Cantera 2.6.0
|
#include <IonsFromNeutralVPSSTP.h>
Public Member Functions | |
void | getDissociationCoeffs (vector_fp &fm_neutralMolec_ions, vector_fp &charges, std::vector< size_t > &neutMolIndex) const |
Get the Salt Dissociation Coefficients. More... | |
void | getNeutralMolecMoleFractions (vector_fp &neutralMoleculeMoleFractions) const |
Return the current value of the neutral mole fraction vector. More... | |
void | getNeutralMoleculeMoleGrads (const doublereal *const dx, doublereal *const dy) const |
Calculate neutral molecule mole fractions. More... | |
void | getCationList (std::vector< size_t > &cation) const |
Get the list of cations in this object. More... | |
void | getAnionList (std::vector< size_t > &anion) const |
Get the list of anions in this object. More... | |
virtual bool | addSpecies (shared_ptr< Species > spec) |
void | setNeutralMoleculePhase (shared_ptr< ThermoPhase > neutral) |
shared_ptr< ThermoPhase > | getNeutralMoleculePhase () |
virtual void | setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) |
Set equation of state parameters from an AnyMap phase description. More... | |
virtual void | initThermo () |
virtual void | getParameters (AnyMap &phaseNode) const |
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More... | |
virtual void | setParametersFromXML (const XML_Node &thermoNode) |
Set equation of state parameter values from XML entries. More... | |
Constructors | |
IonsFromNeutralVPSSTP (const std::string &inputFile="", const std::string &id="") | |
Construct an IonsFromNeutralVPSSTP object from an input file. More... | |
IonsFromNeutralVPSSTP (XML_Node &phaseRoot, const std::string &id="") | |
Construct and initialize an IonsFromNeutralVPSSTP object directly from an XML database. More... | |
Utilities | |
virtual std::string | type () const |
String indicating the thermodynamic model implemented. More... | |
Molar Thermodynamic Properties | |
virtual doublereal | enthalpy_mole () const |
Return the Molar enthalpy. Units: J/kmol. More... | |
virtual doublereal | entropy_mole () const |
Molar entropy. Units: J/kmol/K. More... | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs function. Units: J/kmol. More... | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure. Units: J/kmol/K. More... | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. More... | |
Activities, Standard States, and Activity Concentrations | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and pressure. | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
Partial Molar Properties of the Solution | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. More... | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies for the species in the mixture. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
Setting the State | |
These methods set all or part of the thermodynamic state. | |
virtual void | calcDensity () |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More... | |
virtual void | calcIonMoleFractions (doublereal *const mf) const |
Calculate ion mole fractions from neutral molecule mole fractions. More... | |
virtual void | calcNeutralMoleculeMoleFractions () const |
Calculate neutral molecule mole fractions. More... | |
Public Member Functions inherited from GibbsExcessVPSSTP | |
GibbsExcessVPSSTP () | |
virtual Units | standardConcentrationUnits () const |
Returns the units of the "standard concentration" for this phase. More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns an array of generalized concentrations. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
The standard concentration \( C^0_k \) used to normalize the generalized concentration. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
virtual void | getActivities (doublereal *ac) const |
Get the array of non-dimensional activities (molality based for this class and classes that derive from it) at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getdlnActCoeffdT (doublereal *dlnActCoeffdT) const |
Get the array of temperature derivatives of the log activity coefficients. More... | |
virtual void | getdlnActCoeffdlnX (doublereal *dlnActCoeffdlnX) const |
Get the array of log concentration-like derivatives of the log activity coefficients. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
Return an array of partial molar volumes for the species in the mixture. More... | |
virtual const vector_fp & | getPartialMolarVolumesVector () const |
Public Member Functions inherited from VPStandardStateTP | |
virtual void | setTemperature (const doublereal temp) |
Set the temperature of the phase. More... | |
virtual void | setPressure (doublereal p) |
Set the internally stored pressure (Pa) at constant temperature and composition. More... | |
virtual void | setState_TP (doublereal T, doublereal pres) |
Set the temperature and pressure at the same time. More... | |
virtual doublereal | pressure () const |
Returns the current pressure of the phase. More... | |
virtual void | updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. More... | |
virtual double | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
virtual double | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
PDSS * | providePDSS (size_t k) |
const PDSS * | providePDSS (size_t k) const |
VPStandardStateTP () | |
Constructor. More... | |
virtual | ~VPStandardStateTP () |
virtual bool | isCompressible () const |
Return whether phase represents a compressible substance. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials. More... | |
virtual void | getStandardChemPotentials (doublereal *mu) const |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More... | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of the species standard states at the current T and P of the solution. More... | |
virtual const vector_fp & | getStandardVolumes () const |
virtual void | getSpeciesParameters (const std::string &name, AnyMap &speciesNode) const |
Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More... | |
void | installPDSS (size_t k, std::unique_ptr< PDSS > &&pdss) |
Install a PDSS object for species k More... | |
virtual bool | addSpecies (shared_ptr< Species > spec) |
Add a Species to this Phase. More... | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More... | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
doublereal | RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
double | equivalenceRatio () const |
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More... | |
virtual bool | isIdeal () const |
Boolean indicating whether phase is ideal. More... | |
virtual std::string | phaseOfMatter () const |
String indicating the mechanical phase of the matter in this Phase. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
doublereal | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const size_t k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy. Units: J/kmol. More... | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Return an array of partial molar heat capacities for the species in the mixture. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. Units: J/kg. More... | |
doublereal | entropy_mass () const |
Specific entropy. Units: J/kg/K. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (double h, double p, double tol=1e-9) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (double u, double v, double tol=1e-9) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (double s, double p, double tol=1e-9) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (double s, double v, double tol=1e-9) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). More... | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). More... | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). More... | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). More... | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More... | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_RP (doublereal rho, doublereal p) |
Set the density (kg/m**3) and pressure (Pa) at constant composition. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const doublereal *x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const compositionMap &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const std::string &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const doublereal *y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const compositionMap &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const std::string &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState (const AnyMap &state) |
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More... | |
void | setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
double | mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
void | setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
double | equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
void | equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. More... | |
virtual void | setToEquilState (const doublereal *mu_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More... | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critVolume () const |
Critical volume (m3/kmol). More... | |
virtual doublereal | critCompressibility () const |
Critical compressibility (unitless). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | satPressure (doublereal t) |
Return the saturation pressure given the temperature. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
void | setState_TPQ (double T, double P, double Q) |
Set the temperature, pressure, and vapor fraction (quality). More... | |
virtual void | modifySpecies (size_t k, shared_ptr< Species > spec) |
Modify the thermodynamic data associated with a species. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual const MultiSpeciesThermo & | speciesThermo (int k=-1) const |
void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object using an XML tree. More... | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
AnyMap | parameters (bool withInput=true) const |
Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More... | |
const AnyMap & | input () const |
Access input data associated with the phase description. More... | |
AnyMap & | input () |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true, doublereal threshold=-1e-14) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
Phase (const Phase &)=delete | |
Phase & | operator= (const Phase &)=delete |
XML_Node & | xml () const |
Returns a const reference to the XML_Node that describes the phase. More... | |
void | setXMLdata (XML_Node &xmlPhase) |
Stores the XML tree information for the current phase. More... | |
virtual bool | isPure () const |
Return whether phase represents a pure (single species) substance. More... | |
virtual bool | hasPhaseTransition () const |
Return whether phase represents a substance with phase transitions. More... | |
virtual std::map< std::string, size_t > | nativeState () const |
Return a map of properties defining the native state of a substance. More... | |
virtual std::vector< std::string > | fullStates () const |
Return a vector containing full states defining a phase. More... | |
virtual std::vector< std::string > | partialStates () const |
Return a vector of settable partial property sets within a phase. More... | |
virtual size_t | stateSize () const |
Return size of vector defining internal state of the phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase. More... | |
virtual void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
virtual void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
void | getCharges (double *charges) const |
Copy the vector of species charges into array charges. More... | |
doublereal | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. More... | |
doublereal | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. More... | |
const double * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. More... | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
bool | caseSensitiveSpecies () const |
Returns true if case sensitive species names are enforced. More... | |
void | setCaseSensitiveSpecies (bool cflag=true) |
Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More... | |
virtual void | setRoot (std::shared_ptr< Solution > root) |
Set root Solution holding all phase information. More... | |
vector_fp | getCompositionFromMap (const compositionMap &comp) const |
Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More... | |
void | massFractionsToMoleFractions (const double *Y, double *X) const |
Converts a mixture composition from mole fractions to mass fractions. More... | |
void | moleFractionsToMassFractions (const double *X, double *Y) const |
Converts a mixture composition from mass fractions to mole fractions. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
void | setMoleFractionsByName (const compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (const compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, const compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
compositionMap | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. More... | |
double | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
double | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
compositionMap | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. More... | |
double | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
double | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (double *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions (const double *const x) |
Set the mole fractions to the specified values. More... | |
virtual void | setMoleFractions_NoNorm (const double *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (double *const y) const |
Get the species mass fractions. More... | |
const double * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
virtual void | setMassFractions (const double *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const double *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
void | getConcentrations (double *const c) const |
Get the species concentrations (kmol/m^3). More... | |
double | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrations (const double *const conc) |
Set the concentrations to the specified values within the phase. More... | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual double | electronTemperature () const |
Electron Temperature (K) More... | |
virtual double | density () const |
Density (kg/m^3). More... | |
double | molarDensity () const |
Molar density (kmol/m^3). More... | |
double | molarVolume () const |
Molar volume (m^3/kmol). More... | |
virtual void | setDensity (const double density_) |
Set the internally stored density (kg/m^3) of the phase. More... | |
virtual void | setMolarDensity (const double molarDensity) |
Set the internally stored molar density (kmol/m^3) of the phase. More... | |
virtual void | setElectronTemperature (double etemp) |
Set the internally stored electron temperature of the phase (K). More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_X (const vector_fp &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
size_t | addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. More... | |
void | addSpeciesAlias (const std::string &name, const std::string &alias) |
Add a species alias (that is, a user-defined alternative species name). More... | |
virtual std::vector< std::string > | findIsomers (const compositionMap &compMap) const |
Return a vector with isomers names matching a given composition map. More... | |
virtual std::vector< std::string > | findIsomers (const std::string &comp) const |
Return a vector with isomers names matching a given composition string. More... | |
shared_ptr< Species > | species (const std::string &name) const |
Return the Species object for the named species. More... | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. More... | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. More... | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. More... | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. More... | |
Protected Member Functions | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. More... | |
Protected Member Functions inherited from GibbsExcessVPSSTP | |
double | checkMFSum (const doublereal *const x) const |
utility routine to check mole fraction sum More... | |
Protected Member Functions inherited from VPStandardStateTP | |
virtual void | _updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. More... | |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. More... | |
const vector_fp & | Gibbs_RT_ref () const |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | assertCompressible (const std::string &setter) const |
Ensure that phase is compressible. More... | |
void | assignDensity (const double density_) |
Set the internally stored constant density (kg/m^3) of the phase. More... | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
Protected Attributes | |
IonSolnType_enumType | ionSolnType_ |
Ion solution type. More... | |
size_t | numNeutralMoleculeSpecies_ |
Number of neutral molecule species. More... | |
size_t | indexSpecialSpecies_ |
Index of special species. More... | |
vector_fp | fm_neutralMolec_ions_ |
Formula Matrix for composition of neutral molecules in terms of the molecules in this ThermoPhase. More... | |
std::vector< size_t > | fm_invert_ionForNeutral |
Mapping between ion species and neutral molecule for quick invert. More... | |
vector_fp | NeutralMolecMoleFractions_ |
Mole fractions using the Neutral Molecule Mole fraction basis. More... | |
std::vector< size_t > | cationList_ |
List of the species in this ThermoPhase which are cation species. More... | |
std::vector< size_t > | anionList_ |
List of the species in this ThermoPhase which are anion species. More... | |
std::vector< size_t > | passThroughList_ |
List of the species in this ThermoPhase which are passed through to the neutralMoleculePhase ThermoPhase. More... | |
shared_ptr< ThermoPhase > | neutralMoleculePhase_ |
This is a pointer to the neutral Molecule Phase. More... | |
AnyMap | m_rootNode |
Root node of the AnyMap which contains this phase definition. More... | |
Protected Attributes inherited from GibbsExcessVPSSTP | |
vector_fp | moleFractions_ |
Storage for the current values of the mole fractions of the species. More... | |
vector_fp | lnActCoeff_Scaled_ |
Storage for the current values of the activity coefficients of the species. More... | |
vector_fp | dlnActCoeffdT_Scaled_ |
Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species. More... | |
vector_fp | d2lnActCoeffdT2_Scaled_ |
Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species. More... | |
vector_fp | dlnActCoeffdlnN_diag_ |
Storage for the current derivative values of the gradients with respect to logarithm of the mole fraction of the log of the activity coefficients of the species. More... | |
vector_fp | dlnActCoeffdlnX_diag_ |
Storage for the current derivative values of the gradients with respect to logarithm of the mole fraction of the log of the activity coefficients of the species. More... | |
Array2D | dlnActCoeffdlnN_ |
Storage for the current derivative values of the gradients with respect to logarithm of the species mole number of the log of the activity coefficients of the species. More... | |
Protected Attributes inherited from VPStandardStateTP | |
doublereal | m_Pcurrent |
Current value of the pressure - state variable. More... | |
double | m_minTemp |
The minimum temperature at which data for all species is valid. More... | |
double | m_maxTemp |
The maximum temperature at which data for all species is valid. More... | |
doublereal | m_Tlast_ss |
The last temperature at which the standard state thermodynamic properties were calculated at. More... | |
doublereal | m_Plast_ss |
The last pressure at which the Standard State thermodynamic properties were calculated at. More... | |
std::vector< std::unique_ptr< PDSS > > | m_PDSS_storage |
Storage for the PDSS objects for the species. More... | |
vector_fp | m_h0_RT |
Vector containing the species reference enthalpies at T = m_tlast and P = p_ref. More... | |
vector_fp | m_cp0_R |
Vector containing the species reference constant pressure heat capacities at T = m_tlast and P = p_ref. More... | |
vector_fp | m_g0_RT |
Vector containing the species reference Gibbs functions at T = m_tlast and P = p_ref. More... | |
vector_fp | m_s0_R |
Vector containing the species reference entropies at T = m_tlast and P = p_ref. More... | |
vector_fp | m_V0 |
Vector containing the species reference molar volumes. More... | |
vector_fp | m_hss_RT |
Vector containing the species Standard State enthalpies at T = m_tlast and P = m_plast. More... | |
vector_fp | m_cpss_R |
Vector containing the species Standard State constant pressure heat capacities at T = m_tlast and P = m_plast. More... | |
vector_fp | m_gss_RT |
Vector containing the species Standard State Gibbs functions at T = m_tlast and P = m_plast. More... | |
vector_fp | m_sss_R |
Vector containing the species Standard State entropies at T = m_tlast and P = m_plast. More... | |
vector_fp | m_Vss |
Vector containing the species standard state volumes at T = m_tlast and P = m_plast. More... | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
AnyMap | m_input |
Data supplied via setParameters. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. Units are Volts. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
doublereal | m_tlast |
last value of the temperature processed by reference state More... | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. More... | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
std::map< std::string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior |
Flag determining behavior when adding species with an undefined element. More... | |
bool | m_caseSensitiveSpecies |
Flag determining whether case sensitive species names are enforced. More... | |
Private Member Functions | |
void | s_update_lnActCoeff () const |
Update the activity coefficients. More... | |
void | s_update_dlnActCoeffdT () const |
Update the temperature derivative of the ln activity coefficients. More... | |
void | s_update_dlnActCoeff () const |
Update the change in the ln activity coefficients. More... | |
void | s_update_dlnActCoeff_dlnX_diag () const |
Update the derivative of the log of the activity coefficients wrt log(mole fraction) More... | |
void | s_update_dlnActCoeff_dlnN_diag () const |
Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components. More... | |
void | s_update_dlnActCoeff_dlnN () const |
Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components. More... | |
Private Attributes | |
GibbsExcessVPSSTP * | geThermo |
vector_fp | y_ |
vector_fp | dlnActCoeff_NeutralMolecule_ |
vector_fp | dX_NeutralMolecule_ |
vector_fp | m_work |
vector_fp | moleFractionsTmp_ |
Temporary mole fraction vector. More... | |
vector_fp | muNeutralMolecule_ |
Storage vector for the neutral molecule chemical potentials. More... | |
vector_fp | lnActCoeff_NeutralMolecule_ |
Storage vector for the neutral molecule ln activity coefficients. More... | |
vector_fp | dlnActCoeffdT_NeutralMolecule_ |
Storage vector for the neutral molecule d ln activity coefficients dT. More... | |
vector_fp | dlnActCoeffdlnX_diag_NeutralMolecule_ |
Storage vector for the neutral molecule d ln activity coefficients dX - diagonal component. More... | |
vector_fp | dlnActCoeffdlnN_diag_NeutralMolecule_ |
Storage vector for the neutral molecule d ln activity coefficients dlnN. More... | |
Array2D | dlnActCoeffdlnN_NeutralMolecule_ |
Storage vector for the neutral molecule d ln activity coefficients dlnN. More... | |
The IonsFromNeutralVPSSTP is a derived class of ThermoPhase that handles the specification of the chemical potentials for ionic species, given a specification of the chemical potentials for the same phase expressed in terms of combinations of the ionic species that represent neutral molecules. It's expected that the neutral molecules will be represented in terms of an excess Gibbs free energy approximation that is a derivative of the GibbsExcessVPSSTP object. All of the excess Gibbs free energy formulations in this area employ symmetrical formulations.
