Cantera 2.6.0
|
Partial specialization of Kinetics for chemistry in a single bulk phase. More...
#include <BulkKinetics.h>
Public Member Functions | |
BulkKinetics (ThermoPhase *thermo=0) | |
virtual void | resizeReactions () |
Finalize Kinetics object and associated objects. More... | |
virtual bool | isReversible (size_t i) |
True if reaction i has been declared to be reversible. More... | |
virtual void | getDeltaGibbs (doublereal *deltaG) |
Return the vector of values for the reaction Gibbs free energy change. More... | |
virtual void | getDeltaEnthalpy (doublereal *deltaH) |
Return the vector of values for the reactions change in enthalpy. More... | |
virtual void | getDeltaEntropy (doublereal *deltaS) |
Return the vector of values for the reactions change in entropy. More... | |
virtual void | getDeltaSSGibbs (doublereal *deltaG) |
Return the vector of values for the reaction standard state Gibbs free energy change. More... | |
virtual void | getDeltaSSEnthalpy (doublereal *deltaH) |
Return the vector of values for the change in the standard state enthalpies of reaction. More... | |
virtual void | getDeltaSSEntropy (doublereal *deltaS) |
Return the vector of values for the change in the standard state entropies for each reaction. More... | |
virtual void | getRevRateConstants (double *krev, bool doIrreversible=false) |
Return the reverse rate constants. More... | |
virtual bool | addReaction (shared_ptr< Reaction > r, bool resize=true) |
Add a single reaction to the mechanism. More... | |
virtual void | modifyReaction (size_t i, shared_ptr< Reaction > rNew) |
Modify the rate expression associated with a reaction. More... | |
virtual void | resizeSpecies () |
Resize arrays with sizes that depend on the total number of species. More... | |
virtual void | setMultiplier (size_t i, double f) |
Set the multiplier for reaction i to f. More... | |
virtual void | invalidateCache () |
void | addThirdBody (shared_ptr< Reaction > r) |
Public Member Functions inherited from Kinetics | |
virtual std::pair< size_t, size_t > | checkDuplicates (bool throw_err=true) const |
Check for unmarked duplicate reactions and unmatched marked duplicates. More... | |
void | selectPhase (const double *data, const ThermoPhase *phase, double *phase_data) |
virtual void | setRoot (std::shared_ptr< Solution > root) |
Set root Solution holding all phase information. More... | |
virtual double | reactionEnthalpy (const Composition &reactants, const Composition &products) |
Calculate the reaction enthalpy of a reaction which has not necessarily been added into the Kinetics object. More... | |
Kinetics () | |
Default constructor. More... | |
virtual | ~Kinetics () |
Kinetics (const Kinetics &)=delete | |
Kinetics objects are not copyable or assignable. More... | |
Kinetics & | operator= (const Kinetics &)=delete |
virtual std::string | kineticsType () const |
Identifies the Kinetics manager type. More... | |
size_t | nReactions () const |
Number of reactions in the reaction mechanism. More... | |
void | checkReactionIndex (size_t m) const |
Check that the specified reaction index is in range Throws an exception if i is greater than nReactions() More... | |
void | checkReactionArraySize (size_t ii) const |
Check that an array size is at least nReactions() Throws an exception if ii is less than nReactions(). More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More... | |
void | checkSpeciesArraySize (size_t mm) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More... | |
size_t | nPhases () const |
The number of phases participating in the reaction mechanism. More... | |
void | checkPhaseIndex (size_t m) const |
Check that the specified phase index is in range Throws an exception if m is greater than nPhases() More... | |
void | checkPhaseArraySize (size_t mm) const |
Check that an array size is at least nPhases() Throws an exception if mm is less than nPhases(). More... | |
size_t | phaseIndex (const std::string &ph) const |
Return the phase index of a phase in the list of phases defined within the object. More... | |
size_t | surfacePhaseIndex () const |
This returns the integer index of the phase which has ThermoPhase type cSurf. More... | |
size_t | reactionPhaseIndex () const |
Phase where the reactions occur. More... | |
ThermoPhase & | thermo (size_t n=0) |
This method returns a reference to the nth ThermoPhase object defined in this kinetics mechanism. More... | |
const ThermoPhase & | thermo (size_t n=0) const |
size_t | nTotalSpecies () const |
The total number of species in all phases participating in the kinetics mechanism. More... | |
size_t | kineticsSpeciesIndex (size_t k, size_t n) const |
The location of species k of phase n in species arrays. More... | |
std::string | kineticsSpeciesName (size_t k) const |
Return the name of the kth species in the kinetics manager. More... | |
size_t | kineticsSpeciesIndex (const std::string &nm) const |
This routine will look up a species number based on the input std::string nm. More... | |
size_t | kineticsSpeciesIndex (const std::string &nm, const std::string &ph) const |
This routine will look up a species number based on the input std::string nm. More... | |
ThermoPhase & | speciesPhase (const std::string &nm) |
This function looks up the name of a species and returns a reference to the ThermoPhase object of the phase where the species resides. More... | |
const ThermoPhase & | speciesPhase (const std::string &nm) const |
ThermoPhase & | speciesPhase (size_t k) |
This function takes as an argument the kineticsSpecies index (that is, the list index in the list of species in the kinetics manager) and returns the species' owning ThermoPhase object. More... | |
size_t | speciesPhaseIndex (size_t k) const |
This function takes as an argument the kineticsSpecies index (that is, the list index in the list of species in the kinetics manager) and returns the index of the phase owning the species. More... | |
virtual void | getFwdRatesOfProgress (doublereal *fwdROP) |
Return the forward rates of progress of the reactions. More... | |
virtual void | getRevRatesOfProgress (doublereal *revROP) |
Return the Reverse rates of progress of the reactions. More... | |
virtual void | getNetRatesOfProgress (doublereal *netROP) |
Net rates of progress. More... | |
virtual void | getEquilibriumConstants (doublereal *kc) |
Return a vector of Equilibrium constants. More... | |
virtual void | getReactionDelta (const double *property, double *deltaProperty) const |
Change in species properties. More... | |
virtual void | getRevReactionDelta (const double *g, double *dg) const |
Given an array of species properties 'g', return in array 'dg' the change in this quantity in the reversible reactions. More... | |
virtual void | getDeltaElectrochemPotentials (doublereal *deltaM) |
Return the vector of values for the reaction electrochemical free energy change. More... | |
virtual void | getThirdBodyConcentrations (double *concm) |
Return a vector of values of effective concentrations of third-body collision partners of any reaction. More... | |
virtual const vector_fp & | thirdBodyConcentrations () const |
Provide direct access to current third-body concentration values. More... | |
virtual void | getCreationRates (doublereal *cdot) |
Species creation rates [kmol/m^3/s or kmol/m^2/s]. More... | |
virtual void | getDestructionRates (doublereal *ddot) |
Species destruction rates [kmol/m^3/s or kmol/m^2/s]. More... | |
virtual void | getNetProductionRates (doublereal *wdot) |
Species net production rates [kmol/m^3/s or kmol/m^2/s]. More... | |
virtual void | getDerivativeSettings (AnyMap &settings) const |
Retrieve derivative settings. More... | |
virtual void | setDerivativeSettings (const AnyMap &settings) |
Set/modify derivative settings. More... | |
virtual void | getFwdRateConstants_ddT (double *dkfwd) |
Calculate derivatives for forward rate constants with respect to temperature at constant pressure, molar concentration and mole fractions. More... | |
virtual void | getFwdRateConstants_ddP (double *dkfwd) |
Calculate derivatives for forward rate constants with respect to pressure at constant temperature, molar concentration and mole fractions. More... | |
virtual void | getFwdRateConstants_ddC (double *dkfwd) |
Calculate derivatives for forward rate constants with respect to molar concentration at constant temperature, pressure and mole fractions. More... | |
virtual void | getFwdRatesOfProgress_ddT (double *drop) |
Calculate derivatives for forward rates-of-progress with respect to temperature at constant pressure, molar concentration and mole fractions. More... | |
virtual void | getFwdRatesOfProgress_ddP (double *drop) |
Calculate derivatives for forward rates-of-progress with respect to pressure at constant temperature, molar concentration and mole fractions. More... | |
virtual void | getFwdRatesOfProgress_ddC (double *drop) |
Calculate derivatives for forward rates-of-progress with respect to molar concentration at constant temperature, pressure and mole fractions. More... | |
virtual Eigen::SparseMatrix< double > | fwdRatesOfProgress_ddX () |
Calculate derivatives for forward rates-of-progress with respect to species mole fractions at constant temperature, pressure and molar concentration. More... | |
virtual void | getRevRatesOfProgress_ddT (double *drop) |
Calculate derivatives for reverse rates-of-progress with respect to temperature at constant pressure, molar concentration and mole fractions. More... | |
virtual void | getRevRatesOfProgress_ddP (double *drop) |
Calculate derivatives for reverse rates-of-progress with respect to pressure at constant temperature, molar concentration and mole fractions. More... | |
virtual void | getRevRatesOfProgress_ddC (double *drop) |
Calculate derivatives for reverse rates-of-progress with respect to molar concentration at constant temperature, pressure and mole fractions. More... | |
virtual Eigen::SparseMatrix< double > | revRatesOfProgress_ddX () |
Calculate derivatives for reverse rates-of-progress with respect to species mole fractions at constant temperature, pressure and molar concentration. More... | |
virtual void | getNetRatesOfProgress_ddT (double *drop) |
Calculate derivatives for net rates-of-progress with respect to temperature at constant pressure, molar concentration and mole fractions. More... | |
virtual void | getNetRatesOfProgress_ddP (double *drop) |
Calculate derivatives for net rates-of-progress with respect to pressure at constant temperature, molar concentration and mole fractions. More... | |
virtual void | getNetRatesOfProgress_ddC (double *drop) |
Calculate derivatives for net rates-of-progress with respect to molar concentration at constant temperature, pressure and mole fractions. More... | |
virtual Eigen::SparseMatrix< double > | netRatesOfProgress_ddX () |
Calculate derivatives for net rates-of-progress with respect to species mole fractions at constant temperature, pressure and molar concentration. More... | |
void | getCreationRates_ddT (double *dwdot) |
Calculate derivatives for species creation rates with respect to temperature at constant pressure, molar concentration and mole fractions. More... | |
void | getCreationRates_ddP (double *dwdot) |
Calculate derivatives for species creation rates with respect to pressure at constant temperature, molar concentration and mole fractions. More... | |
void | getCreationRates_ddC (double *dwdot) |
Calculate derivatives for species creation rates with respect to molar concentration at constant temperature, pressure and mole fractions. More... | |
Eigen::SparseMatrix< double > | creationRates_ddX () |
Calculate derivatives for species creation rates with respect to species mole fractions at constant temperature, pressure and molar concentration. More... | |
void | getDestructionRates_ddT (double *dwdot) |
Calculate derivatives for species destruction rates with respect to temperature at constant pressure, molar concentration and mole fractions. More... | |
void | getDestructionRates_ddP (double *dwdot) |
Calculate derivatives for species destruction rates with respect to pressure at constant temperature, molar concentration and mole fractions. More... | |
void | getDestructionRates_ddC (double *dwdot) |
Calculate derivatives for species destruction rates with respect to molar concentration at constant temperature, pressure and mole fractions. More... | |
Eigen::SparseMatrix< double > | destructionRates_ddX () |
Calculate derivatives for species destruction rates with respect to species mole fractions at constant temperature, pressure and molar concentration. More... | |
void | getNetProductionRates_ddT (double *dwdot) |
Calculate derivatives for species net production rates with respect to temperature at constant pressure, molar concentration and mole fractions. More... | |
void | getNetProductionRates_ddP (double *dwdot) |
Calculate derivatives for species net production rates with respect to pressure at constant temperature, molar concentration and mole fractions. More... | |
void | getNetProductionRates_ddC (double *dwdot) |
Calculate derivatives for species net production rates with respect to molar concentration at constant temperature, pressure and mole fractions. More... | |
Eigen::SparseMatrix< double > | netProductionRates_ddX () |
Calculate derivatives for species net production rates with respect to species mole fractions at constant temperature, pressure and molar concentration. More... | |
virtual double | reactantStoichCoeff (size_t k, size_t i) const |
Stoichiometric coefficient of species k as a reactant in reaction i. More... | |
Eigen::SparseMatrix< double > | reactantStoichCoeffs () const |
Stoichiometric coefficient matrix for reactants. More... | |
virtual double | productStoichCoeff (size_t k, size_t i) const |
Stoichiometric coefficient of species k as a product in reaction i. More... | |
Eigen::SparseMatrix< double > | productStoichCoeffs () const |
Stoichiometric coefficient matrix for products. More... | |
