Cantera 2.6.0
|
A simple thermodynamic model for a surface phase, assuming an ideal solution model. More...
#include <SurfPhase.h>
Public Member Functions | |
SurfPhase (doublereal n0=-1.0) | |
Constructor. More... | |
SurfPhase (const std::string &infile, const std::string &id="") | |
Construct and initialize a SurfPhase ThermoPhase object directly from an ASCII input file. More... | |
SurfPhase (XML_Node &xmlphase) | |
Construct and initialize a SurfPhase ThermoPhase object directly from an XML database. More... | |
virtual std::string | type () const |
String indicating the thermodynamic model implemented. More... | |
virtual doublereal | enthalpy_mole () const |
Return the Molar Enthalpy. Units: J/kmol. More... | |
virtual doublereal | intEnergy_mole () const |
Return the Molar Internal Energy. Units: J/kmol. More... | |
virtual doublereal | entropy_mole () const |
Return the Molar Entropy. Units: J/kmol-K. More... | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure. Units: J/kmol/K. More... | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. More... | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. More... | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. More... | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Return an array of partial molar heat capacities for the species in the mixture. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
Return an array of partial molar volumes for the species in the mixture. More... | |
virtual void | getStandardChemPotentials (doublereal *mu0) const |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
Return a vector of activity concentrations for each species. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
Return the standard concentration for the kth species. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters from the argument list. More... | |
virtual void | setParametersFromXML (const XML_Node &thermoData) |
Set the Equation-of-State parameters by reading an XML Node Input. More... | |
virtual void | initThermo () |
Initialize the ThermoPhase object after all species have been set up. More... | |
virtual void | getParameters (AnyMap &phaseNode) const |
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More... | |
virtual bool | addSpecies (shared_ptr< Species > spec) |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the Surface Phase from an XML_Node. More... | |
double | siteDensity () const |
Returns the site density. More... | |
virtual double | size (size_t k) const |
Returns the number of sites occupied by one molecule of species k. More... | |
void | setSiteDensity (doublereal n0) |
Set the site density of the surface phase (kmol m-2) More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of the species standard states at the current T and P of the solution. More... | |
virtual doublereal | pressure () const |
Return the thermodynamic pressure (Pa). More... | |
virtual void | setPressure (doublereal p) |
Set the internally stored pressure (Pa) at constant temperature and composition. More... | |
virtual void | getPureGibbs (doublereal *g) const |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More... | |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More... | |
void | setCoverages (const doublereal *theta) |
Set the surface site fractions to a specified state. More... | |
void | setCoveragesNoNorm (const doublereal *theta) |
Set the surface site fractions to a specified state. More... | |
void | setCoveragesByName (const std::string &cov) |
Set the coverages from a string of colon-separated name:value pairs. More... | |
void | setCoveragesByName (const compositionMap &cov) |
Set the coverages from a map of name:value pairs. More... | |
void | getCoverages (doublereal *theta) const |
Return a vector of surface coverages. More... | |
virtual void | setState (const AnyMap &state) |
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More... | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
doublereal | RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
double | equivalenceRatio () const |
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More... | |
virtual bool | isIdeal () const |
Boolean indicating whether phase is ideal. More... | |
virtual std::string | phaseOfMatter () const |
String indicating the mechanical phase of the matter in this Phase. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
doublereal | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const size_t k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. More... | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs function. Units: J/kmol. More... | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual Units | standardConcentrationUnits () const |
Returns the units of the "standard concentration" for this phase. More... | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. Units: J/kg. More... | |
doublereal | entropy_mass () const |
Specific entropy. Units: J/kg/K. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (double h, double p, double tol=1e-9) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (double u, double v, double tol=1e-9) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (double s, double p, double tol=1e-9) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (double s, double v, double tol=1e-9) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). More... | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). More... | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). More... | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). More... | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More... | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_RP (doublereal rho, doublereal p) |
Set the density (kg/m**3) and pressure (Pa) at constant composition. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const doublereal *x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const compositionMap &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const std::string &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const doublereal *y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const compositionMap &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const std::string &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
void | setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
double | mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
void | setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
double | equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
void | equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. More... | |
virtual void | setToEquilState (const doublereal *mu_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More... | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critVolume () const |
Critical volume (m3/kmol). More... | |
virtual doublereal | critCompressibility () const |
Critical compressibility (unitless). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | satPressure (doublereal t) |
Return the saturation pressure given the temperature. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
void | setState_TPQ (double T, double P, double Q) |
Set the temperature, pressure, and vapor fraction (quality). More... | |
virtual void | modifySpecies (size_t k, shared_ptr< Species > spec) |
Modify the thermodynamic data associated with a species. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual const MultiSpeciesThermo & | speciesThermo (int k=-1) const |
void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object using an XML tree. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
virtual void | setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) |
Set equation of state parameters from an AnyMap phase description. More... | |
AnyMap | parameters (bool withInput=true) const |
Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More... | |
virtual void | getSpeciesParameters (const std::string &name, AnyMap &speciesNode) const |
Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More... | |
const AnyMap & | input () const |
Access input data associated with the phase description. More... | |
AnyMap & | input () |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true, doublereal threshold=-1e-14) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
Phase (const Phase &)=delete | |
Phase & | operator= (const Phase &)=delete |
XML_Node & | xml () const |
Returns a const reference to the XML_Node that describes the phase. More... | |
void | setXMLdata (XML_Node &xmlPhase) |
Stores the XML tree information for the current phase. More... | |
virtual bool | isPure () const |
Return whether phase represents a pure (single species) substance. More... | |
virtual bool | hasPhaseTransition () const |
Return whether phase represents a substance with phase transitions. More... | |
virtual bool | isCompressible () const |
Return whether phase represents a compressible substance. More... | |
virtual std::map< std::string, size_t > | nativeState () const |
Return a map of properties defining the native state of a substance. More... | |
virtual std::vector< std::string > | fullStates () const |
Return a vector containing full states defining a phase. More... | |
virtual std::vector< std::string > | partialStates () const |
Return a vector of settable partial property sets within a phase. More... | |
virtual size_t | stateSize () const |
Return size of vector defining internal state of the phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase. More... | |
virtual void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
virtual void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
void | getCharges (double *charges) const |
Copy the vector of species charges into array charges. More... | |
doublereal | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. More... | |
doublereal | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. More... | |
const double * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. More... | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
bool | caseSensitiveSpecies () const |
Returns true if case sensitive species names are enforced. More... | |
void | setCaseSensitiveSpecies (bool cflag=true) |
Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More... | |
virtual void | setRoot (std::shared_ptr< Solution > root) |
Set root Solution holding all phase information. More... | |
vector_fp | getCompositionFromMap (const compositionMap &comp) const |
Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More... | |
void | massFractionsToMoleFractions (const double *Y, double *X) const |
Converts a mixture composition from mole fractions to mass fractions. More... | |
void | moleFractionsToMassFractions (const double *X, double *Y) const |
Converts a mixture composition from mass fractions to mole fractions. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
void | setMoleFractionsByName (const compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (const compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, const compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
compositionMap | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. More... | |
double | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
double | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
compositionMap | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. More... | |
double | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
double | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (double *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions (const double *const x) |
Set the mole fractions to the specified values. More... | |
