Cantera 2.6.0
Func1.h
Go to the documentation of this file.
1/**
2 * @file Func1.h
3 */
4
5// This file is part of Cantera. See License.txt in the top-level directory or
6// at https://cantera.org/license.txt for license and copyright information.
7
8#ifndef CT_FUNC1_H
9#define CT_FUNC1_H
10
13
14#include <iostream>
15
16namespace Cantera
17{
18
19const int FourierFuncType = 1;
20const int PolyFuncType = 2;
21const int ArrheniusFuncType = 3;
22const int GaussianFuncType = 4;
23const int SumFuncType = 20;
24const int DiffFuncType = 25;
25const int ProdFuncType = 30;
26const int RatioFuncType = 40;
27const int PeriodicFuncType = 50;
28const int CompositeFuncType = 60;
29const int TimesConstantFuncType = 70;
30const int PlusConstantFuncType = 80;
31const int SinFuncType = 100;
32const int CosFuncType = 102;
33const int ExpFuncType = 104;
34const int PowFuncType = 106;
35const int ConstFuncType = 110;
36const int TabulatedFuncType = 120;
37
38class TimesConstant1;
39
40/**
41 * Base class for 'functor' classes that evaluate a function of one variable.
42 */
43class Func1
44{
45public:
46 Func1();
47
48 virtual ~Func1() {}
49
50 Func1(const Func1& right);
51
52 Func1& operator=(const Func1& right);
53
54 //! Duplicate the current function.
55 /*!
56 * This duplicates the current function, returning a reference to the newly
57 * created function.
58 */
59 virtual Func1& duplicate() const;
60
61 virtual int ID() const;
62
63 //! Calls method eval to evaluate the function
64 doublereal operator()(doublereal t) const;
65
66 /// Evaluate the function.
67 virtual doublereal eval(doublereal t) const;
68
69 //! Creates a derivative to the current function
70 /*!
71 * This will create a new derivative function and return a reference to the
72 * function.
73 */
74 virtual Func1& derivative() const;
75
76 //! Routine to determine if two functions are the same.
77 /*!
78 * Two functions are the same if they are the same function. This means
79 * that the ID and stored constant is the same. This means that the m_f1
80 * and m_f2 are identical if they are non-null.
81 */
82 bool isIdentical(Func1& other) const;
83
84 virtual doublereal isProportional(TimesConstant1& other);
85 virtual doublereal isProportional(Func1& other);
86
87 virtual std::string write(const std::string& arg) const;
88
89 //! accessor function for the stored constant
90 doublereal c() const;
91
92 //! Function to set the stored constant
93 void setC(doublereal c);
94
95 //! accessor function for m_f1
96 Func1& func1() const;
97
98 //! accessor function for m_f2
99 Func1& func2() const;
100
101 //! Return the order of the function, if it makes sense
102 virtual int order() const;
103
104 Func1& func1_dup() const;
105
106 Func1& func2_dup() const;
107
108 Func1* parent() const;
109
110 void setParent(Func1* p);
111
112protected:
113 doublereal m_c;
114 Func1* m_f1;
115 Func1* m_f2;
116 Func1* m_parent;
117};
118
119
120Func1& newSumFunction(Func1& f1, Func1& f2);
121Func1& newDiffFunction(Func1& f1, Func1& f2);
122Func1& newProdFunction(Func1& f1, Func1& f2);
123Func1& newRatioFunction(Func1& f1, Func1& f2);
124Func1& newCompositeFunction(Func1& f1, Func1& f2);
125Func1& newTimesConstFunction(Func1& f1, doublereal c);
126Func1& newPlusConstFunction(Func1& f1, doublereal c);
127
128
129//! implements the sin() function
130/*!
131 * The argument to sin() is in radians
132 */
133class Sin1 : public Func1
134{
135public:
136 Sin1(doublereal omega = 1.0) :
137 Func1() {
138 m_c = omega;
139 }
140
141 Sin1(const Sin1& b) :
142 Func1(b) {
143 }
144
145 Sin1& operator=(const Sin1& right) {
146 if (&right == this) {
147 return *this;
148 }
149 Func1::operator=(right);
150 return *this;
151 }
152
153 virtual Func1& duplicate() const {
154 Sin1* nfunc = new Sin1(*this);
155 return (Func1&) *nfunc;
156 }
157
158 virtual std::string write(const std::string& arg) const;
159
160 virtual int ID() const {
161 return SinFuncType;
162 }
163
164 virtual doublereal eval(doublereal t) const {
165 return sin(m_c*t);
166 }
167
168 virtual Func1& derivative() const;
169};
170
171
172//! implements the cos() function
173/*!
174 * The argument to cos() is in radians
175 */
176class Cos1 : public Func1
177{
178public:
179 Cos1(doublereal omega = 1.0) :
180 Func1() {
181 m_c = omega;
182 }
183
184 Cos1(const Cos1& b) :
185 Func1(b) {
186 }
187
188 Cos1& operator=(const Cos1& right) {
189 if (&right == this) {
190 return *this;
191 }
192 Func1::operator=(right);
193 return *this;
194 }
195
196 virtual Func1& duplicate() const {
197 Cos1* nfunc = new Cos1(*this);
198 return (Func1&) *nfunc;
199 }
200 virtual std::string write(const std::string& arg) const;
201 virtual int ID() const {
202 return CosFuncType;
203 }
204 virtual doublereal eval(doublereal t) const {
205 return cos(m_c * t);
206 }
207 virtual Func1& derivative() const;
208};
209
210
211//! implements the exponential function
212class Exp1 : public Func1
213{
214public:
215 Exp1(doublereal A = 1.0) :
216 Func1() {
217 m_c = A;
218 }
219
220 Exp1(const Exp1& b) :
221 Func1(b) {
222 }
223 Exp1& operator=(const Exp1& right) {
224 if (&right == this) {
225 return *this;
226 }
227 Func1::operator=(right);
228 return *this;
229 }
230 virtual std::string write(const std::string& arg) const;
231 virtual int ID() const {
232 return ExpFuncType;
233 }
234 virtual Func1& duplicate() const {
235 return *(new Exp1(m_c));
236 }
237 virtual doublereal eval(doublereal t) const {
238 return exp(m_c*t);
239 }
240
241 virtual Func1& derivative() const;
242};
243
244
245//! implements the power function (pow)
246class Pow1 : public Func1
247{
248public:
249 Pow1(doublereal n) :
250 Func1() {
251 m_c = n;
252 }
253
254 Pow1(const Pow1& b) :
255 Func1(b) {
256 }
257 Pow1& operator=(const Pow1& right) {
258 if (&right == this) {
259 return *this;
260 }
261 Func1::operator=(right);
262 return *this;
263 }
264 virtual std::string write(const std::string& arg) const;
265 virtual int ID() const {
266 return PowFuncType;
267 }
268 virtual Func1& duplicate() const {
269 return *(new Pow1(m_c));
270 }
271 virtual doublereal eval(doublereal t) const {
272 return pow(t, m_c);
273 }
274 virtual Func1& derivative() const;
275};
276
277
278//! The Tabulated1 class implements a tabulated function
279class Tabulated1 : public Func1
280{
281public:
282 //! Constructor.
283 /*!
284 * @param n Size of tabulated value arrays
285 * @param tvals Pointer to time value array
286 * @param fvals Pointer to function value array
287 * @param method Interpolation method ('linear' or 'previous')
288 */
289 Tabulated1(size_t n, const double* tvals, const double* fvals,
290 const std::string& method = "linear");
291
292 virtual std::string write(const std::string& arg) const;
293 virtual int ID() const {
294 return TabulatedFuncType;
295 }
296 virtual double eval(double t) const;
297 virtual Func1& duplicate() const {
298 if (m_isLinear) {
299 return *(new Tabulated1(m_tvec.size(), &m_tvec[0], &m_fvec[0],
300 "linear"));
301 } else {
302 return *(new Tabulated1(m_tvec.size(), &m_tvec[0], &m_fvec[0],
303 "previous"));
304 }
305 }
306
307 virtual Func1& derivative() const;
308private:
309 vector_fp m_tvec; //!< Vector of time values
310 vector_fp m_fvec; //!< Vector of function values
311 bool m_isLinear; //!< Boolean indicating interpolation method
312};
313
314
315//! The Const1 class implements a constant
316class Const1 : public Func1
317{
318public:
319 //! Constructor.
320 /*!
321 * @param A Constant
322 */
323 Const1(double A) :
324 Func1() {
325 m_c = A;
326 }
327
328 Const1(const Const1& b) :
329 Func1(b) {
330 }
331
332 Const1& operator=(const Const1& right) {
333 if (&right == this) {
334 return *this;
335 }
336 Func1::operator=(right);
337 return *this;
338 }
339
340 virtual std::string write(const std::string& arg) const;
341 virtual int ID() const {
342 return ConstFuncType;
343 }
344 virtual doublereal eval(doublereal t) const {
345 return m_c;
346 }
347 virtual Func1& duplicate() const {
348 return *(new Const1(m_c));
349 }
350
351 virtual Func1& derivative() const {
352 Func1* z = new Const1(0.0);
353 return *z;
354 }
355};
356
357
358/**
359 * Sum of two functions.
360 */
361class Sum1 : public Func1
362{
363public:
364 Sum1(Func1& f1, Func1& f2) :
365 Func1() {
366 m_f1 = &f1;
367 m_f2 = &f2;
368 m_f1->setParent(this);
369 m_f2->setParent(this);
370 }
371
372 virtual ~Sum1() {
373 delete m_f1;
374 delete m_f2;
375 }
376
377 Sum1(const Sum1& b) :
378 Func1(b) {
379 *this = Sum1::operator=(b);
380 }
381
382 Sum1& operator=(const Sum1& right) {
383 if (&right == this) {
384 return *this;
385 }
386 Func1::operator=(right);
387 m_f1 = &m_f1->duplicate();
388 m_f2 = &m_f2->duplicate();
389 m_f1->setParent(this);
390 m_f2->setParent(this);
391 m_parent = 0;
392 return *this;
393 }
394
395 virtual int ID() const {
396 return SumFuncType;
397 }
398
399 virtual doublereal eval(doublereal t) const {
400 return m_f1->eval(t) + m_f2->eval(t);
401 }
402
403 virtual Func1& duplicate() const {
404 Func1& f1d = m_f1->duplicate();
405 Func1& f2d = m_f2->duplicate();
406 return newSumFunction(f1d, f2d);
407 }
408
409 virtual Func1& derivative() const {
410 Func1& d1 = m_f1->derivative();
411 Func1& d2 = m_f2->derivative();
412 return newSumFunction(d1, d2);
413 }
414 virtual int order() const {
415 return 0;
416 }
417
418 virtual std::string write(const std::string& arg) const;
419};
420
421
422/**
423 * Difference of two functions.
424 */
425class Diff1 : public Func1
426{
427public:
428 Diff1(Func1& f1, Func1& f2) {
429 m_f1 = &f1;
430 m_f2 = &f2;
431 m_f1->setParent(this);
432 m_f2->setParent(this);
433 }
434
435 virtual ~Diff1() {
436 delete m_f1;
437 delete m_f2;
438 }
439
440 Diff1(const Diff1& b) :
441 Func1(b) {
442 *this = Diff1::operator=(b);
443 }
444
445 Diff1& operator=(const Diff1& right) {
446 if (&right == this) {
447 return *this;
448 }
449 Func1::operator=(right);
450 m_f1 = &m_f1->duplicate();
451 m_f2 = &m_f2->duplicate();
452 m_f1->setParent(this);
453 m_f2->setParent(this);
454 m_parent = 0;
455 return *this;
456 }
457
458 virtual int ID() const {
459 return DiffFuncType;
460 }
461
462 virtual doublereal eval(doublereal t) const {
463 return m_f1->eval(t) - m_f2->eval(t);
464 }
465
466 virtual Func1& duplicate() const {
467 Func1& f1d = m_f1->duplicate();
468 Func1& f2d = m_f2->duplicate();
469 return newDiffFunction(f1d, f2d);
470 }
471 virtual Func1& derivative() const {
472 return newDiffFunction(m_f1->derivative(), m_f2->derivative());
473 }
474 virtual int order() const {
475 return 0;
476 }
477
478 virtual std::string write(const std::string& arg) const;
479};
480
481
482/**
483 * Product of two functions.
484 */
485class Product1 : public Func1
486{
487public:
488 Product1(Func1& f1, Func1& f2) :
489 Func1() {
490 m_f1 = &f1;
491 m_f2 = &f2;
492 m_f1->setParent(this);
493 m_f2->setParent(this);
494 }
495
496 virtual ~Product1() {
497 delete m_f1;
498 delete m_f2;
499 }
500
501 Product1(const Product1& b) :
502 Func1(b) {
503 *this = Product1::operator=(b);
504 }
505
506 Product1& operator=(const Product1& right) {
507 if (&right == this) {
508 return *this;
509 }
510 Func1::operator=(right);
511 m_f1 = &m_f1->duplicate();
512 m_f2 = &m_f2->duplicate();
513 m_f1->setParent(this);
514 m_f2->setParent(this);
515 m_parent = 0;
516 return *this;
517 }
518
519 virtual int ID() const {
520 return ProdFuncType;
521 }
522
523 virtual Func1& duplicate() const {
524 Func1& f1d = m_f1->duplicate();
525 Func1& f2d = m_f2->duplicate();
526 return newProdFunction(f1d, f2d);
527 }
528
529 virtual std::string write(const std::string& arg) const;
530
531 virtual doublereal eval(doublereal t) const {
532 return m_f1->eval(t) * m_f2->eval(t);
533 }
534
535 virtual Func1& derivative() const {
536 Func1& a1 = newProdFunction(m_f1->duplicate(), m_f2->derivative());
537 Func1& a2 = newProdFunction(m_f2->duplicate(), m_f1->derivative());
538 return newSumFunction(a1, a2);
539 }
540 virtual int order() const {
541 return 1;
542 }
543};
544
545/**
546 * Product of two functions.
547 */
548class TimesConstant1 : public Func1
549{
550public:
551 TimesConstant1(Func1& f1, doublereal A) :
552 Func1() {
553 m_f1 = &f1;
554 m_c = A;
555 m_f1->setParent(this);
556 }
557
558 virtual ~TimesConstant1() {
559 delete m_f1;
560 }
561
563 Func1(b) {
564 *this = TimesConstant1::operator=(b);
565 }
566
567 TimesConstant1& operator=(const TimesConstant1& right) {
568 if (&right == this) {
569 return *this;
570 }
571 Func1::operator=(right);
572 m_f1 = &m_f1->duplicate();
573 m_f1->setParent(this);
574 m_parent = 0;
575 return *this;
576 }
577 virtual int ID() const {
578 return TimesConstantFuncType;
579 }
580
581 virtual Func1& duplicate() const {
582 Func1& f1 = m_f1->duplicate();
583 Func1* dup = new TimesConstant1(f1, m_c);
584 return *dup;
585 }
586
587 virtual doublereal isProportional(TimesConstant1& other) {
588 if (func1().isIdentical(other.func1())) {
589 return (other.c()/c());
590 } else {
591 return 0.0;
592 }
593 }
594
595 virtual doublereal isProportional(Func1& other) {
596 if (func1().isIdentical(other)) {
597 return 1.0/c();
598 } else {
599 return 0.0;
600 }
601 }
602
603 virtual doublereal eval(doublereal t) const {
604 return m_f1->eval(t) * m_c;
605 }
606
607 virtual Func1& derivative() const {
608 Func1& f1d = m_f1->derivative();
609 Func1* d = &newTimesConstFunction(f1d, m_c);
610 return *d;
611 }
612
613 virtual std::string write(const std::string& arg) const;
614
615 virtual int order() const {
616 return 0;
617 }
618};
619
620/**
621 * A function plus a constant.
622 */
623class PlusConstant1 : public Func1
624{
625public:
626 PlusConstant1(Func1& f1, doublereal A) :
627 Func1() {
628 m_f1 = &f1;
629 m_c = A;
630 m_f1->setParent(this);
631 }
632
633 virtual ~PlusConstant1() {
634 delete m_f1;
635 }
636
637 PlusConstant1(const PlusConstant1& b) :
638 Func1(b) {
639 *this = PlusConstant1::operator=(b);
640 }
641
642 PlusConstant1& operator=(const PlusConstant1& right) {
643 if (&right == this) {
644 return *this;
645 }
646 Func1::operator=(right);
647 m_f1 = &m_f1->duplicate();
648 m_f1->setParent(this);
649 m_parent = 0;
650 return *this;
651 }
652
653 virtual int ID() const {
654 return PlusConstantFuncType;
655 }
656
657 virtual Func1& duplicate() const {
658 Func1& f1 = m_f1->duplicate();
659 Func1* dup = new PlusConstant1(f1, m_c);
660 return *dup;
661 }
662
663 virtual doublereal eval(doublereal t) const {
664 return m_f1->eval(t) + m_c;
665 }
666 virtual Func1& derivative() const {
667 return m_f1->derivative();
668 }
669 virtual std::string write(const std::string& arg) const;
670
671 virtual int order() const {
672 return 0;
673 }
674};
675
676
677/**
678 * Ratio of two functions.
679 */
680class Ratio1 : public Func1
681{
682public:
683 Ratio1(Func1& f1, Func1& f2) :
684 Func1() {
685 m_f1 = &f1;
686 m_f2 = &f2;
687 m_f1->setParent(this);
688 m_f2->setParent(this);
689 }
690
691 virtual ~Ratio1() {
692 delete m_f1;
693 delete m_f2;
694 }
695
696 Ratio1(const Ratio1& b) :
697 Func1(b) {
698 *this = Ratio1::operator=(b);
699 }
700
701 Ratio1& operator=(const Ratio1& right) {
702 if (&right == this) {
703 return *this;
704 }
705 Func1::operator=(right);
706 m_f1 = &m_f1->duplicate();
707 m_f2 = &m_f2->duplicate();
708 m_f1->setParent(this);
709 m_f2->setParent(this);
710 m_parent = 0;
711 return *this;
712 }
713
714 virtual int ID() const {
715 return RatioFuncType;
716 }
717
718 virtual doublereal eval(doublereal t) const {
719 return m_f1->eval(t) / m_f2->eval(t);
720 }
721
722 virtual Func1& duplicate() const {
723 Func1& f1d = m_f1->duplicate();
724 Func1& f2d = m_f2->duplicate();
725 return newRatioFunction(f1d, f2d);
726 }
727
728 virtual Func1& derivative() const {
729 Func1& a1 = newProdFunction(m_f1->derivative(), m_f2->duplicate());
730 Func1& a2 = newProdFunction(m_f1->duplicate(), m_f2->derivative());
731 Func1& s = newDiffFunction(a1, a2);
732 Func1& p = newProdFunction(m_f2->duplicate(), m_f2->duplicate());
733 return newRatioFunction(s, p);
734 }
735
736 virtual std::string write(const std::string& arg) const;
737
738 virtual int order() const {
739 return 1;
740 }
741};
742
743/**
744 * Composite function.
745 */
746class Composite1 : public Func1
747{
748public:
749 Composite1(Func1& f1, Func1& f2) :
750 Func1() {
751 m_f1 = &f1;
752 m_f2 = &f2;
753 m_f1->setParent(this);
754 m_f2->setParent(this);
755 }
756
757 virtual ~Composite1() {
758 delete m_f1;
759 delete m_f2;
760 }
761
762 Composite1(const Composite1& b) :
763 Func1(b) {
764 *this = Composite1::operator=(b);
765 }
766
767 Composite1& operator=(const Composite1& right) {
768 if (&right == this) {
769 return *this;
770 }
771 Func1::operator=(right);
772 m_f1 = &m_f1->duplicate();
773 m_f2 = &m_f2->duplicate();
774 m_f1->setParent(this);
775 m_f2->setParent(this);
776 m_parent = 0;
777 return *this;
778 }
779
780 virtual int ID() const {
781 return CompositeFuncType;
782 }
783
784 virtual doublereal eval(doublereal t) const {
785 return m_f1->eval(m_f2->eval(t));
786 }
787
788 virtual Func1& duplicate() const {
789 Func1& f1d = m_f1->duplicate();
790 Func1& f2d = m_f2->duplicate();
791 return newCompositeFunction(f1d, f2d);
792 }
793
794 virtual Func1& derivative() const {
795 Func1* d1 = &m_f1->derivative();
796
797 Func1* d3 = &newCompositeFunction(*d1, m_f2->duplicate());
798 Func1* d2 = &m_f2->derivative();
799 Func1* p = &newProdFunction(*d3, *d2);
800 return *p;
801 }
802
803 virtual std::string write(const std::string& arg) const;
804
805 virtual int order() const {
806 return 2;
807 }
808};
809
810// The functors below are the old-style ones. They still work,
811// but can't do derivatives.
812
813/**
814 * A Gaussian.
815 * \f[
816 * f(t) = A e^{-[(t - t_0)/\tau]^2}
817 * \f]
818 * where \f[ \tau = \frac{fwhm}{2\sqrt{\ln 2}} \f]
819 * @param A peak value
820 * @param t0 offset
821 * @param fwhm full width at half max
822 */
823class Gaussian : public Func1
824{
825public:
826 Gaussian(double A, double t0, double fwhm) :
827 Func1() {
828 m_A = A;
829 m_t0 = t0;
830 m_tau = fwhm/(2.0*std::sqrt(std::log(2.0)));
831 }
832
833 Gaussian(const Gaussian& b) :
834 Func1(b) {
835 *this = Gaussian::operator=(b);
836 }
837
838 Gaussian& operator=(const Gaussian& right) {
839 if (&right == this) {
840 return *this;
841 }
842 Func1::operator=(right);
843 m_A = right.m_A;
844 m_t0 = right.m_t0;
845 m_tau = right.m_tau;
846 m_parent = 0;
847 return *this;
848 }
849
850 virtual Func1& duplicate() const {
851 Gaussian* np = new Gaussian(*this);
852 return *((Func1*)np);
853 }
854
855 virtual doublereal eval(doublereal t) const {
856 doublereal x = (t - m_t0)/m_tau;
857 return m_A * std::exp(-x*x);
858 }
859
860protected:
861 doublereal m_A, m_t0, m_tau;
862};
863
864
865/**
866 * Polynomial of degree n.
867 */
868class Poly1 : public Func1
869{
870public:
871 Poly1(size_t n, const double* c) :
872 Func1() {
873 m_cpoly.resize(n+1);
874 std::copy(c, c+m_cpoly.size(), m_cpoly.begin());
875 }
876
877 Poly1(const Poly1& b) :
878 Func1(b) {
879 *this = Poly1::operator=(b);
880 }
881
882 Poly1& operator=(const Poly1& right) {
883 if (&right == this) {
884 return *this;
885 }
886 Func1::operator=(right);
887 m_cpoly = right.m_cpoly;
888 m_parent = 0;
889 return *this;
890 }
891
892 virtual Func1& duplicate() const {
893 Poly1* np = new Poly1(*this);
894 return *((Func1*)np);
895 }
896
897 virtual doublereal eval(doublereal t) const {
898 doublereal r = m_cpoly[m_cpoly.size()-1];
899 for (size_t n = 1; n < m_cpoly.size(); n++) {
900 r *= t;
901 r += m_cpoly[m_cpoly.size() - n - 1];
902 }
903 return r;
904 }
905
906protected:
907 vector_fp m_cpoly;
908};
909
910
911/**
912 * Fourier cosine/sine series.
913 *
914 * \f[
915 * f(t) = \frac{A_0}{2} +
916 * \sum_{n=1}^N A_n \cos (n \omega t) + B_n \sin (n \omega t)
917 * \f]
918 */
919class Fourier1 : public Func1
920{
921public:
922 Fourier1(size_t n, double omega, double a0,
923 const double* a, const double* b) :
924 Func1() {
925 m_omega = omega;
926 m_a0_2 = 0.5*a0;
927 m_ccos.resize(n);
928 m_csin.resize(n);
929 std::copy(a, a+n, m_ccos.begin());
930 std::copy(b, b+n, m_csin.begin());
931 }
932
933 Fourier1(const Fourier1& b) :
934 Func1(b) {
935 *this = Fourier1::operator=(b);
936 }
937
938 Fourier1& operator=(const Fourier1& right) {
939 if (&right == this) {
940 return *this;
941 }
942 Func1::operator=(right);
943 m_omega = right.m_omega;
944 m_a0_2 = right.m_a0_2;
945 m_ccos = right.m_ccos;
946 m_csin = right.m_csin;
947 m_parent = 0;
948 return *this;
949 }
950
951 virtual Func1& duplicate() const {
952 Fourier1* np = new Fourier1(*this);
953 return *((Func1*)np);
954 }
955
956 virtual doublereal eval(doublereal t) const {
957 size_t n, nn;
958 doublereal sum = m_a0_2;
959 for (n = 0; n < m_ccos.size(); n++) {
960 nn = n + 1;
961 sum += m_ccos[n]*std::cos(m_omega*nn*t)
962 + m_csin[n]*std::sin(m_omega*nn*t);
963 }
964 return sum;
965 }
966
967protected:
968 doublereal m_omega, m_a0_2;
969 vector_fp m_ccos, m_csin;
970};
971
972
973/**
974 * Sum of Arrhenius terms.
975 * \f[
976 * f(T) = \sum_{n=1}^N A_n T^b_n \exp(-E_n/T)
977 * \f]
978 */
979class Arrhenius1 : public Func1
980{
981public:
982 Arrhenius1(size_t n, const double* c) :
983 Func1() {
984 m_A.resize(n);
985 m_b.resize(n);
986 m_E.resize(n);
987 for (size_t i = 0; i < n; i++) {
988 size_t loc = 3*i;
989 m_A[i] = c[loc];
990 m_b[i] = c[loc+1];
991 m_E[i] = c[loc+2];
992 }
993 }
994
995 Arrhenius1(const Arrhenius1& b) :
996 Func1() {
997 *this = Arrhenius1::operator=(b);
998 }
999
1000 Arrhenius1& operator=(const Arrhenius1& right) {
1001 if (&right == this) {
1002 return *this;
1003 }
1004 Func1::operator=(right);
1005 m_A = right.m_A;
1006 m_b = right.m_b;
1007 m_E = right.m_E;
1008 m_parent = 0;
1009 return *this;
1010 }
1011
1012 virtual Func1& duplicate() const {
1013 Arrhenius1* np = new Arrhenius1(*this);
1014 return *((Func1*)np);
1015 }
1016
1017 virtual doublereal eval(doublereal t) const {
1018 doublereal sum = 0.0;
1019 for (size_t n = 0; n < m_A.size(); n++) {
1020 sum += m_A[n]*std::pow(t,m_b[n])*std::exp(-m_E[n]/t);
1021 }
1022 return sum;
1023 }
1024
1025protected:
1026 vector_fp m_A, m_b, m_E;
1027};
1028
1029/**
1030 * Periodic function. Takes any function and makes it periodic with period T.
1031 */
1032class Periodic1 : public Func1
1033{
1034public:
1035 Periodic1(Func1& f, doublereal T) :
1036 Func1() {
1037 m_func = &f;
1038 m_c = T;
1039 }
1040
1041 Periodic1(const Periodic1& b) :
1042 Func1() {
1043 *this = Periodic1::operator=(b);
1044 }
1045
1046 Periodic1& operator=(const Periodic1& right) {
1047 if (&right == this) {
1048 return *this;
1049 }
1050 Func1::operator=(right);
1051 m_func = &right.m_func->duplicate();
1052 return *this;
1053 }
1054
1055 virtual Func1& duplicate() const {
1056 Periodic1* np = new Periodic1(*this);
1057 return *((Func1*)np);
1058 }
1059
1060 virtual ~Periodic1() {
1061 delete m_func;
1062 }
1063
1064 virtual doublereal eval(doublereal t) const {
1065 int np = int(t/m_c);
1066 doublereal time = t - np*m_c;
1067 return m_func->eval(time);
1068 }
1069
1070protected:
1071 Func1* m_func;
1072};
1073
1074}
1075
1076#endif
Sum of Arrhenius terms.
Definition: Func1.h:980
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:1017
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:1012
Composite function.
Definition: Func1.h:747
virtual int order() const
Return the order of the function, if it makes sense.
Definition: Func1.h:805
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.h:794
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:784
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:788
The Const1 class implements a constant.
Definition: Func1.h:317
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.h:351
Const1(double A)
Constructor.
Definition: Func1.h:323
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:344
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:347
implements the cos() function
Definition: Func1.h:177
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:204
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:196
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.cpp:163
Difference of two functions.
Definition: Func1.h:426
virtual int order() const
Return the order of the function, if it makes sense.
Definition: Func1.h:474
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.h:471
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:462
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:466
implements the exponential function
Definition: Func1.h:213
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:237
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:234
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.cpp:181
Fourier cosine/sine series.
Definition: Func1.h:920
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:956
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:951
Base class for 'functor' classes that evaluate a function of one variable.
Definition: Func1.h:44
void setC(doublereal c)
Function to set the stored constant.
Definition: Func1.cpp:103
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.cpp:60
Func1 & func2() const
accessor function for m_f2
Definition: Func1.cpp:114
Func1 & func1() const
accessor function for m_f1
Definition: Func1.cpp:109
virtual int order() const
Return the order of the function, if it makes sense.
Definition: Func1.cpp:119
bool isIdentical(Func1 &other) const
Routine to determine if two functions are the same.
Definition: Func1.cpp:72
doublereal operator()(doublereal t) const
Calls method eval to evaluate the function.
Definition: Func1.cpp:54
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.cpp:42
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.cpp:65
doublereal c() const
accessor function for the stored constant
Definition: Func1.cpp:97
A Gaussian.
Definition: Func1.h:824
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:855
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:850
Periodic function.
Definition: Func1.h:1033
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:1064
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:1055
A function plus a constant.
Definition: Func1.h:624
virtual int order() const
Return the order of the function, if it makes sense.
Definition: Func1.h:671
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.h:666
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:663
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:657
Polynomial of degree n.
Definition: Func1.h:869
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:897
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:892
implements the power function (pow)
Definition: Func1.h:247
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:271
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:268
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.cpp:202
Product of two functions.
Definition: Func1.h:486
virtual int order() const
Return the order of the function, if it makes sense.
Definition: Func1.h:540
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.h:535
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:531
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:523
Ratio of two functions.
Definition: Func1.h:681
virtual int order() const
Return the order of the function, if it makes sense.
Definition: Func1.h:738
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.h:728
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:718
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:722
implements the sin() function
Definition: Func1.h:134
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:164
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:153
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.cpp:155
Sum of two functions.
Definition: Func1.h:362
virtual int order() const
Return the order of the function, if it makes sense.
Definition: Func1.h:414
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.h:409
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:399
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:403
The Tabulated1 class implements a tabulated function.
Definition: Func1.h:280
vector_fp m_tvec
Vector of time values.
Definition: Func1.h:309
virtual double eval(double t) const
Evaluate the function.
Definition: Func1.cpp:242
vector_fp m_fvec
Vector of function values.
Definition: Func1.h:310
bool m_isLinear
Boolean indicating interpolation method.
Definition: Func1.h:311
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:297
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.cpp:265
Tabulated1(size_t n, const double *tvals, const double *fvals, const std::string &method="linear")
Constructor.
Definition: Func1.cpp:218
Product of two functions.
Definition: Func1.h:549
virtual int order() const
Return the order of the function, if it makes sense.
Definition: Func1.h:615
virtual Func1 & derivative() const
Creates a derivative to the current function.
Definition: Func1.h:607
virtual doublereal eval(doublereal t) const
Evaluate the function.
Definition: Func1.h:603
virtual Func1 & duplicate() const
Duplicate the current function.
Definition: Func1.h:581
This file contains definitions of constants, types and terms that are used in internal routines and a...
Definitions for the classes that are thrown when Cantera experiences an error condition (also contain...
Namespace for the Cantera kernel.
Definition: AnyMap.h:29
std::vector< double > vector_fp
Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.
Definition: ct_defs.h:184