Cantera  3.0.0
Loading...
Searching...
No Matches
Reactor.h
Go to the documentation of this file.
1//! @file Reactor.h
2
3// This file is part of Cantera. See License.txt in the top-level directory or
4// at https://cantera.org/license.txt for license and copyright information.
5
6#ifndef CT_REACTOR_H
7#define CT_REACTOR_H
8
9#include "ReactorBase.h"
10#include "cantera/numerics/eigen_sparse.h"
11
12
13namespace Cantera
14{
15
16class Solution;
17class AnyMap;
18
19/**
20 * Class Reactor is a general-purpose class for stirred reactors. The reactor
21 * may have an arbitrary number of inlets and outlets, each of which may be
22 * connected to a "flow device" such as a mass flow controller, a pressure
23 * regulator, etc. Additional reactors may be connected to the other end of
24 * the flow device, allowing construction of arbitrary reactor networks.
25 *
26 * The reactor class integrates the same governing equations no matter what
27 * type of reactor is simulated. The differences among reactor types are
28 * completely specified by the attached flow devices and the time-dependent
29 * user-specified boundary conditions.
30 *
31 * If an instance of class Reactor is used directly, it will simulate an
32 * adiabatic, constant volume reactor with gas-phase chemistry but no surface
33 * chemistry. Other reactor types may be simulated by deriving a class from
34 * Reactor. This method allows specifying the following in terms of the
35 * instantaneous reactor state:
36 *
37 * - rate of change of the total volume (m^3/s)
38 * - surface heat loss rate (W)
39 * - species surface production rates (kmol/s)
40 *
41 * @ingroup reactorGroup
42 */
43class Reactor : public ReactorBase
44{
45public:
46 Reactor() = default;
47
48 string type() const override {
49 return "Reactor";
50 }
51
52 //! Indicate whether the governing equations for this reactor type are a system of
53 //! ODEs or DAEs. In the first case, this class implements the eval() method. In the
54 //! second case, this class implements the evalDae() method.
55 virtual bool isOde() const {
56 return true;
57 }
58
59 //! Indicates whether the governing equations for this reactor are functions of time
60 //! or a spatial variable. All reactors in a network must have the same value.
61 virtual bool timeIsIndependent() const {
62 return true;
63 }
64
65 /**
66 * Insert something into the reactor. The 'something' must belong to a class
67 * that is a subclass of both ThermoPhase and Kinetics.
68 */
69 template<class G>
70 void insert(G& contents) {
73 }
74
75 void insert(shared_ptr<Solution> sol);
76
77 void setKineticsMgr(Kinetics& kin) override;
78
79 void setChemistry(bool cflag=true) override {
80 m_chem = cflag;
81 }
82
83 //! Returns `true` if changes in the reactor composition due to chemical reactions
84 //! are enabled.
85 bool chemistryEnabled() const {
86 return m_chem;
87 }
88
89 void setEnergy(int eflag=1) override {
90 if (eflag > 0) {
91 m_energy = true;
92 } else {
93 m_energy = false;
94 }
95 }
96
97 //! Returns `true` if solution of the energy equation is enabled.
98 bool energyEnabled() const {
99 return m_energy;
100 }
101
102 //! Number of equations (state variables) for this reactor
103 size_t neq() {
104 if (!m_nv) {
105 initialize();
106 }
107 return m_nv;
108 }
109
110 //! Get the the current state of the reactor.
111 /*!
112 * @param[out] y state vector representing the initial state of the reactor
113 */
114 virtual void getState(double* y);
115
116 //! Get the current state and derivative vector of the reactor for a DAE solver
117 /*!
118 * @param[out] y state vector representing the initial state of the reactor
119 * @param[out] ydot state vector representing the initial derivatives of the
120 * reactor
121 */
122 virtual void getStateDae(double* y, double* ydot) {
123 throw NotImplementedError("Reactor::getStateDae(y, ydot)");
124 }
125
126 void initialize(double t0=0.0) override;
127
128 //! Evaluate the reactor governing equations. Called by ReactorNet::eval.
129 //! @param[in] t time.
130 //! @param[out] LHS pointer to start of vector of left-hand side
131 //! coefficients for governing equations, length m_nv, default values 1
132 //! @param[out] RHS pointer to start of vector of right-hand side
133 //! coefficients for governing equations, length m_nv, default values 0
134 virtual void eval(double t, double* LHS, double* RHS);
135
136 /**
137 * Evaluate the reactor governing equations. Called by ReactorNet::eval.
138 * @param[in] t time.
139 * @param[in] y solution vector, length neq()
140 * @param[in] ydot rate of change of solution vector, length neq()
141 * @param[out] residual residuals vector, length neq()
142 */
143 virtual void evalDae(double t, double* y, double* ydot, double* residual) {
144 throw NotImplementedError("Reactor::evalDae");
145 }
146
147 //! Given a vector of length neq(), mark which variables should be
148 //! considered algebraic constraints
149 virtual void getConstraints(double* constraints) {
150 throw NotImplementedError("Reactor::getConstraints");
151 }
152
153 void syncState() override;
154
155 //! Set the state of the reactor to correspond to the state vector *y*.
156 virtual void updateState(double* y);
157
158 //! Number of sensitivity parameters associated with this reactor
159 //! (including walls)
160 virtual size_t nSensParams() const;
161
162 //! Add a sensitivity parameter associated with the reaction number *rxn*
163 //! (in the homogeneous phase).
164 virtual void addSensitivityReaction(size_t rxn);
165
166 //! Add a sensitivity parameter associated with the enthalpy formation of
167 //! species *k* (in the homogeneous phase)
168 virtual void addSensitivitySpeciesEnthalpy(size_t k);
169
170 //! Return the index in the solution vector for this reactor of the
171 //! component named *nm*. Possible values for *nm* are "mass", "volume",
172 //! "int_energy", the name of a homogeneous phase species, or the name of a
173 //! surface species.
174 virtual size_t componentIndex(const string& nm) const;
175
176 //! Return the name of the solution component with index *i*.
177 //! @see componentIndex()
178 virtual string componentName(size_t k);
179
180 //! Set absolute step size limits during advance
181 //! @param limits array of step size limits with length neq
182 void setAdvanceLimits(const double* limits);
183
184 //! Check whether Reactor object uses advance limits
185 //! @returns True if at least one limit is set, False otherwise
186 bool hasAdvanceLimits() const {
187 return !m_advancelimits.empty();
188 }
189
190 //! Retrieve absolute step size limits during advance
191 //! @param[out] limits array of step size limits with length neq
192 //! @returns True if at least one limit is set, False otherwise
193 bool getAdvanceLimits(double* limits) const;
194
195 //! Set individual step size limit for component name *nm*
196 //! @param nm component name
197 //! @param limit value for step size limit
198 void setAdvanceLimit(const string& nm, const double limit);
199
200 //! Calculate the Jacobian of a specific Reactor specialization.
201 //! @warning Depending on the particular implementation, this may return an
202 //! approximate Jacobian intended only for use in forming a preconditioner for
203 //! iterative solvers.
204 //! @ingroup derivGroup
205 //!
206 //! @warning This method is an experimental part of the %Cantera
207 //! API and may be changed or removed without notice.
208 virtual Eigen::SparseMatrix<double> jacobian() {
209 throw NotImplementedError("Reactor::jacobian");
210 }
211
212 //! Calculate the reactor-specific Jacobian using a finite difference method.
213 //!
214 //! This method is used only for informational purposes. Jacobian calculations
215 //! for the full reactor system are handled internally by CVODES.
216 //!
217 //! @warning This method is an experimental part of the %Cantera
218 //! API and may be changed or removed without notice.
219 Eigen::SparseMatrix<double> finiteDifferenceJacobian();
220
221 //! Use this to set the kinetics objects derivative settings
222 virtual void setDerivativeSettings(AnyMap& settings);
223
224 //! Set reaction rate multipliers based on the sensitivity variables in
225 //! *params*.
226 virtual void applySensitivity(double* params);
227
228 //! Reset the reaction rate multipliers
229 virtual void resetSensitivity(double* params);
230
231 //! Return a false if preconditioning is not supported or true otherwise.
232 //!
233 //! @warning This method is an experimental part of the %Cantera
234 //! API and may be changed or removed without notice.
235 //!
236 //! @since New in %Cantera 3.0
237 //!
238 virtual bool preconditionerSupported() const {return false;};
239
240protected:
241 //! Return the index in the solution vector for this reactor of the species
242 //! named *nm*, in either the homogeneous phase or a surface phase, relative
243 //! to the start of the species terms. Used to implement componentIndex for
244 //! specific reactor implementations.
245 virtual size_t speciesIndex(const string& nm) const;
246
247 //! Evaluate terms related to Walls. Calculates #m_vdot and #m_Qdot based on
248 //! wall movement and heat transfer.
249 //! @param t the current time
250 virtual void evalWalls(double t);
251
252 //! Evaluate terms related to surface reactions.
253 //! @param[out] LHS Multiplicative factor on the left hand side of ODE for surface
254 //! species coverages
255 //! @param[out] RHS Right hand side of ODE for surface species coverages
256 //! @param[out] sdot array of production rates of bulk phase species on surfaces
257 //! [kmol/s]
258 virtual void evalSurfaces(double* LHS, double* RHS, double* sdot);
259
260 virtual void evalSurfaces(double* RHS, double* sdot);
261
262 //! Update the state of SurfPhase objects attached to this reactor
263 virtual void updateSurfaceState(double* y);
264
265 //! Update the state information needed by connected reactors, flow devices,
266 //! and reactor walls. Called from updateState().
267 //! @param updatePressure Indicates whether to update #m_pressure. Should
268 //! `true` for reactors where the pressure is a dependent property,
269 //! calculated from the state, and `false` when the pressure is constant
270 //! or an independent variable.
271 virtual void updateConnected(bool updatePressure);
272
273 //! Get initial conditions for SurfPhase objects attached to this reactor
274 virtual void getSurfaceInitialConditions(double* y);
275
276 //! Pointer to the homogeneous Kinetics object that handles the reactions
277 Kinetics* m_kin = nullptr;
278
279 double m_vdot = 0.0; //!< net rate of volume change from moving walls [m^3/s]
280
281 double m_Qdot = 0.0; //!< net heat transfer into the reactor, through walls [W]
282
283 double m_mass = 0.0; //!< total mass
284 vector<double> m_work;
285
286 //! Production rates of gas phase species on surfaces [kmol/s]
287 vector<double> m_sdot;
288
289 vector<double> m_wdot; //!< Species net molar production rates
290 vector<double> m_uk; //!< Species molar internal energies
291 bool m_chem = false;
292 bool m_energy = true;
293 size_t m_nv = 0;
294 size_t m_nv_surf; //!!< Number of variables associated with reactor surfaces
295
296 vector<double> m_advancelimits; //!< Advance step limit
297
298 // Data associated each sensitivity parameter
299 vector<SensitivityParameter> m_sensParams;
300
301 //! Vector of triplets representing the jacobian
302 vector<Eigen::Triplet<double>> m_jac_trips;
303};
304}
305
306#endif
A map of string keys to values whose type can vary at runtime.
Definition AnyMap.h:427
Public interface for kinetics managers.
Definition Kinetics.h:126
An error indicating that an unimplemented function has been called.
Base class for stirred reactors.
Definition ReactorBase.h:50
virtual void setThermoMgr(ThermoPhase &thermo)
Specify the mixture contained in the reactor.
ThermoPhase & contents()
return a reference to the contents.
Class Reactor is a general-purpose class for stirred reactors.
Definition Reactor.h:44
virtual string componentName(size_t k)
Return the name of the solution component with index i.
Definition Reactor.cpp:468
void setKineticsMgr(Kinetics &kin) override
Specify chemical kinetics governing the reactor.
Definition Reactor.cpp:39
bool chemistryEnabled() const
Returns true if changes in the reactor composition due to chemical reactions are enabled.
Definition Reactor.h:85
virtual void evalSurfaces(double *LHS, double *RHS, double *sdot)
Evaluate terms related to surface reactions.
Definition Reactor.cpp:287
virtual size_t componentIndex(const string &nm) const
Return the index in the solution vector for this reactor of the component named nm.
Definition Reactor.cpp:452
virtual void getStateDae(double *y, double *ydot)
Get the current state and derivative vector of the reactor for a DAE solver.
Definition Reactor.h:122
virtual void updateSurfaceState(double *y)
Update the state of SurfPhase objects attached to this reactor.
Definition Reactor.cpp:175
void insert(G &contents)
Insert something into the reactor.
Definition Reactor.h:70
virtual void applySensitivity(double *params)
Set reaction rate multipliers based on the sensitivity variables in params.
Definition Reactor.cpp:494
Kinetics * m_kin
Pointer to the homogeneous Kinetics object that handles the reactions.
Definition Reactor.h:277
vector< double > m_wdot
Species net molar production rates.
Definition Reactor.h:289
virtual void eval(double t, double *LHS, double *RHS)
Evaluate the reactor governing equations.
Definition Reactor.cpp:211
virtual void evalWalls(double t)
Evaluate terms related to Walls.
Definition Reactor.cpp:275
bool energyEnabled() const
Returns true if solution of the energy equation is enabled.
Definition Reactor.h:98
Eigen::SparseMatrix< double > finiteDifferenceJacobian()
Calculate the reactor-specific Jacobian using a finite difference method.
Definition Reactor.cpp:318
size_t neq()
Number of equations (state variables) for this reactor.
Definition Reactor.h:103
virtual void addSensitivitySpeciesEnthalpy(size_t k)
Add a sensitivity parameter associated with the enthalpy formation of species k (in the homogeneous p...
Definition Reactor.cpp:415
string type() const override
String indicating the reactor model implemented.
Definition Reactor.h:48
double m_Qdot
net heat transfer into the reactor, through walls [W]
Definition Reactor.h:281
vector< double > m_advancelimits
!< Number of variables associated with reactor surfaces
Definition Reactor.h:296
void setEnergy(int eflag=1) override
Set the energy equation on or off.
Definition Reactor.h:89
virtual void addSensitivityReaction(size_t rxn)
Add a sensitivity parameter associated with the reaction number rxn (in the homogeneous phase).
Definition Reactor.cpp:402
virtual size_t nSensParams() const
Number of sensitivity parameters associated with this reactor (including walls)
Definition Reactor.cpp:112
virtual void setDerivativeSettings(AnyMap &settings)
Use this to set the kinetics objects derivative settings.
Definition Reactor.cpp:30
vector< double > m_uk
Species molar internal energies.
Definition Reactor.h:290
virtual void updateState(double *y)
Set the state of the reactor to correspond to the state vector y.
Definition Reactor.cpp:127
virtual void evalDae(double t, double *y, double *ydot, double *residual)
Evaluate the reactor governing equations.
Definition Reactor.h:143
void setChemistry(bool cflag=true) override
Enable or disable changes in reactor composition due to chemical reactions.
Definition Reactor.h:79
void setAdvanceLimits(const double *limits)
Set absolute step size limits during advance.
Definition Reactor.cpp:537
double m_mass
total mass
Definition Reactor.h:283
vector< Eigen::Triplet< double > > m_jac_trips
Vector of triplets representing the jacobian.
Definition Reactor.h:302
void setAdvanceLimit(const string &nm, const double limit)
Set individual step size limit for component name nm
Definition Reactor.cpp:563
virtual void resetSensitivity(double *params)
Reset the reaction rate multipliers.
Definition Reactor.cpp:516
vector< double > m_sdot
Production rates of gas phase species on surfaces [kmol/s].
Definition Reactor.h:287
virtual void getState(double *y)
Get the the current state of the reactor.
Definition Reactor.cpp:49
bool hasAdvanceLimits() const
Check whether Reactor object uses advance limits.
Definition Reactor.h:186
double m_vdot
net rate of volume change from moving walls [m^3/s]
Definition Reactor.h:279
void syncState() override
Set the state of the reactor to correspond to the state of the associated ThermoPhase object.
Definition Reactor.cpp:121
virtual void getSurfaceInitialConditions(double *y)
Get initial conditions for SurfPhase objects attached to this reactor.
Definition Reactor.cpp:75
void initialize(double t0=0.0) override
Initialize the reactor.
Definition Reactor.cpp:84
virtual void getConstraints(double *constraints)
Given a vector of length neq(), mark which variables should be considered algebraic constraints.
Definition Reactor.h:149
virtual bool preconditionerSupported() const
Return a false if preconditioning is not supported or true otherwise.
Definition Reactor.h:238
bool getAdvanceLimits(double *limits) const
Retrieve absolute step size limits during advance.
Definition Reactor.cpp:552
virtual size_t speciesIndex(const string &nm) const
Return the index in the solution vector for this reactor of the species named nm, in either the homog...
Definition Reactor.cpp:430
virtual bool isOde() const
Indicate whether the governing equations for this reactor type are a system of ODEs or DAEs.
Definition Reactor.h:55
virtual bool timeIsIndependent() const
Indicates whether the governing equations for this reactor are functions of time or a spatial variabl...
Definition Reactor.h:61
virtual void updateConnected(bool updatePressure)
Update the state information needed by connected reactors, flow devices, and reactor walls.
Definition Reactor.cpp:184
virtual Eigen::SparseMatrix< double > jacobian()
Calculate the Jacobian of a specific Reactor specialization.
Definition Reactor.h:208
Namespace for the Cantera kernel.
Definition AnyMap.cpp:564