virtual void | setMoleFractions_NoNorm (const double *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (double *const y) const |
Get the species mass fractions. More... | |
const double * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
virtual void | setMassFractions (const double *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const double *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
void | getConcentrations (double *const c) const |
Get the species concentrations (kmol/m^3). More... | |
double | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrations (const double *const conc) |
Set the concentrations to the specified values within the phase. More... | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual double | electronTemperature () const |
Electron Temperature (K) More... | |
virtual double | density () const |
Density (kg/m^3). More... | |
double | molarDensity () const |
Molar density (kmol/m^3). More... | |
double | molarVolume () const |
Molar volume (m^3/kmol). More... | |
virtual void | setDensity (const double density_) |
Set the internally stored density (kg/m^3) of the phase. More... | |
virtual void | setMolarDensity (const double molarDensity) |
Set the internally stored molar density (kmol/m^3) of the phase. More... | |
virtual void | setTemperature (double temp) |
Set the internally stored temperature of the phase (K). More... | |
virtual void | setElectronTemperature (double etemp) |
Set the internally stored electron temperature of the phase (K). More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_X (const vector_fp &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
size_t | addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. More... | |
void | addSpeciesAlias (const std::string &name, const std::string &alias) |
Add a species alias (that is, a user-defined alternative species name). More... | |
virtual std::vector< std::string > | findIsomers (const compositionMap &compMap) const |
Return a vector with isomers names matching a given composition map. More... | |
virtual std::vector< std::string > | findIsomers (const std::string &comp) const |
Return a vector with isomers names matching a given composition string. More... | |
shared_ptr< Species > | species (const std::string &name) const |
Return the Species object for the named species. More... | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. More... | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. More... | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. More... | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. More... | |
Protected Attributes | |
doublereal | m_n0 |
Surface site density (kmol m-2) More... | |
vector_fp | m_speciesSize |
Vector of species sizes (number of sites occupied). length m_kk. More... | |
doublereal | m_logn0 |
log of the surface site density More... | |
doublereal | m_press |
Current value of the pressure (Pa) More... | |
vector_fp | m_h0 |
Temporary storage for the reference state enthalpies. More... | |
vector_fp | m_s0 |
Temporary storage for the reference state entropies. More... | |
vector_fp | m_cp0 |
Temporary storage for the reference state heat capacities. More... | |
vector_fp | m_mu0 |
Temporary storage for the reference state Gibbs energies. More... | |
vector_fp | m_work |
Temporary work array. More... | |
vector_fp | m_logsize |
vector storing the log of the size of each species. More... | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
AnyMap | m_input |
Data supplied via setParameters. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. Units are Volts. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
doublereal | m_tlast |
last value of the temperature processed by reference state More... | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. More... | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
std::map< std::string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior |
Flag determining behavior when adding species with an undefined element. More... | |
bool | m_caseSensitiveSpecies |
Flag determining whether case sensitive species names are enforced. More... | |
Private Member Functions | |
void | _updateThermo (bool force=false) const |
Update the species reference state thermodynamic functions. More... | |
Additional Inherited Members | |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | assertCompressible (const std::string &setter) const |
Ensure that phase is compressible. More... | |
void | assignDensity (const double density_) |
Set the internally stored constant density (kg/m^3) of the phase. More... | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. More... | |
A simple thermodynamic model for a surface phase, assuming an ideal solution model.
The surface consists of a grid of equivalent sites. Surface species may be defined to occupy one or more sites. The surface species are assumed to be independent, and thus the species form an ideal solution.
The density of surface sites is given by the variable \( n_0 \), which has SI units of kmol m-2.
It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.
Pressure is defined as an independent variable in this phase. However, it has no effect on any quantities, as the molar concentration is a constant.
Therefore, The standard state internal energy for species k is equal to the enthalpy for species k.
\f[ u^o_k = h^o_k \f]
Also, the standard state chemical potentials, entropy, and heat capacities are independent of pressure. The standard state Gibbs free energy is obtained from the enthalpy and entropy functions.
The activity of species defined in the phase is given by
\[ a_k = \theta_k \]
The chemical potential for species k is equal to
\[ \mu_k(T,P) = \mu^o_k(T) + R T \log(\theta_k) \]
Pressure is defined as an independent variable in this phase. However, it has no effect on any quantities, as the molar concentration is a constant.
The internal energy for species k is equal to the enthalpy for species k
\[ u_k = h_k \]
The entropy for the phase is given by the following relation, which is independent of the pressure:
\f[ s_k(T,P) = s^o_k(T) - R \log(\theta_k) \f]
The activity concentration, \( C^a_k \), used by the kinetics manager, is equal to the actual concentration, \( C^s_k \), and is given by the following expression.
\[ C^a_k = C^s_k = \frac{\theta_k n_0}{s_k} \]
The standard concentration for species k is:
\[ C^0_k = \frac{n_0}{s_k} \]
Note: The XML input format is deprecated and will be removed in Cantera 3.0
An example of an XML Element named phase setting up a SurfPhase object named diamond_100 is given below.
The model attribute, "Surface", on the thermo element identifies the phase as being a SurfPhase object.
Definition at line 124 of file SurfPhase.h.
SurfPhase | ( | doublereal | n0 = -1.0 | ) |
Constructor.
n0
constructor argument is deprecated and will be removed after Cantera 2.6. Use setSiteDensity() instead. Definition at line 24 of file SurfPhase.cpp.
References Phase::setNDim(), SurfPhase::setSiteDensity(), and Cantera::warn_deprecated().
|
explicit |
Construct and initialize a SurfPhase ThermoPhase object directly from an ASCII input file.
infile | name of the input file |
id | name of the phase id in the file. If this is blank, the first phase in the file is used. |
Definition at line 41 of file SurfPhase.cpp.
References ThermoPhase::initThermoFile(), and Phase::setNDim().
Construct and initialize a SurfPhase ThermoPhase object directly from an XML database.
xmlphase | XML node pointing to a SurfPhase description |
Definition at line 49 of file SurfPhase.cpp.
References Cantera::importPhase().
|
inlinevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from ThermoPhase.
Reimplemented in EdgePhase.
Definition at line 155 of file SurfPhase.h.
|
virtual |
Return the Molar Enthalpy. Units: J/kmol.
For an ideal solution,
\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T), \]
and is a function only of temperature. The standard-state pure-species Enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.
Reimplemented from ThermoPhase.
Definition at line 56 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), SurfPhase::m_h0, SurfPhase::m_n0, and Phase::mean_X().
Referenced by SurfPhase::intEnergy_mole().
|
virtual |
Return the Molar Internal Energy. Units: J/kmol.
For a surface phase, the pressure is not a relevant thermodynamic variable, and so the Enthalpy is equal to the Internal Energy.
Reimplemented from ThermoPhase.
Definition at line 65 of file SurfPhase.cpp.
References SurfPhase::enthalpy_mole().
|
virtual |
Return the Molar Entropy. Units: J/kmol-K.
\[ \hat s(T,P) = \sum_k X_k (\hat s^0_k(T) - R \log(\theta_k)) \]
Reimplemented from ThermoPhase.
Definition at line 70 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Phase::concentration(), Cantera::GasConstant, Phase::m_kk, SurfPhase::m_n0, SurfPhase::m_s0, Phase::moleFraction(), SurfPhase::size(), and Cantera::SmallNumber.
|
virtual |
Molar heat capacity at constant pressure. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 81 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), SurfPhase::m_cp0, and Phase::mean_X().
Referenced by SurfPhase::cv_mole().
|
virtual |
Molar heat capacity at constant volume. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 87 of file SurfPhase.cpp.
References SurfPhase::cp_mole().
|
virtual |
Get the species chemical potentials. Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.
mu | Output vector of species chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 129 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), SurfPhase::getActivityConcentrations(), SurfPhase::logStandardConc(), Phase::m_kk, SurfPhase::m_mu0, SurfPhase::m_work, and ThermoPhase::RT().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol)
hbar | Output vector of species partial molar enthalpies. Length: m_kk. units are J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 92 of file SurfPhase.cpp.
References SurfPhase::getEnthalpy_RT(), Phase::m_kk, and ThermoPhase::RT().
|
virtual |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol/K.
sbar | Output vector of species partial molar entropies. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 100 of file SurfPhase.cpp.
