Cantera 2.6.0
Public Member Functions | List of all members
StoichSubstance Class Reference

Class StoichSubstance represents a stoichiometric (fixed composition) incompressible substance. More...

#include <StoichSubstance.h>

Inheritance diagram for StoichSubstance:
[legend]
Collaboration diagram for StoichSubstance:
[legend]

Public Member Functions

 StoichSubstance (const std::string &infile="", const std::string &id="")
 Construct and initialize a StoichSubstance ThermoPhase object directly from an ASCII input file. More...
 
 StoichSubstance (XML_Node &phaseRef, const std::string &id="")
 Construct and initialize a StoichSubstance ThermoPhase object directly from an XML database. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance. More...
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void getSpeciesParameters (const std::string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
Mechanical Equation of State
virtual doublereal pressure () const
 Report the Pressure. Units: Pa. More...
 
virtual void setPressure (doublereal p)
 Set the pressure at constant temperature. Units: Pa. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
Activities, Standard States, and Activity Concentrations

This section is largely handled by parent classes, since there is only one species.

Therefore, the activity is equal to one.

virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getStandardChemPotentials (doublereal *mu0) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
Properties of the Standard State of the Species in the Solution
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference States
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
- Public Member Functions inherited from SingleSpeciesTP
 SingleSpeciesTP ()
 Base empty constructor. More...
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance. More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials_RT (doublereal *murt) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the array of chemical potentials. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Get the species partial molar enthalpies. Units: J/kmol. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Get the species partial molar internal energies. Units: J/kmol. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Get the species partial molar entropy. Units: J/kmol K. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Get the species partial molar Heat Capacities. Units: J/ kmol /K. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Get the species partial molar volumes. Units: m^3/kmol. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vbar) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void setMassFractions (const doublereal *const y)
 Mass fractions are fixed, with Y[0] = 1.0. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Mole fractions are fixed, with x[0] = 1.0. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More...
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal. More...
 
virtual std::string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More...
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const doublereal *mu_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality). More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description. More...
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More...
 
const AnyMapinput () const
 Access input data associated with the phase description. More...
 
AnyMapinput ()
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions. More...
 
virtual std::map< std::string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance. More...
 
virtual std::vector< std::string > fullStates () const
 Return a vector containing full states defining a phase. More...
 
virtual std::vector< std::string > partialStates () const
 Return a vector of settable partial property sets within a phase. More...
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
virtual void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
virtual void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const double * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced. More...
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More...
 
virtual void setRoot (std::shared_ptr< Solution > root)
 Set root Solution holding all phase information. More...
 
vector_fp getCompositionFromMap (const compositionMap &comp) const
 Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More...
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions. More...
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
double moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
double massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
double massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (double *const y) const
 Get the species mass fractions. More...
 
const double * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3). More...
 
double concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual double electronTemperature () const
 Electron Temperature (K) More...
 
virtual double density () const
 Density (kg/m^3). More...
 
double molarDensity () const
 Molar density (kmol/m^3). More...
 
double molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const double molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K). More...
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addSpeciesAlias (const std::string &name, const std::string &alias)
 Add a species alias (that is, a user-defined alternative species name). More...
 
virtual std::vector< std::string > findIsomers (const compositionMap &compMap) const
 Return a vector with isomers names matching a given composition map. More...
 
virtual std::vector< std::string > findIsomers (const std::string &comp) const
 Return a vector with isomers names matching a given composition string. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Additional Inherited Members

- Protected Member Functions inherited from SingleSpeciesTP
void _updateThermo () const
 
- Protected Member Functions inherited from ThermoPhase
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More...
 
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void assertCompressible (const std::string &setter) const
 Ensure that phase is compressible. More...
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase. More...
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 
- Protected Attributes inherited from SingleSpeciesTP
doublereal m_press
 The current pressure of the solution (Pa). It gets initialized to 1 atm. More...
 
doublereal m_p0
 
double m_h0_RT
 Dimensionless enthalpy at the (mtlast, m_p0) More...
 
double m_cp0_R
 Dimensionless heat capacity at the (mtlast, m_p0) More...
 
double m_s0_R
 Dimensionless entropy at the (mtlast, m_p0) More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
AnyMap m_input
 Data supplied via setParameters. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 
bool m_caseSensitiveSpecies
 Flag determining whether case sensitive species names are enforced. More...
 

Detailed Description

Class StoichSubstance represents a stoichiometric (fixed composition) incompressible substance.

This class internally changes the independent degree of freedom from density to pressure. This is necessary because the phase is incompressible. It uses a constant volume approximation.

Specification of Species Standard State Properties

This class inherits from SingleSpeciesTP. It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_0 \hat v\) is subtracted from the specified molar enthalpy to compute the molar internal energy. The entropy is assumed to be independent of the pressure.

The enthalpy function is given by the following relation.

  \f[
         h^o_k(T,P) =
             h^{ref}_k(T) + \tilde v \left( P - P_{ref} \right)
  \f]

For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_{ref} \tilde v\) is subtracted from the specified reference molar enthalpy to compute the molar internal energy.

  \f[
       u^o_k(T,P) = h^{ref}_k(T) - P_{ref} \tilde v
  \f]

The standard state heat capacity and entropy are independent of pressure. The standard state Gibbs free energy is obtained from the enthalpy and entropy functions.

Specification of Solution Thermodynamic Properties

All solution properties are obtained from the standard state species functions, since there is only one species in the phase.

Application within Kinetics Managers

The standard concentration is equal to 1.0. This means that the kinetics operator works on an (activities basis). Since this is a stoichiometric substance, this means that the concentration of this phase drops out of kinetics expressions.

An example of a reaction using this is a sticking coefficient reaction of a substance in an ideal gas phase on a surface with a bulk phase species in this phase. In this case, the rate of progress for this reaction, \( R_s \), may be expressed via the following equation:

\[ R_s = k_s C_{gas} \]

where the units for \( R_s \) are kmol m-2 s-1. \( C_{gas} \) has units of kmol m-3. Therefore, the kinetic rate constant, \( k_s \), has units of m s-1. Nowhere does the concentration of the bulk phase appear in the rate constant expression, since it's a stoichiometric phase and the activity is always equal to 1.0.

Instantiation of the Class

The constructor for this phase is NOT located in the default ThermoFactory for Cantera. However, a new StoichSubstance may be created by the following code snippets:

XML_Node *xm = get_XML_NameID("phase", iFile + "#NaCl(S)", 0);
StoichSubstance *solid = new StoichSubstance(*xm);
StoichSubstance(const std::string &infile="", const std::string &id="")
Construct and initialize a StoichSubstance ThermoPhase object directly from an ASCII input file.
XML_Node * get_XML_NameID(const std::string &nameTarget, const std::string &file_ID, XML_Node *root)
This routine will locate an XML node in either the input XML tree or in another input file specified ...
Definition: global.cpp:273

or by the following call to importPhase():

XML_Node *xm = get_XML_NameID("phase", iFile + "#NaCl(S)", 0);
importPhase(*xm, &solid);
void importPhase(XML_Node &phase, ThermoPhase *th)
Import a phase information into an empty ThermoPhase object.

XML Example

Note: The XML input format is deprecated and will be removed in Cantera 3.0

The phase model name for this is called StoichSubstance. It must be supplied as the model attribute of the thermo XML element entry. Within the phase XML block, the density of the phase must be specified. An example of an XML file this phase is given below.

<!-- phase NaCl(S) -->
<phase dim="3" id="NaCl(S)">
<elementArray datasrc="elements.xml">
Na Cl
</elementArray>
<speciesArray datasrc="#species_NaCl(S)"> NaCl(S) </speciesArray>
<thermo model="StoichSubstance">
<density units="g/cm3">2.165</density>
</thermo>
<transport model="None"/>
<kinetics model="none"/>
</phase>
<!-- species definitions -->
<speciesData id="species_NaCl(S)">
<!-- species NaCl(S) -->
<species name="NaCl(S)">
<atomArray> Na:1 Cl:1 </atomArray>
<thermo>
<Shomate Pref="1 bar" Tmax="1075.0" Tmin="250.0">
<floatArray size="7">
50.72389, 6.672267, -2.517167,
10.15934, -0.200675, -427.2115,
130.3973
</floatArray>
</Shomate>
</thermo>
<density units="g/cm3">2.165</density>
std::string name() const
Return the name of the phase.
Definition: Phase.cpp:70
virtual double density() const
Density (kg/m^3).
Definition: Phase.h:679
shared_ptr< Species > species(const std::string &name) const
Return the Species object for the named species.
Definition: Phase.cpp:950
const std::vector< const XML_Node * > & speciesData() const
Return a pointer to the vector of XML nodes containing the species data for this phase.

The model attribute, "StoichSubstance", on the thermo element identifies the phase as being a StoichSubstance object.

Definition at line 151 of file StoichSubstance.h.

Constructor & Destructor Documentation

◆ StoichSubstance() [1/2]

StoichSubstance ( const std::string &  infile = "",
const std::string &  id = "" 
)
explicit

Construct and initialize a StoichSubstance ThermoPhase object directly from an ASCII input file.

Parameters
infilename of the input file. If blank, an empty phase will be created.
idname of the phase id in the file. If this is blank, the first phase in the file is used.

Definition at line 21 of file StoichSubstance.cpp.

References ThermoPhase::initThermoFile().

◆ StoichSubstance() [2/2]

StoichSubstance ( XML_Node phaseRef,
const std::string &  id = "" 
)

Construct and initialize a StoichSubstance ThermoPhase object directly from an XML database.

Parameters
phaseRefXML node pointing to a StoichSubstance description
idId of the phase.
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Definition at line 26 of file StoichSubstance.cpp.

References Cantera::importPhase().

Member Function Documentation

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from SingleSpeciesTP.

Definition at line 176 of file StoichSubstance.h.

◆ isCompressible()

virtual bool isCompressible ( ) const
inlinevirtual

Return whether phase represents a compressible substance.

Reimplemented from Phase.

Definition at line 180 of file StoichSubstance.h.

◆ pressure()

doublereal pressure ( ) const
virtual

Report the Pressure. Units: Pa.

For an incompressible substance, the density is independent of pressure. This method simply returns the stored pressure value.

Reimplemented from Phase.

Definition at line 33 of file StoichSubstance.cpp.

References SingleSpeciesTP::m_press.

◆ setPressure()

void setPressure ( doublereal  p)
virtual

Set the pressure at constant temperature. Units: Pa.

For an incompressible substance, the density is independent of pressure. Therefore, this method only stores the specified pressure value. It does not modify the density.

Parameters
pPressure (units - Pa)

Reimplemented from Phase.

Definition at line 38 of file StoichSubstance.cpp.

References SingleSpeciesTP::m_press.

◆ isothermalCompressibility()

doublereal isothermalCompressibility ( ) const
virtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

or

\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 43 of file StoichSubstance.cpp.

◆ thermalExpansionCoeff()

doublereal thermalExpansionCoeff ( ) const
virtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented from ThermoPhase.

Definition at line 48 of file StoichSubstance.cpp.

◆ standardConcentrationUnits()

Units standardConcentrationUnits ( ) const
virtual

Returns the units of the "standard concentration" for this phase.

These are the units of the values returned by the functions getActivityConcentrations() and standardConcentration(), which can vary between different ThermoPhase-derived classes, or change within a single class depending on input options. See the documentation for standardConcentration() for the derived class for specific details.

Reimplemented from ThermoPhase.

Definition at line 55 of file StoichSubstance.cpp.

◆ getActivityConcentrations()

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions.

For a stoichiometric substance, there is only one species, and the generalized concentration is 1.0.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 60 of file StoichSubstance.cpp.

◆ standardConcentration()

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (that is, generalized) concentration. This phase assumes that the kinetics operator works on an dimensionless basis. Thus, the standard concentration is equal to 1.0.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns The standard Concentration as 1.0

Reimplemented from ThermoPhase.

Definition at line 65 of file StoichSubstance.cpp.

◆ logStandardConc()

doublereal logStandardConc ( size_t  k = 0) const
virtual

Natural logarithm of the standard concentration of the kth species.

Parameters
kindex of the species (defaults to zero)

Reimplemented from ThermoPhase.

Definition at line 70 of file StoichSubstance.cpp.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( doublereal *  mu0) const
virtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

For a stoichiometric substance, there is no activity term in the chemical potential expression, and therefore the standard chemical potential and the chemical potential are both equal to the molar Gibbs function.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
mu0Output vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 77 of file StoichSubstance.cpp.

References StoichSubstance::getGibbs_RT(), and ThermoPhase::RT().

◆ getEnthalpy_RT()

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 83 of file StoichSubstance.cpp.

References SingleSpeciesTP::getEnthalpy_RT_ref(), SingleSpeciesTP::m_press, Phase::molarDensity(), and ThermoPhase::RT().

Referenced by StoichSubstance::getGibbs_RT().

◆ getEntropy_R()

void getEntropy_R ( doublereal *  sr) const
virtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 90 of file StoichSubstance.cpp.

References SingleSpeciesTP::getEntropy_R_ref().

◆ getGibbs_RT()

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 95 of file StoichSubstance.cpp.

References StoichSubstance::getEnthalpy_RT(), and SingleSpeciesTP::m_s0_R.

Referenced by StoichSubstance::getStandardChemPotentials().

◆ getCp_R()

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

Parameters
cprOutput vector of nondimensional standard state heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 101 of file StoichSubstance.cpp.

References SingleSpeciesTP::_updateThermo(), and SingleSpeciesTP::m_cp0_R.

◆ getIntEnergy_RT()

void getIntEnergy_RT ( doublereal *  urt) const
virtual

Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.

For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_{ref} \hat v\) is subtracted from the specified reference molar enthalpy to compute the standard state molar internal energy.

Parameters
urtoutput vector of nondimensional standard state internal energies of the species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 107 of file StoichSubstance.cpp.

References SingleSpeciesTP::_updateThermo(), SingleSpeciesTP::m_h0_RT, Phase::molarDensity(), and ThermoPhase::RT().

◆ getIntEnergy_RT_ref()

void getIntEnergy_RT_ref ( doublereal *  urt) const
virtual

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector of nondimensional reference state internal energies of the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 115 of file StoichSubstance.cpp.

References SingleSpeciesTP::_updateThermo(), SingleSpeciesTP::m_h0_RT, Phase::molarDensity(), and ThermoPhase::RT().

◆ initThermo()

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().

When importing from an AnyMap phase description (or from a YAML file), this method is responsible for setting model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 123 of file StoichSubstance.cpp.

References Phase::assignDensity(), AnyMap::convert(), AnyMap::hasKey(), ThermoPhase::initThermo(), ThermoPhase::input(), ThermoPhase::m_input, Phase::m_kk, Phase::meanMolecularWeight(), ThermoPhase::refPressure(), Phase::species(), and Phase::speciesName().

◆ getSpeciesParameters()

void getSpeciesParameters ( const std::string &  name,
AnyMap speciesNode 
) const
virtual

Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.

Parameters
nameName of the species
speciesNodeMapping to be populated with parameters

Reimplemented from ThermoPhase.

Definition at line 159 of file StoichSubstance.cpp.

References ThermoPhase::getSpeciesParameters(), Phase::name(), and Phase::speciesIndex().

◆ initThermoXML()

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Reimplemented from ThermoPhase.

Definition at line 184 of file StoichSubstance.cpp.

References Phase::assignDensity(), XML_Node::child(), Cantera::getFloat(), XML_Node::hasChild(), and ThermoPhase::initThermoXML().

◆ setParameters()

void setParameters ( int  n,
doublereal *const  c 
)
virtual

Set the equation of state parameters.

Parameters
nnumber of parameters
carray of n coefficients c[0] = density of phase [ kg/m3 ]

Reimplemented from ThermoPhase.

Definition at line 202 of file StoichSubstance.cpp.

References Phase::assignDensity().

◆ getParameters()

void getParameters ( int &  n,
doublereal *const  c 
) const
virtual

Get the equation of state parameters in a vector.

Parameters
nnumber of parameters
carray of n coefficients

For this phase:

  • n = 1
  • c[0] = density of phase [ kg/m3 ]

Reimplemented from ThermoPhase.

Definition at line 207 of file StoichSubstance.cpp.

References Phase::density().

◆ setParametersFromXML()

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

For this phase, the density of the phase is specified in this block.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

eosdata points to the thermo block, and looks like this:

<phase id="stoichsolid" >
<thermo model="StoichSubstance">
<density units="g/cm3">3.52</density>
</thermo>
</phase>
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Reimplemented from ThermoPhase.

Definition at line 213 of file StoichSubstance.cpp.

References Phase::assignDensity(), and Cantera::getFloat().


The documentation for this class was generated from the following files: