Cantera 2.6.0
GeneralMatrix.h
Go to the documentation of this file.
1/**
2 * @file GeneralMatrix.h
3 * Declarations for the class GeneralMatrix which is a virtual base class for matrices handled by solvers
4 * (see class \ref numerics and \link Cantera::GeneralMatrix GeneralMatrix\endlink).
5 */
6
7// This file is part of Cantera. See License.txt in the top-level directory or
8// at https://cantera.org/license.txt for license and copyright information.
9
10#ifndef CT_GENERALMATRIX_H
11#define CT_GENERALMATRIX_H
12
15#include "cantera/base/global.h"
16
17namespace Cantera
18{
19
20//! Generic matrix
22{
23public:
24 //! Base Constructor
26
27 virtual ~GeneralMatrix() {}
28
29 //! Zero the matrix elements
30 virtual void zero() = 0;
31
32 //! Multiply A*b and write result to prod.
33 /*!
34 * @param b Vector to do the rh multiplication
35 * @param prod OUTPUT vector to receive the result
36 */
37 virtual void mult(const doublereal* b, doublereal* prod) const = 0;
38
39 //! Multiply b*A and write result to prod.
40 /*!
41 * @param b Vector to do the lh multiplication
42 * @param prod OUTPUT vector to receive the result
43 */
44 virtual void leftMult(const doublereal* const b, doublereal* const prod) const = 0;
45
46 //! Factors the A matrix, overwriting A.
47 /*!
48 * We flip m_factored boolean to indicate that the matrix is now A-1.
49 */
50 virtual int factor() = 0;
51
52 //! Factors the A matrix using the QR algorithm, overwriting A
53 /*!
54 * we set m_factored to 2 to indicate the matrix is now QR factored
55 *
56 * @returns the info variable from LAPACK
57 */
58 virtual int factorQR() {
59 throw NotImplementedError("GeneralMatrix::factorQR");
60 }
61
62 //! Returns an estimate of the inverse of the condition number for the matrix
63 /*!
64 * The matrix must have been previously factored using the QR algorithm
65 *
66 * @returns the inverse of the condition number
67 */
68 virtual doublereal rcondQR() {
69 throw NotImplementedError("GeneralMatrix::rcondQR");
70 }
71
72 //! Returns an estimate of the inverse of the condition number for the matrix
73 /*!
74 * The matrix must have been previously factored using the LU algorithm
75 *
76 * @param a1norm Norm of the matrix
77 * @returns the inverse of the condition number
78 */
79 virtual doublereal rcond(doublereal a1norm) = 0;
80
81 //! Change the way the matrix is factored
82 /*!
83 * @param fAlgorithm integer
84 * 0 LU factorization
85 * 1 QR factorization
86 */
87 virtual void useFactorAlgorithm(int fAlgorithm) {
88 throw NotImplementedError("GeneralMatrix::useFactorAlgorithm");
89 };
90
91 //! Return the factor algorithm used
92 virtual int factorAlgorithm() const = 0;
93
94 //! Calculate the one norm of the matrix
95 virtual doublereal oneNorm() const = 0;
96
97 //! Return the number of rows in the matrix
98 virtual size_t nRows() const = 0;
99
100 //! clear the factored flag
101 virtual void clearFactorFlag() {
102 m_factored = 0;
103 };
104
105 //! Solves the Ax = b system returning x in the b spot.
106 /*!
107 * @param b Vector for the RHS of the equation system
108 * @param nrhs Number of right-hand sides to solve, default 1
109 * @param ldb Leading dimension of the right-hand side array. Defaults to
110 * nRows()
111 */
112 virtual int solve(doublereal* b, size_t nrhs=1, size_t ldb=0) = 0;
113
114 //! true if the current factorization is up to date with the matrix
115 virtual bool factored() const {
116 return (m_factored != 0);
117 }
118
119 //! Return a pointer to the top of column j, columns are assumed to be
120 //! contiguous in memory
121 /*!
122 * @param j Value of the column
123 * @returns a pointer to the top of the column
124 */
125 virtual doublereal* ptrColumn(size_t j) = 0;
126
127 //! Index into the (i,j) element
128 /*!
129 * @param i row
130 * @param j column
131 * @returns a changeable reference to the matrix entry
132 */
133 virtual doublereal& operator()(size_t i, size_t j) = 0;
134
135 //! Constant Index into the (i,j) element
136 /*!
137 * @param i row
138 * @param j column
139 * @returns an unchangeable reference to the matrix entry
140 */
141 virtual doublereal operator()(size_t i, size_t j) const = 0;
142
143 //! Return an iterator pointing to the first element
144 /*!
145 * We might drop this later
146 */
147 virtual vector_fp::iterator begin() = 0;
148
149 //! Return a const iterator pointing to the first element
150 /*!
151 * We might drop this later
152 */
153 virtual vector_fp::const_iterator begin() const = 0;
154
155 //! Return a vector of const pointers to the columns
156 /*!
157 * Note the value of the pointers are protected by their being const.
158 * However, the value of the matrix is open to being changed.
159 *
160 * @returns a vector of pointers to the top of the columns of the matrices.
161 */
162 virtual doublereal* const* colPts() = 0;
163
164 //! Check to see if we have any zero rows in the Jacobian
165 /*!
166 * This utility routine checks to see if any rows are zero. The smallest row
167 * is returned along with the largest coefficient in that row
168 *
169 * @param valueSmall OUTPUT value of the largest coefficient in the smallest row
170 * @return index of the row that is most nearly zero
171 */
172 virtual size_t checkRows(doublereal& valueSmall) const = 0;
173
174 //! Check to see if we have any zero columns in the Jacobian
175 /*!
176 * This utility routine checks to see if any columns are zero. The smallest
177 * column is returned along with the largest coefficient in that column
178 *
179 * @param valueSmall OUTPUT value of the largest coefficient in the smallest column
180 * @return index of the column that is most nearly zero
181 */
182 virtual size_t checkColumns(doublereal& valueSmall) const = 0;
183
184protected:
185 //! Indicates whether the matrix is factored. 0 for unfactored; Non-zero
186 //! values indicate a particular factorization (LU=1, QR=2).
188};
189
190}
191#endif
Generic matrix.
Definition: GeneralMatrix.h:22
virtual doublereal *const * colPts()=0
Return a vector of const pointers to the columns.
virtual doublereal rcond(doublereal a1norm)=0
Returns an estimate of the inverse of the condition number for the matrix.
virtual vector_fp::const_iterator begin() const =0
Return a const iterator pointing to the first element.
virtual int factor()=0
Factors the A matrix, overwriting A.
virtual doublereal rcondQR()
Returns an estimate of the inverse of the condition number for the matrix.
Definition: GeneralMatrix.h:68
virtual void clearFactorFlag()
clear the factored flag
virtual doublereal & operator()(size_t i, size_t j)=0
Index into the (i,j) element.
virtual doublereal * ptrColumn(size_t j)=0
Return a pointer to the top of column j, columns are assumed to be contiguous in memory.
virtual int solve(doublereal *b, size_t nrhs=1, size_t ldb=0)=0
Solves the Ax = b system returning x in the b spot.
virtual int factorQR()
Factors the A matrix using the QR algorithm, overwriting A.
Definition: GeneralMatrix.h:58
virtual vector_fp::iterator begin()=0
Return an iterator pointing to the first element.
virtual int factorAlgorithm() const =0
Return the factor algorithm used.
virtual doublereal oneNorm() const =0
Calculate the one norm of the matrix.
virtual size_t nRows() const =0
Return the number of rows in the matrix.
virtual size_t checkColumns(doublereal &valueSmall) const =0
Check to see if we have any zero columns in the Jacobian.
GeneralMatrix()
Base Constructor.
Definition: GeneralMatrix.h:25
virtual size_t checkRows(doublereal &valueSmall) const =0
Check to see if we have any zero rows in the Jacobian.
virtual doublereal operator()(size_t i, size_t j) const =0
Constant Index into the (i,j) element.
virtual void zero()=0
Zero the matrix elements.
int m_factored
Indicates whether the matrix is factored.
virtual void useFactorAlgorithm(int fAlgorithm)
Change the way the matrix is factored.
Definition: GeneralMatrix.h:87
virtual void mult(const doublereal *b, doublereal *prod) const =0
Multiply A*b and write result to prod.
virtual bool factored() const
true if the current factorization is up to date with the matrix
virtual void leftMult(const doublereal *const b, doublereal *const prod) const =0
Multiply b*A and write result to prod.
An error indicating that an unimplemented function has been called.
Definition: ctexceptions.h:187
This file contains definitions of constants, types and terms that are used in internal routines and a...
Definitions for the classes that are thrown when Cantera experiences an error condition (also contain...
This file contains definitions for utility functions and text for modules, inputfiles,...
Namespace for the Cantera kernel.
Definition: AnyMap.h:29