Eigen::SparseMatrix< double > | revProductStoichCoeffs () const |
Stoichiometric coefficient matrix for products of reversible reactions. More... | |
virtual doublereal | reactantOrder (size_t k, size_t i) const |
Reactant order of species k in reaction i. More... | |
virtual doublereal | productOrder (int k, int i) const |
product Order of species k in reaction i. More... | |
virtual void | getActivityConcentrations (doublereal *const conc) |
Get the vector of activity concentrations used in the kinetics object. More... | |
virtual int | reactionType (size_t i) const |
Flag specifying the type of reaction. More... | |
virtual std::string | reactionTypeStr (size_t i) const |
String specifying the type of reaction. More... | |
std::string | reactionString (size_t i) const |
Return a string representing the reaction. More... | |
std::string | reactantString (size_t i) const |
Returns a string containing the reactants side of the reaction equation. More... | |
std::string | productString (size_t i) const |
Returns a string containing the products side of the reaction equation. More... | |
virtual void | getFwdRateConstants (double *kfwd) |
Return the forward rate constants. More... | |
virtual void | addPhase (ThermoPhase &thermo) |
Add a phase to the kinetics manager object. More... | |
virtual void | init () |
Prepare the class for the addition of reactions, after all phases have been added. More... | |
AnyMap | parameters () |
Return the parameters for a phase definition which are needed to reconstruct an identical object using the newKinetics function. More... | |
shared_ptr< Reaction > | reaction (size_t i) |
Return the Reaction object for reaction i. More... | |
shared_ptr< const Reaction > | reaction (size_t i) const |
void | skipUndeclaredSpecies (bool skip) |
Determine behavior when adding a new reaction that contains species not defined in any of the phases associated with this kinetics manager. More... | |
bool | skipUndeclaredSpecies () const |
void | skipUndeclaredThirdBodies (bool skip) |
Determine behavior when adding a new reaction that contains third-body efficiencies for species not defined in any of the phases associated with this kinetics manager. More... | |
bool | skipUndeclaredThirdBodies () const |
doublereal | multiplier (size_t i) const |
The current value of the multiplier for reaction i. More... | |
Protected Member Functions | |
virtual void | addElementaryReaction (ElementaryReaction2 &r) |
virtual void | modifyElementaryReaction (size_t i, ElementaryReaction2 &rNew) |
Protected Member Functions inherited from Kinetics | |
virtual void | updateROP () |
double | checkDuplicateStoich (std::map< int, double > &r1, std::map< int, double > &r2) const |
Check whether r1 and r2 represent duplicate stoichiometries This function returns a ratio if two reactions are duplicates of one another, and 0.0 otherwise. More... | |
void | checkReactionBalance (const Reaction &R) |
Check that the specified reaction is balanced (same number of atoms for each element in the reactants and products). More... | |
Protected Attributes | |
std::vector< unique_ptr< MultiRateBase > > | m_bulk_rates |
Vector of rate handlers. More... | |
std::map< std::string, size_t > | m_bulk_types |
Mapping of rate handlers. More... | |
Rate1< Arrhenius2 > | m_rates |
std::vector< size_t > | m_revindex |
Indices of reversible reactions. More... | |
std::vector< size_t > | m_irrev |
Indices of irreversible reactions. More... | |
vector_fp | m_dn |
Difference between the global reactants order and the global products order. More... | |
ThirdBodyCalc3 | m_multi_concm |
used with MultiRate evaluator More... | |
vector_fp | m_concm |
Third body concentrations. More... | |
vector_fp | m_act_conc |
Activity concentrations, as calculated by ThermoPhase::getActivityConcentrations. More... | |
vector_fp | m_phys_conc |
Physical concentrations, as calculated by ThermoPhase::getConcentrations. More... | |
vector_fp | m_grt |
bool | m_ROP_ok |
doublereal | m_temp |
Protected Attributes inherited from Kinetics | |
ValueCache | m_cache |
Cache for saved calculations within each Kinetics object. More... | |
bool | m_ready |
Boolean indicating whether Kinetics object is fully configured. More... | |
size_t | m_kk |
The number of species in all of the phases that participate in this kinetics mechanism. More... | |
vector_fp | m_perturb |
Vector of perturbation factors for each reaction's rate of progress vector. More... | |
std::vector< shared_ptr< Reaction > > | m_reactions |
Vector of Reaction objects represented by this Kinetics manager. More... | |
std::vector< ThermoPhase * > | m_thermo |