References Cantera::GasConstant, SurfPhase::getEntropy_R(), and Phase::m_kk.
|
virtual |
Return an array of partial molar heat capacities for the species in the mixture.
Units: J/kmol/K
cpbar | Output vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 108 of file SurfPhase.cpp.
References Cantera::GasConstant, SurfPhase::getCp_R(), and Phase::m_kk.
|
virtual |
Return an array of partial molar volumes for the species in the mixture.
Units: m^3/kmol.
vbar | Output vector of species partial molar volumes. Length = m_kk. units are m^3/kmol. |
Reimplemented from ThermoPhase.
Definition at line 118 of file SurfPhase.cpp.
References SurfPhase::getStandardVolumes().
|
virtual |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution
mu | Output vector of chemical potentials. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 123 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), and SurfPhase::m_mu0.
|
virtual |
Return a vector of activity concentrations for each species.
For this phase the activity concentrations, \( C^a_k \), are defined to be equal to the actual concentrations, \( C^s_k \). Activity concentrations are
\f[ C^a_k = C^s_k = \frac{\theta_k n_0}{s_k} \f]
where \( \theta_k \) is the surface site fraction for species k, \( n_0 \) is the surface site density for the phase, and \( s_k \) is the surface size of species k.
\( C^a_k\) that are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages,
c | vector of activity concentration (kmol m-2). |
Reimplemented from ThermoPhase.
Definition at line 139 of file SurfPhase.cpp.
References Phase::getConcentrations().
Referenced by SurfPhase::getChemPotentials().
|
virtual |
Return the standard concentration for the kth species.
The standard concentration \( C^0_k \) used to normalize the activity (that is, generalized) concentration. For this phase, the standard concentration is species- specific
\f[ C^0_k = \frac{n_0}{s_k} \f]
This definition implies that the activity is equal to \( \theta_k \).
k | Optional parameter indicating the species. The default is to assume this refers to species 0. |
Reimplemented from ThermoPhase.
Definition at line 144 of file SurfPhase.cpp.
References SurfPhase::m_n0, and SurfPhase::size().
Referenced by SurfPhase::getStandardVolumes().
|
virtual |
Natural logarithm of the standard concentration of the kth species.
k | index of the species (defaults to zero) |
Reimplemented from ThermoPhase.
Definition at line 149 of file SurfPhase.cpp.
References SurfPhase::m_logn0, and SurfPhase::m_logsize.
Referenced by SurfPhase::getChemPotentials().
|
virtual |
Set the equation of state parameters from the argument list.
Set equation of state parameters.
n | number of parameters. Must be one |
c | array of n coefficients c[0] = The site density (kmol m-2) |
Reimplemented from ThermoPhase.
Definition at line 154 of file SurfPhase.cpp.
References SurfPhase::setSiteDensity(), and Cantera::warn_deprecated().
|
virtual |
Set the Equation-of-State parameters by reading an XML Node Input.
The Equation-of-State data consists of one item, the site density.
thermoData | Reference to an XML_Node named thermo containing the equation-of-state data. The XML_Node is within the phase XML_Node describing the SurfPhase object. |
An example of the contents of the thermoData XML_Node is provided below. The units attribute is used to supply the units of the site density in any convenient form. Internally it is changed into MKS form.
Reimplemented from ThermoPhase.
Reimplemented in EdgePhase.
Definition at line 335 of file SurfPhase.cpp.
References XML_Node::_require(), Cantera::getFloat(), and SurfPhase::setSiteDensity().
|
virtual |
Initialize the ThermoPhase object after all species have been set up.
Initialize.
This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.
When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().
When importing from an AnyMap phase description (or from a YAML file), this method is responsible for setting model parameters from the data stored in m_input.
Reimplemented from ThermoPhase.
Definition at line 342 of file SurfPhase.cpp.
References AnyMap::convert(), AnyMap::hasKey(), ThermoPhase::m_input, Phase::m_ndim, and SurfPhase::setSiteDensity().
|
virtual |
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function.
This does not include user-defined fields available in input().
Reimplemented from ThermoPhase.
Definition at line 351 of file SurfPhase.cpp.
References ThermoPhase::getParameters(), SurfPhase::m_n0, and Phase::m_ndim.
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from ThermoPhase.
Definition at line 223 of file SurfPhase.cpp.
References ThermoPhase::addSpecies(), SurfPhase::m_cp0, SurfPhase::m_h0, Phase::m_kk, SurfPhase::m_logsize, SurfPhase::m_mu0, SurfPhase::m_s0, SurfPhase::m_speciesSize, SurfPhase::m_work, and SurfPhase::setCoverages().
|
virtual |
Set the initial state of the Surface Phase from an XML_Node.
State variables that can be set by this routine are the temperature and the surface site coverages.
state | XML_Node containing the state information |
An example of the XML code block is given below.
Reimplemented from ThermoPhase.
Definition at line 358 of file SurfPhase.cpp.
References Cantera::getChildValue(), Cantera::getOptionalFloat(), XML_Node::hasChild(), SurfPhase::setCoveragesByName(), and Phase::setTemperature().
|
inline |
Returns the site density.
Site density kmol m-2
Definition at line 308 of file SurfPhase.h.
References SurfPhase::m_n0.
Referenced by ReactingSurf1D::eval().
|
inlinevirtual |
Returns the number of sites occupied by one molecule of species k.
Definition at line 313 of file SurfPhase.h.
References SurfPhase::m_speciesSize.
Referenced by InterfaceKinetics::buildSurfaceArrhenius(), SurfPhase::entropy_mole(), ReactingSurf1D::eval(), SurfPhase::getCoverages(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), and SurfPhase::standardConcentration().
void setSiteDensity | ( | doublereal | n0 | ) |
Set the site density of the surface phase (kmol m-2)
n0 | Site density of the surface phase (kmol m-2) |
Definition at line 242 of file SurfPhase.cpp.
References SurfPhase::m_logn0, and SurfPhase::m_n0.
Referenced by EdgePhase::EdgePhase(), SurfPhase::initThermo(), SurfPhase::setParameters(), EdgePhase::setParametersFromXML(), SurfPhase::setParametersFromXML(), and SurfPhase::SurfPhase().
|
virtual |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
grt | Output vector of nondimensional standard state Gibbs free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 171 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), SurfPhase::m_mu0, ThermoPhase::RT(), and Cantera::scale().
Referenced by SurfPhase::getGibbs_RT_ref().
|
virtual |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
hrt | Output vector of nondimensional standard state enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 177 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), SurfPhase::m_h0, ThermoPhase::RT(), and Cantera::scale().
Referenced by SurfPhase::getEnthalpy_RT_ref(), and SurfPhase::getPartialMolarEnthalpies().
|
virtual |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
sr | Output vector of nondimensional standard state entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 183 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Cantera::GasConstant, SurfPhase::m_s0, and Cantera::scale().
Referenced by SurfPhase::getEntropy_R_ref(), and SurfPhase::getPartialMolarEntropies().
|
virtual |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
cpr | Output vector of nondimensional standard state heat capacities. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 189 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Cantera::GasConstant, SurfPhase::m_cp0, and Cantera::scale().
Referenced by SurfPhase::getCp_R_ref(), and SurfPhase::getPartialMolarCp().
|
virtual |
Get the molar volumes of the species standard states at the current T and P of the solution.
units = m^3 / kmol
vol | Output vector containing the standard state volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 195 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Phase::m_kk, and SurfPhase::standardConcentration().
Referenced by SurfPhase::getPartialMolarVolumes().
|
inlinevirtual |
Return the thermodynamic pressure (Pa).
Reimplemented from Phase.
Definition at line 330 of file SurfPhase.h.
References SurfPhase::m_press.
|
inlinevirtual |
Set the internally stored pressure (Pa) at constant temperature and composition.
p | input Pressure (Pa) |
Reimplemented from Phase.
Definition at line 339 of file SurfPhase.h.
References SurfPhase::m_press.
|
virtual |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
Units are Joules/kmol
gpure | Output vector of standard state Gibbs free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 165 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), and SurfPhase::m_mu0.
|
virtual |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
grt | Output vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 203 of file SurfPhase.cpp.
References SurfPhase::getGibbs_RT().
|
virtual |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
hrt | Output vector containing the nondimensional reference state enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 208 of file SurfPhase.cpp.
References SurfPhase::getEnthalpy_RT().
|
virtual |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
er | Output vector containing the nondimensional reference state entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 213 of file SurfPhase.cpp.
References SurfPhase::getEntropy_R().
|
virtual |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
cprt | Output vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk |
Reimplemented from ThermoPhase.
Definition at line 218 of file SurfPhase.cpp.
References SurfPhase::getCp_R().
void setCoverages | ( | const doublereal * | theta | ) |
Set the surface site fractions to a specified state.
This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.
theta | This is the surface site fraction for the kth species in the surface phase. This is a dimensionless quantity. |
This routine normalizes the theta's to 1, before application
Definition at line 252 of file SurfPhase.cpp.
References Phase::m_kk, SurfPhase::m_n0, SurfPhase::m_work, Phase::setConcentrations(), and SurfPhase::size().
Referenced by SurfPhase::addSpecies(), ReactingSurf1D::resetBadValues(), ReactingSurf1D::restore(), and SurfPhase::setCoveragesByName().
void setCoveragesNoNorm | ( | const doublereal * | theta | ) |
Set the surface site fractions to a specified state.
This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.
theta | This is the surface site fraction for the kth species in the surface phase. This is a dimensionless quantity. |
Definition at line 269 of file SurfPhase.cpp.
References Phase::m_kk, SurfPhase::m_n0, SurfPhase::m_work, Phase::setConcentrationsNoNorm(), and SurfPhase::size().
Referenced by ReactingSurf1D::eval().
void setCoveragesByName | ( | const std::string & | cov | ) |
Set the coverages from a string of colon-separated name:value pairs.
cov | String containing colon-separated name:value pairs |
Definition at line 285 of file SurfPhase.cpp.
References Cantera::parseCompString(), SurfPhase::setCoveragesByName(), and Phase::speciesNames().
Referenced by SurfPhase::setCoveragesByName(), SurfPhase::setState(), and SurfPhase::setStateFromXML().
void setCoveragesByName | ( | const compositionMap & | cov | ) |
Set the coverages from a map of name:value pairs.
Definition at line 290 of file SurfPhase.cpp.
References Cantera::getValue(), Phase::m_kk, SurfPhase::setCoverages(), and Phase::speciesName().
void getCoverages | ( | doublereal * | theta | ) | const |
Return a vector of surface coverages.
Get the coverages.
theta | Array theta must be at least as long as the number of species. |
Definition at line 277 of file SurfPhase.cpp.
References Phase::getConcentrations(), Phase::m_kk, SurfPhase::m_n0, and SurfPhase::size().
Referenced by ReactingSurf1D::_getInitialSoln(), InterfaceKinetics::_update_rates_T(), ReactingSurf1D::resetBadValues(), and ReactorSurface::setKinetics().
|
virtual |
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
Accepted keys are:
X
(mole fractions)Y
(mass fractions)T
or temperature
P
or pressure
[Pa]H
or enthalpy
[J/kg]U
or internal-energy
[J/kg]S
or entropy
[J/kg/K]V
or specific-volume
[m^3/kg]D
or density
[kg/m^3]Composition can be specified as either an AnyMap of species names to values or as a composition string. All other values can be given as floating point values in Cantera's default units, or as strings with the units specified, which will be converted using the Units class.