This class is used for molten salts.
This object actually employs 4 different mole fraction types.
This object can translate between any of the four mole fraction representations.
Definition at line 67 of file IonsFromNeutralVPSSTP.h.
|
explicit |
Construct an IonsFromNeutralVPSSTP object from an input file.
inputFile | Name of the input file containing the phase definition. If blank, an empty phase will be created. |
id | name (ID) of the phase in the input file. If empty, the first phase definition in the input file will be used. |
Definition at line 30 of file IonsFromNeutralVPSSTP.cpp.
References ThermoPhase::initThermoFile().
IonsFromNeutralVPSSTP | ( | XML_Node & | phaseRoot, |
const std::string & | id = "" |
||
) |
Construct and initialize an IonsFromNeutralVPSSTP object directly from an XML database.
phaseRoot | XML phase node containing the description of the phase |
id | id attribute containing the name of the phase. (default is the empty string) |
Definition at line 39 of file IonsFromNeutralVPSSTP.cpp.
References Cantera::importPhase().
|
inlinevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from ThermoPhase.
Definition at line 99 of file IonsFromNeutralVPSSTP.h.
|
virtual |
Return the Molar enthalpy. Units: J/kmol.
This is calculated from the partial molar enthalpies of the species.
Reimplemented from ThermoPhase.
Definition at line 50 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), and Phase::mean_X().
|
virtual |
Molar entropy. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 56 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::getPartialMolarEntropies(), and Phase::mean_X().
|
virtual |
Molar Gibbs function. Units: J/kmol.
Reimplemented from ThermoPhase.
Definition at line 62 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::getChemPotentials(), and Phase::mean_X().
|
virtual |
Molar heat capacity at constant pressure. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 68 of file IonsFromNeutralVPSSTP.cpp.
References ThermoPhase::getPartialMolarCp(), and Phase::mean_X().
|
virtual |
Molar heat capacity at constant volume. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 74 of file IonsFromNeutralVPSSTP.cpp.
References ThermoPhase::getPartialMolarCp(), and Phase::mean_X().
|
virtual |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
ac | Output vector of activity coefficients. Length: m_kk. |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 91 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::lnActCoeff_Scaled_, Phase::m_kk, and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
virtual |
Get the species chemical potentials. Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.
mu | Output vector of species chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 104 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::ionSolnType_, IonsFromNeutralVPSSTP::lnActCoeff_NeutralMolecule_, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::muNeutralMolecule_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, IonsFromNeutralVPSSTP::passThroughList_, ThermoPhase::RT(), and Cantera::SmallNumber.
Referenced by IonsFromNeutralVPSSTP::gibbs_mole().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol)
For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the molality-based activity coefficient wrt temperature
\[ \bar h_k(T,P) = h^o_k(T,P) - R T^2 \frac{d \ln(\gamma_k)}{dT} \]
hbar | Output vector of species partial molar enthalpies. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 153 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdT_Scaled_, VPStandardStateTP::getEnthalpy_RT(), Phase::m_kk, ThermoPhase::RT(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), and Phase::temperature().
Referenced by IonsFromNeutralVPSSTP::enthalpy_mole().
|
virtual |
Returns an array of partial molar entropies for the species in the mixture.
Units (J/kmol)
For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the activity coefficient wrt temperature
\[ \bar s_k(T,P) = s^o_k(T,P) - R T^2 \frac{d \ln(\gamma_k)}{dT} - R \ln( \gamma_k X_k) - R T \frac{d \ln(\gamma_k) }{dT} \]
sbar | Output vector of species partial molar entropies. Length: m_kk. Units: J/kmol/K |
Reimplemented from ThermoPhase.
Definition at line 172 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdT_Scaled_, Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), GibbsExcessVPSSTP::lnActCoeff_Scaled_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), Cantera::SmallNumber, and Phase::temperature().
Referenced by IonsFromNeutralVPSSTP::entropy_mole().
|
virtual |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
dTds | Input of temperature change along the path |
dXds | Input vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one. |
dlnActCoeffds | Output vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m. |
Reimplemented from ThermoPhase.
Definition at line 710 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, ThermoPhase::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, and IonsFromNeutralVPSSTP::passThroughList_.
|
virtual |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnX_diag | Output vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk |
Reimplemented from ThermoPhase.
Definition at line 193 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdlnX_diag_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
virtual |
Get the array of log species mole number derivatives of the log activity coefficients.
For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration- like variable (for example, moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that species mole number variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnN_diag | Output vector of derivatives of the log Activity Coefficients. length = m_kk |
Reimplemented from VPStandardStateTP.
Definition at line 203 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdlnN_diag_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
virtual |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.
units = 1 / kmol
dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the m-th species with respect to the number of moles of the k-th species.
\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]
ld | Number of rows in the matrix |
dlnActCoeffdlnN | Output vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 213 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdlnN_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
void getDissociationCoeffs | ( | vector_fp & | fm_neutralMolec_ions, |
vector_fp & | charges, | ||
std::vector< size_t > & | neutMolIndex | ||
) | const |
Get the Salt Dissociation Coefficients.
Returns the vector of dissociation coefficients and vector of charges
fm_neutralMolec_ions | Returns the formula matrix for the composition of neutral molecules in terms of the ions. |
charges | Returns a vector containing the charges of all species in this phase |
neutMolIndex | Returns the vector fm_invert_ionForNeutral This is the mapping between ion species and neutral molecule for quick invert. |
Definition at line 83 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, and Phase::m_speciesCharge.
|
inline |
Return the current value of the neutral mole fraction vector.
neutralMoleculeMoleFractions | Vector of neutral molecule mole fractions. |
Definition at line 201 of file IonsFromNeutralVPSSTP.h.
References IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_.
void getNeutralMoleculeMoleGrads | ( | const doublereal *const | dx, |
doublereal *const | dy | ||
) | const |
Calculate neutral molecule mole fractions.
This routine calculates the neutral molecule mole fraction given the vector of ion mole fractions, that is, the mole fractions from this ThermoPhase. Note, this routine basically assumes that there is charge neutrality. If there isn't, then it wouldn't make much sense.
for the case of cIonSolnType_SINGLEANION, some slough in the charge neutrality is allowed. The cation number is followed, while the difference in charge neutrality is dumped into the anion mole number to fix the imbalance.
dx | input vector of ion mole fraction gradients |
dy | output Vector of neutral molecule mole fraction gradients |
Definition at line 360 of file IonsFromNeutralVPSSTP.cpp.
References AssertTrace, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, Cantera::npos, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds().
|
inline |
Get the list of cations in this object.
cation | List of cations |
Definition at line 226 of file IonsFromNeutralVPSSTP.h.
References IonsFromNeutralVPSSTP::cationList_.
|
inline |
Get the list of anions in this object.
anion | List of anions |
Definition at line 234 of file IonsFromNeutralVPSSTP.h.
References IonsFromNeutralVPSSTP::anionList_.
|
virtual |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
The formula for this is
\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]
where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.
Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.
NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.
Reimplemented from GibbsExcessVPSSTP.
Definition at line 225 of file IonsFromNeutralVPSSTP.cpp.
References Phase::assignDensity(), IonsFromNeutralVPSSTP::neutralMoleculePhase_, VPStandardStateTP::pressure(), and Phase::temperature().
|
virtual |
Calculate ion mole fractions from neutral molecule mole fractions.
mf | Dump the mole fractions into this vector. |
Definition at line 235 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, Phase::m_kk, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, and IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_.
|
virtual |
Calculate neutral molecule mole fractions.
This routine calculates the neutral molecule mole fraction given the vector of ion mole fractions, that is, the mole fractions from this ThermoPhase. Note, this routine basically assumes that there is charge neutrality. If there isn't, then it wouldn't make much sense.
for the case of cIonSolnType_SINGLEANION, some slough in the charge neutrality is allowed. The cation number is followed, while the difference in charge neutrality is dumped into the anion mole number to fix the imbalance.
Definition at line 264 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, AssertTrace, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::moleFractionsTmp_, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, Cantera::npos, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::compositionChanged().
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from GibbsExcessVPSSTP.
Definition at line 618 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::addSpecies(), IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, IonsFromNeutralVPSSTP::indexSpecialSpecies_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::moleFractionsTmp_, Cantera::npos, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
void setNeutralMoleculePhase | ( | shared_ptr< ThermoPhase > | neutral | ) |
Definition at line 592 of file IonsFromNeutralVPSSTP.cpp.
shared_ptr< ThermoPhase > getNeutralMoleculePhase | ( | ) |
Definition at line 613 of file IonsFromNeutralVPSSTP.cpp.
Set equation of state parameters from an AnyMap phase description.
Phases that need additional parameters from the root node should override this method.
Reimplemented from ThermoPhase.
Definition at line 472 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::m_rootNode, and ThermoPhase::setParameters().