m_thermo is a vector of pointers to ThermoPhase objects that are involved with this kinetics operator More... | |
std::vector< size_t > | m_start |
m_start is a vector of integers specifying the beginning position for the species vector for the n'th phase in the kinetics class. More... | |
std::map< std::string, size_t > | m_phaseindex |
Mapping of the phase name to the position of the phase within the kinetics object. More... | |
size_t | m_surfphase |
Index in the list of phases of the one surface phase. More... | |
size_t | m_rxnphase |
Phase Index where reactions are assumed to be taking place. More... | |
size_t | m_mindim |
number of spatial dimensions of lowest-dimensional phase. More... | |
vector_fp | m_rfn |
Forward rate constant for each reaction. More... | |
vector_fp | m_delta_gibbs0 |
Delta G^0 for all reactions. More... | |
vector_fp | m_rkcn |
Reciprocal of the equilibrium constant in concentration units. More... | |
vector_fp | m_ropf |
Forward rate-of-progress for each reaction. More... | |
vector_fp | m_ropr |
Reverse rate-of-progress for each reaction. More... | |
vector_fp | m_ropnet |
Net rate-of-progress for each reaction. More... | |
vector_fp | m_dH |
The enthalpy change for each reaction to calculate Blowers-Masel rates. More... | |
vector_fp | m_rbuf |
Buffer used for storage of intermediate reaction-specific results. More... | |
bool | m_skipUndeclaredSpecies |
bool | m_skipUndeclaredThirdBodies |
std::weak_ptr< Solution > | m_root |
reference to Solution More... | |
StoichManagerN | m_reactantStoich |
Stoichiometry manager for the reactants for each reaction. More... | |
StoichManagerN | m_productStoich |
Stoichiometry manager for the products for each reaction. More... | |
StoichManagerN | m_revProductStoich |
Stoichiometry manager for the products of reversible reactions. More... | |
Eigen::SparseMatrix< double > | m_stoichMatrix |
Net stoichiometry (products - reactants) More... | |
Partial specialization of Kinetics for chemistry in a single bulk phase.
Definition at line 23 of file BulkKinetics.h.
BulkKinetics | ( | ThermoPhase * | thermo = 0 | ) |
Definition at line 11 of file BulkKinetics.cpp.
|
virtual |
Finalize Kinetics object and associated objects.
Reimplemented from Kinetics.
Reimplemented in GasKinetics.
Definition at line 20 of file BulkKinetics.cpp.
Referenced by GasKinetics::resizeReactions().
|
virtual |
True if reaction i has been declared to be reversible.
If isReversible(i) is false, then the reverse rate of progress for reaction i is always zero.
i | reaction index |
Reimplemented from Kinetics.
Definition at line 33 of file BulkKinetics.cpp.
|
virtual |
Return the vector of values for the reaction Gibbs free energy change.
(virtual from Kinetics.h) These values depend upon the concentration of the solution.
units = J kmol-1
deltaG | Output vector of deltaG's for reactions Length: nReactions(). |
Reimplemented from Kinetics.
Definition at line 37 of file BulkKinetics.cpp.
|
virtual |
Return the vector of values for the reactions change in enthalpy.
These values depend upon the concentration of the solution.
units = J kmol-1
deltaH | Output vector of deltaH's for reactions Length: nReactions(). |
Reimplemented from Kinetics.
Definition at line 45 of file BulkKinetics.cpp.
|
virtual |
Return the vector of values for the reactions change in entropy.
These values depend upon the concentration of the solution.
units = J kmol-1 Kelvin-1
deltaS | Output vector of deltaS's for reactions Length: nReactions(). |
Reimplemented from Kinetics.
Definition at line 53 of file BulkKinetics.cpp.
|
virtual |
Return the vector of values for the reaction standard state Gibbs free energy change.
These values don't depend upon the concentration of the solution.
units = J kmol-1
deltaG | Output vector of ss deltaG's for reactions Length: nReactions(). |
Reimplemented from Kinetics.
Definition at line 61 of file BulkKinetics.cpp.
|
virtual |
Return the vector of values for the change in the standard state enthalpies of reaction.
These values don't depend upon the concentration of the solution.
units = J kmol-1
deltaH | Output vector of ss deltaH's for reactions Length: nReactions(). |
Reimplemented from Kinetics.
Definition at line 72 of file BulkKinetics.cpp.
|
virtual |
Return the vector of values for the change in the standard state entropies for each reaction.
These values don't depend upon the concentration of the solution.
units = J kmol-1 Kelvin-1
deltaS | Output vector of ss deltaS's for reactions Length: nReactions(). |
Reimplemented from Kinetics.
Definition at line 83 of file BulkKinetics.cpp.
References Cantera::GasConstant.
|
virtual |
Return the reverse rate constants.
The computed values include all temperature-dependent, pressure-dependent, and third body contributions. Length is the number of reactions. Units are a combination of kmol, m^3 and s, that depend on the rate expression for the reaction. Note, this routine will return rate constants for irreversible reactions if the default for doIrreversible
is overridden.
krev | Output vector of reverse rate constants |
doIrreversible | boolean indicating whether irreversible reactions should be included. |
Reimplemented from Kinetics.
Definition at line 96 of file BulkKinetics.cpp.
|
virtual |
Add a single reaction to the mechanism.
Derived classes should call the base class method in addition to handling their own specialized behavior.
r | Pointer to the Reaction object to be added. |
resize | If true , resizeReactions is called after reaction is added. |
true
if the reaction is added or false
if it was skipped Reimplemented from Kinetics.
Reimplemented in GasKinetics.
Definition at line 115 of file BulkKinetics.cpp.
Referenced by GasKinetics::addReaction().
|
virtual |
Modify the rate expression associated with a reaction.
The stoichiometric equation, type of the reaction, reaction orders, third body efficiencies, reversibility, etc. must be unchanged.
i | Index of the reaction to be modified |
rNew | Reaction with the new rate expressions |
Reimplemented from Kinetics.
Reimplemented in GasKinetics.
Definition at line 190 of file BulkKinetics.cpp.
Referenced by GasKinetics::modifyReaction().
|
virtual |
Resize arrays with sizes that depend on the total number of species.
Automatically called before adding each Reaction and Phase.
Reimplemented from Kinetics.
Definition at line 219 of file BulkKinetics.cpp.
|
virtual |
Set the multiplier for reaction i to f.
i | index of the reaction |
f | value of the multiplier. |
Reimplemented from Kinetics.
Definition at line 230 of file BulkKinetics.cpp.
|
virtual |
Reimplemented from Kinetics.
Definition at line 235 of file BulkKinetics.cpp.
void addThirdBody | ( | shared_ptr< Reaction > | r | ) |
Definition at line 167 of file BulkKinetics.cpp.
|
protectedvirtual |
Definition at line 185 of file BulkKinetics.cpp.
|
protectedvirtual |
Definition at line 214 of file BulkKinetics.cpp.
|
protected |
Vector of rate handlers.
Definition at line 58 of file BulkKinetics.h.
Referenced by GasKinetics::process_ddC(), GasKinetics::process_ddP(), GasKinetics::process_ddT(), and GasKinetics::process_ddX().
|
protected |
Mapping of rate handlers.
Definition at line 59 of file BulkKinetics.h.
|
protected |
Definition at line 61 of file BulkKinetics.h.
Referenced by GasKinetics::addThreeBodyReaction(), and GasKinetics::modifyThreeBodyReaction().
|
protected |
Indices of reversible reactions.
Definition at line 62 of file BulkKinetics.h.
Referenced by GasKinetics::updateKc().
|
protected |
Indices of irreversible reactions.
Definition at line 63 of file BulkKinetics.h.
Referenced by GasKinetics::updateKc().
|
protected |
Difference between the global reactants order and the global products order.
Of type "double" to account for the fact that we can have real- valued stoichiometries.
Definition at line 68 of file BulkKinetics.h.
Referenced by GasKinetics::getEquilibriumConstants(), and GasKinetics::updateKc().
|
protected |
used with MultiRate evaluator
Definition at line 70 of file BulkKinetics.h.
Referenced by GasKinetics::process_ddC(), GasKinetics::process_ddX(), GasKinetics::processThirdBodies(), and GasKinetics::update_rates_C().
|
protected |
Third body concentrations.
Definition at line 73 of file BulkKinetics.h.
Referenced by GasKinetics::getThirdBodyConcentrations(), GasKinetics::process_ddC(), GasKinetics::processThirdBodies(), GasKinetics::thirdBodyConcentrations(), and GasKinetics::update_rates_C().
|
protected |
Activity concentrations, as calculated by ThermoPhase::getActivityConcentrations.
Definition at line 76 of file BulkKinetics.h.
Referenced by GasKinetics::process_ddX(), and GasKinetics::update_rates_C().
|
protected |
Physical concentrations, as calculated by ThermoPhase::getConcentrations.
Definition at line 79 of file BulkKinetics.h.
Referenced by GasKinetics::update_rates_C().
|
protected |
Definition at line 81 of file BulkKinetics.h.
|
protected |
Definition at line 83 of file BulkKinetics.h.
|
protected |
Definition at line 84 of file BulkKinetics.h.