If no thermodynamic property pair is given, or only one of temperature or pressure is given, then 298.15 K and 101325 Pa will be used as necessary to fully set the state.
Additionally uses the key coverages
to set the fractional coverages.
Reimplemented from ThermoPhase.
Definition at line 308 of file SurfPhase.cpp.
References AnyMap::hasKey(), SurfPhase::setCoveragesByName(), and ThermoPhase::setState().
|
private |
Update the species reference state thermodynamic functions.
The polynomials for the standard state functions are only reevaluated if the temperature has changed.
force | Boolean, which if true, forces a reevaluation of the thermo polynomials. default = false. |
Definition at line 319 of file SurfPhase.cpp.
References Cantera::GasConstant, SurfPhase::m_cp0, SurfPhase::m_h0, Phase::m_kk, SurfPhase::m_mu0, SurfPhase::m_s0, ThermoPhase::m_spthermo, ThermoPhase::m_tlast, Phase::temperature(), and MultiSpeciesThermo::update().
Referenced by SurfPhase::cp_mole(), SurfPhase::enthalpy_mole(), SurfPhase::entropy_mole(), SurfPhase::getChemPotentials(), SurfPhase::getCp_R(), SurfPhase::getEnthalpy_RT(), SurfPhase::getEntropy_R(), SurfPhase::getGibbs_RT(), SurfPhase::getPureGibbs(), SurfPhase::getStandardChemPotentials(), and SurfPhase::getStandardVolumes().
|
protected |
Surface site density (kmol m-2)
Definition at line 401 of file SurfPhase.h.
Referenced by SurfPhase::enthalpy_mole(), SurfPhase::entropy_mole(), SurfPhase::getCoverages(), SurfPhase::getParameters(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), SurfPhase::setSiteDensity(), SurfPhase::siteDensity(), and SurfPhase::standardConcentration().
|
protected |
Vector of species sizes (number of sites occupied). length m_kk.
Definition at line 404 of file SurfPhase.h.
Referenced by SurfPhase::addSpecies(), and SurfPhase::size().
|
protected |
log of the surface site density
Definition at line 407 of file SurfPhase.h.
Referenced by SurfPhase::logStandardConc(), and SurfPhase::setSiteDensity().
|
protected |
Current value of the pressure (Pa)
Definition at line 410 of file SurfPhase.h.
Referenced by SurfPhase::pressure(), and SurfPhase::setPressure().
|
mutableprotected |
Temporary storage for the reference state enthalpies.
Definition at line 413 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), SurfPhase::addSpecies(), SurfPhase::enthalpy_mole(), and SurfPhase::getEnthalpy_RT().
|
mutableprotected |
Temporary storage for the reference state entropies.
Definition at line 416 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), SurfPhase::addSpecies(), SurfPhase::entropy_mole(), and SurfPhase::getEntropy_R().
|
mutableprotected |
Temporary storage for the reference state heat capacities.
Definition at line 419 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), SurfPhase::addSpecies(), SurfPhase::cp_mole(), and SurfPhase::getCp_R().
|
mutableprotected |
Temporary storage for the reference state Gibbs energies.
Definition at line 422 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), SurfPhase::addSpecies(), SurfPhase::getChemPotentials(), SurfPhase::getGibbs_RT(), SurfPhase::getPureGibbs(), and SurfPhase::getStandardChemPotentials().
|
mutableprotected |
Temporary work array.
Definition at line 425 of file SurfPhase.h.
Referenced by SurfPhase::addSpecies(), SurfPhase::getChemPotentials(), SurfPhase::setCoverages(), and SurfPhase::setCoveragesNoNorm().
|
mutableprotected |
vector storing the log of the size of each species.
The size of each species is defined as the number of surface sites each species occupies.
Definition at line 432 of file SurfPhase.h.
Referenced by SurfPhase::addSpecies(), and SurfPhase::logStandardConc().