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from VPStandardStateTP.
Definition at line 479 of file IonsFromNeutralVPSSTP.cpp.
References Phase::elementNames(), Cantera::factorOverlap(), IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, AnyMap::fromYamlFile(), AnyMap::getString(), AnyMap::hasKey(), IonsFromNeutralVPSSTP::indexSpecialSpecies_, VPStandardStateTP::initThermo(), ThermoPhase::m_input, Phase::m_kk, IonsFromNeutralVPSSTP::m_rootNode, Phase::nAtoms(), Phase::nElements(), IonsFromNeutralVPSSTP::neutralMoleculePhase_, Cantera::newPhase(), Cantera::npos, and IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_.
|
virtual |
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function.
This does not include user-defined fields available in input().
Reimplemented from ThermoPhase.
Definition at line 584 of file IonsFromNeutralVPSSTP.cpp.
References ThermoPhase::getParameters(), and IonsFromNeutralVPSSTP::neutralMoleculePhase_.
|
virtual |
Set equation of state parameter values from XML entries.
This method is called by function importPhase() when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.
eosdata | An XML_Node object corresponding to the "thermo" entry for this phase in the input file. |
Reimplemented from ThermoPhase.
Definition at line 647 of file IonsFromNeutralVPSSTP.cpp.
References XML_Node::child(), Cantera::get_XML_Node(), XML_Node::hasChild(), Cantera::newPhase(), and ThermoPhase::setParametersFromXML().
|
private |
Update the activity coefficients.
This function will be called to update the internally stored natural logarithm of the activity coefficients
Definition at line 666 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, IonsFromNeutralVPSSTP::ionSolnType_, IonsFromNeutralVPSSTP::lnActCoeff_NeutralMolecule_, GibbsExcessVPSSTP::lnActCoeff_Scaled_, Phase::m_kk, IonsFromNeutralVPSSTP::neutralMoleculePhase_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getActivityCoefficients(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), and IonsFromNeutralVPSSTP::getPartialMolarEntropies().
|
private |
Update the temperature derivative of the ln activity coefficients.
This function will be called to update the internally stored temperature derivative of the natural logarithm of the activity coefficients
Definition at line 765 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::dlnActCoeffdT_NeutralMolecule_, GibbsExcessVPSSTP::dlnActCoeffdT_Scaled_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, GibbsExcessVPSSTP::getdlnActCoeffdT(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), and IonsFromNeutralVPSSTP::getPartialMolarEntropies().
|
private |
Update the change in the ln activity coefficients.
This function will be called to update the internally stored change of the natural logarithm of the activity coefficients w.r.t a change in state (temp, mole fraction, etc)
|
private |
Update the derivative of the log of the activity coefficients wrt log(mole fraction)
This function will be called to update the internally stored derivative of the natural logarithm of the activity coefficients wrt logarithm of the mole fractions.
Definition at line 815 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, GibbsExcessVPSSTP::dlnActCoeffdlnX_diag_, IonsFromNeutralVPSSTP::dlnActCoeffdlnX_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, ThermoPhase::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag().
|
private |
Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components.
This function will be called to update the internally stored derivative of the natural logarithm of the activity coefficients wrt logarithm of the number of moles of given species.
Definition at line 865 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, GibbsExcessVPSSTP::dlnActCoeffdlnN_diag_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, VPStandardStateTP::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag().
|
private |
Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components.
This function will be called to update the internally stored derivative of the natural logarithm of the activity coefficients wrt logarithm of the number of moles of given species.
Definition at line 915 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, GibbsExcessVPSSTP::dlnActCoeffdlnN_, GibbsExcessVPSSTP::dlnActCoeffdlnN_diag_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, GibbsExcessVPSSTP::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, Phase::nSpecies(), IonsFromNeutralVPSSTP::passThroughList_, and Array2D::zero().
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffdlnN().
|
protectedvirtual |
Apply changes to the state which are needed after the composition changes.
This function is called after any call to setMassFractions(), setMoleFractions(), or similar. For phases which need to execute a callback after any change to the composition, it should be done by overriding this function rather than overriding all of the composition- setting functions. Derived class implementations of compositionChanged() should call the parent class method as well.
Reimplemented from GibbsExcessVPSSTP.
Definition at line 430 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), GibbsExcessVPSSTP::compositionChanged(), IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, and IonsFromNeutralVPSSTP::neutralMoleculePhase_.
|
protected |
Ion solution type.
There is either mixing on the anion, cation, or both lattices. There is also a passthrough option
Defaults to cIonSolnType_SINGLEANION, so that LiKCl can be hardwired
Definition at line 338 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
Number of neutral molecule species.
This is equal to the number of species in the neutralMoleculePhase_ ThermoPhase.
Definition at line 345 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::addSpecies(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), and IonsFromNeutralVPSSTP::initThermo().
|
protected |
Index of special species.
Definition at line 348 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::addSpecies(), and IonsFromNeutralVPSSTP::initThermo().
|
protected |
Formula Matrix for composition of neutral molecules in terms of the molecules in this ThermoPhase.
fm_neutralMolec_ions[ i + jNeut * m_kk ]
This is the number of ions of type i in the neutral molecule jNeut.
Definition at line 357 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::addSpecies(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getDissociationCoeffs(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initThermo(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
Mapping between ion species and neutral molecule for quick invert.
fm_invert_ionForNeutral returns vector of int. Each element represents an ionic species and stores the value of the corresponding neutral molecule
For the case of fm_invert_simple_ = true, we assume that there is a quick way to invert the formula matrix so that we can quickly calculate the neutral molecule mole fraction given the ion mole fraction vector.
We assume that for a selected set of ion species, that that ion is only in the neutral molecule, jNeut.
therefore,
NeutralMolecMoleFractions_[jNeut] += moleFractions_[i_ion] / fmij;
where fmij is the number of ions in neutral molecule jNeut.
Thus, we formulate the neutral molecule mole fraction NeutralMolecMoleFractions_[] vector from this association. We further assume that there are no other associations. If fm_invert_simple_ is not true, then we need to do a formal inversion which takes a great deal of time and is not currently implemented.
Definition at line 383 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::addSpecies(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getDissociationCoeffs(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initThermo(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
mutableprotected |
Mole fractions using the Neutral Molecule Mole fraction basis.
Definition at line 386 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcIonMoleFractions(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::compositionChanged(), and IonsFromNeutralVPSSTP::getNeutralMolecMoleFractions().
|
protected |
List of the species in this ThermoPhase which are cation species.
Definition at line 389 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::addSpecies(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getCationList(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
List of the species in this ThermoPhase which are anion species.
Definition at line 392 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::addSpecies(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getAnionList(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
List of the species in this ThermoPhase which are passed through to the neutralMoleculePhase ThermoPhase.
These have neutral charges.
Definition at line 396 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::addSpecies(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
This is a pointer to the neutral Molecule Phase.
Definition at line 399 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), IonsFromNeutralVPSSTP::compositionChanged(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getParameters(), IonsFromNeutralVPSSTP::initThermo(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
Root node of the AnyMap which contains this phase definition.
Used to look up the phase definition for the embedded neutral phase.
Definition at line 403 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initThermo(), and IonsFromNeutralVPSSTP::setParameters().
|
private |
Definition at line 406 of file IonsFromNeutralVPSSTP.h.
|
mutableprivate |
Definition at line 409 of file IonsFromNeutralVPSSTP.h.
|
mutableprivate |
Definition at line 410 of file IonsFromNeutralVPSSTP.h.
|
mutableprivate |
Definition at line 411 of file IonsFromNeutralVPSSTP.h.
|
mutableprivate |
Definition at line 412 of file IonsFromNeutralVPSSTP.h.
|
mutableprivate |
Temporary mole fraction vector.
Definition at line 415 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::addSpecies(), and IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions().
|
mutableprivate |
Storage vector for the neutral molecule chemical potentials.
This vector is used as a temporary storage area when calculating the ion chemical potentials.
Definition at line 425 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::getChemPotentials().
|
mutableprivate |
Storage vector for the neutral molecule ln activity coefficients.
This vector is used as a temporary storage area when calculating the ion chemical potentials and activity coefficients
Definition at line 435 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
mutableprivate |
Storage vector for the neutral molecule d ln activity coefficients dT.
This vector is used as a temporary storage area when calculating the ion derivatives
Definition at line 445 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT().
|
mutableprivate |
Storage vector for the neutral molecule d ln activity coefficients dX - diagonal component.
This vector is used as a temporary storage area when calculating the ion derivatives
Definition at line 456 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().
|
mutableprivate |
Storage vector for the neutral molecule d ln activity coefficients dlnN.
This vector is used as a temporary storage area when calculating the ion derivatives
Definition at line 467 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag().
|
mutableprivate |
Storage vector for the neutral molecule d ln activity coefficients dlnN.
This vector is used as a temporary storage area when calculating the ion derivatives
Definition at line 477 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN().