][3]*tfac2*rfac3 + Hij[3][3]*tfac3*rfac3 +
75 Hij[0][4]*rfac4 + Hij[3][4]*tfac3*rfac4 +
76 Hij[1][5]*tfac1*rfac5 + Hij[3][6]*tfac3*rfac6;
77 double mu1bar = std::exp(rhobar * sum);
78
79 // Apply the near-critical point corrections if necessary
80 double mu2bar = 1.0;
81 if (tbar >= 0.9970 && tbar <= 1.0082 && rhobar >= 0.755 && rhobar <= 1.290) {
82 double drhodp = m_thermo->isothermalCompressibility() * dens;
83 drhodp *= presStar / rhoStar;
84 double xsi = rhobar * drhodp;
85 if (xsi >= 21.93) {
86 mu2bar = 0.922 * std::pow(xsi, 0.0263);
87 }
88 }
89
90 double mubar = mu0bar * mu1bar * mu2bar;
91 return mubar * muStar;
92}
93
95{
96 static const double lambdastar = 0.4945;
97 static const double L[4] = {
98 1.0000,
99 6.978267,
100 2.599096,
101 -0.998254
102 };
103 static const double Lji[6][5] = {
104 { 1.3293046, 1.7018363, 5.2246158, 8.7127675, -1.8525999},
105 {-0.40452437, -2.2156845, -10.124111, -9.5000611, 0.93404690},
106 { 0.24409490, 1.6511057, 4.9874687, 4.3786606, 0.0},
107 { 0.018660751, -0.76736002, -0.27297694, -0.91783782, 0.0},
108 {-0.12961068, 0.37283344, -0.43083393, 0.0, 0.0},
109 { 0.044809953, -0.11203160, 0.13333849, 0.0, 0.0},
110 };
111
112 double temp = m_thermo->temperature();
113 double dens = m_thermo->density();
114
115 double rhobar = dens / rhoStar;
116 double tbar = temp / Tstar;
117 double tbar2 = tbar * tbar;
118 double tbar3 = tbar2 * tbar;
119 double lambda0bar = sqrt(tbar) / (L[0] + L[1]/tbar + L[2]/tbar2 + L[3]/tbar3);
120
121 double tfac1 = 1.0 / tbar - 1.0;
122 double tfac2 = tfac1 * tfac1;
123 double tfac3 = tfac2 * tfac1;
124 double tfac4 = tfac3 * tfac1;
125 double tfac5 = tfac4 * tfac1;
126
127 double rfac1 = rhobar - 1.0;
128 double rfac2 = rfac1 * rfac1;
129 double rfac3 = rfac2 * rfac1;
130 double rfac4 = rfac3 * rfac1;
131 double rfac5 = rfac4 * rfac1;
132 double rfac6 = rfac5 * rfac1;
133
134 double sum = (Lji[0][0] + Lji[0][1]*tfac1 + Lji[0][2]*tfac2 + Lji[0][3]*tfac3 + Lji[0][4]*tfac4 +
135 Lji[1][0]*rfac1 + Lji[1][1]*tfac1*rfac1 + Lji[1][2]*tfac2*rfac1 + Lji[1][3]*tfac3*rfac1 + Lji[1][4]*tfac4*rfac1 +
136 Lji[2][0]*rfac2 + Lji[2][1]*tfac1*rfac2 + Lji[2][2]*tfac2*rfac2 + Lji[2][3]*tfac3*rfac2 +
137 Lji[3][0]*rfac3 + Lji[3][1]*tfac1*rfac3 + Lji[3][2]*tfac2*rfac3 + Lji[3][3]*tfac3*rfac3 +
138 Lji[4][0]*rfac4 + Lji[4][1]*tfac1*rfac4 + Lji[4][2]*tfac2*rfac4 +
139 Lji[5][0]*rfac5 + Lji[5][1]*tfac1*rfac5 + Lji[5][2]*tfac2*rfac5
140 );
141 double lambda1bar = exp(rhobar * sum);
142 double mu0bar = std::sqrt(tbar) / (H[0] + H[1]/tbar + H[2]/tbar2 + H[3]/tbar3);
143
144 sum = (Hij[0][0] + Hij[1][0]*tfac1 + Hij[4][0]*tfac4 + Hij[5][0]*tfac5 +
145 Hij[0][1]*rfac1 + Hij[1][1]*tfac1*rfac1 + Hij[2][1]*tfac2*rfac1 + Hij[3][1]*tfac3*rfac1 +
146 Hij[0][2]*rfac2 + Hij[1][2]*tfac1*rfac2 + Hij[2][2]*tfac2*rfac2 +
147 Hij[0][3]*rfac3 + Hij[1][3]*tfac1*rfac3 + Hij[2][3]*tfac2*rfac3 + Hij[3][3]*tfac3*rfac3 +
148 Hij[0][4]*rfac4 + Hij[3][4]*tfac3*rfac4 +
149 Hij[1][5]*tfac1*rfac5 + Hij[3][6]*tfac3*rfac6
150 );
151 double mu1bar = std::exp(rhobar * sum);
152 double t2r2 = tbar2 / (rhobar * rhobar);
153 double kappa = m_thermo->isothermalCompressibility();
154 double xsi = rhobar * rhobar * kappa * presStar;
155 double xsipow = std::pow(xsi, 0.4678);
156 double temp2 = (tbar - 1.0) * (tbar - 1.0);
157 double dpdT_const_rho = m_thermo->thermalExpansionCoeff() / kappa;
158 dpdT_const_rho *= Tstar / presStar;
159 double lambda2bar = 0.0013848 / (mu0bar * mu1bar) * t2r2 * dpdT_const_rho * dpdT_const_rho *
160 xsipow * sqrt(rhobar) * exp(-18.66*temp2 - rfac4);
161 return (lambda0bar * lambda1bar + lambda2bar) * lambdastar;
162}
163
164}
Implementation of a pressure dependent standard state virtual function for a Pure Water Phase (see Sp...
Header file for a derived class of ThermoPhase that handles variable pressure standard state methods ...
Declares a ThermoPhase class consisting of pure water (see Thermodynamic Properties and class WaterSS...
Header file defining class WaterTransport.
double temperature() const
Temperature (K).
Definition Phase.h:662
virtual double density() const
Density (kg/m^3).
Definition Phase.h:687
Base class for a phase with thermodynamic properties.
virtual double thermalExpansionCoeff() const
Return the volumetric thermal expansion coefficient. Units: 1/K.
virtual double isothermalCompressibility() const
Returns the isothermal compressibility. Units: 1/Pa.
Base class for transport property managers.
Definition Transport.h:146
ThermoPhase * m_thermo
pointer to the object representing the phase
Definition Transport.h:821
ThermoPhase & thermo()
Phase object.
Definition Transport.h:192
WaterTransport(ThermoPhase *thermo=0, int ndim=-1)
default constructor
double thermalConductivity() override
Returns the thermal conductivity of water at the current conditions (W/m/K)
double viscosity() override
Returns the viscosity of water at the current conditions (kg/m/s)
void init(ThermoPhase *thermo, int mode=0, int log_level=0) override
Initialize a transport manager.
Namespace for the Cantera kernel.
Definition AnyMap.cpp:564