Cantera  2.5.1
SingleSpeciesTP.h
Go to the documentation of this file.
1 /**
2  * @file SingleSpeciesTP.h
3  * Header for the SingleSpeciesTP class, which is a filter class for ThermoPhase,
4  * that eases the construction of single species phases
5  * ( see \ref thermoprops and class \link Cantera::SingleSpeciesTP SingleSpeciesTP\endlink).
6  */
7 
8 // This file is part of Cantera. See License.txt in the top-level directory or
9 // at https://cantera.org/license.txt for license and copyright information.
10 
11 #ifndef CT_SINGLESPECIESTP_H
12 #define CT_SINGLESPECIESTP_H
13 
14 #include "ThermoPhase.h"
15 
16 namespace Cantera
17 {
18 
19 /**
20  * @ingroup thermoprops
21  *
22  * The SingleSpeciesTP class is a filter class for ThermoPhase. What it does is
23  * to simplify the construction of ThermoPhase objects by assuming that the
24  * phase consists of one and only one type of species. In other words, it's a
25  * stoichiometric phase. However, no assumptions are made concerning the
26  * thermodynamic functions or the equation of state of the phase. Therefore it's
27  * an incomplete description of the thermodynamics. The complete description
28  * must be made in a derived class of SingleSpeciesTP.
29  *
30  * Several different groups of thermodynamic functions are resolved at this
31  * level by this class. For example, All partial molar property routines call
32  * their single species standard state equivalents. All molar solution
33  * thermodynamic routines call the single species standard state equivalents.
34  * Activities routines are resolved at this level, as there is only one species.
35  *
36  * It is assumed that the reference state thermodynamics may be obtained by a
37  * pointer to a populated species thermodynamic property manager class (see
38  * ThermoPhase::m_spthermo). How to relate pressure changes to the reference
39  * state thermodynamics is again left open to implementation.
40  *
41  * Mole fraction and Mass fraction vectors are assumed to be equal to x[0] = 1
42  * y[0] = 1, respectively. Simplifications to the interface of setState_TPY()
43  * and setState_TPX() functions result and are made within the class.
44  *
45  * Note, this class can handle the thermodynamic description of one phase of one
46  * species. It can not handle the description of phase equilibrium between two
47  * phases of a stoichiometric compound (e.g. water liquid and water vapor, below
48  * the critical point). However, it may be used to describe the thermodynamics
49  * of one phase of such a compound even past the phase equilibrium point, up to
50  * the point where the phase itself ceases to be a stable phase.
51  *
52  * This class doesn't do much at the initialization level. Its
53  * SingleSpeciesTP::initThermo() member does check that one and only one species
54  * has been defined to occupy the phase.
55  */
57 {
58 public:
59  //! Base empty constructor.
61 
62  virtual std::string type() const {
63  return "SingleSpecies";
64  }
65 
66  virtual bool isPure() const {
67  return true;
68  }
69 
70  /**
71  * @name Molar Thermodynamic Properties of the Solution
72  *
73  * These functions are resolved at this level, by reference to the partial
74  * molar functions and standard state functions for species 0. Derived
75  * classes don't need to supply entries for these functions.
76  * @{
77  */
78 
79  virtual doublereal enthalpy_mole() const;
80  virtual doublereal intEnergy_mole() const;
81  virtual doublereal entropy_mole() const;
82  virtual doublereal gibbs_mole() const;
83  virtual doublereal cp_mole() const;
84  virtual doublereal cv_mole() const;
85 
86  /**
87  * @}
88  * @name Activities, Standard State, and Activity Concentrations
89  *
90  * The activity \f$a_k\f$ of a species in solution is related to the
91  * chemical potential by \f[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \f]
92  * The quantity \f$\mu_k^0(T)\f$ is the chemical potential at unit activity,
93  * which depends only on temperature.
94  * @{
95  */
96 
97  /**
98  * Get the array of non-dimensional activities at the current solution
99  * temperature, pressure, and solution concentration.
100  *
101  * We redefine this function to just return 1.0 here.
102  *
103  * @param a Output vector of activities. Length: 1.
104  */
105  virtual void getActivities(doublereal* a) const {
106  a[0] = 1.0;
107  }
108 
109  virtual void getActivityCoefficients(doublereal* ac) const {
110  ac[0] = 1.0;
111  }
112 
113  //@}
114  /// @name Partial Molar Properties of the Solution
115  ///
116  /// These functions are resolved at this level, by reference to the partial
117  /// molar functions and standard state functions for species 0. Derived
118  /// classes don't need to supply entries for these functions.
119  //@{
120 
121  //! Get the array of non-dimensional species chemical potentials. These are
122  //! partial molar Gibbs free energies.
123  /*!
124  * These are the phase, partial molar, and the standard state dimensionless
125  * chemical potentials.
126  * \f$ \mu_k / \hat R T \f$.
127  *
128  * Units: unitless
129  *
130  * @param murt On return, Contains the chemical potential / RT of the
131  * single species and the phase. Units are unitless. Length = 1
132  */
133  virtual void getChemPotentials_RT(doublereal* murt) const;
134 
135  //! Get the array of chemical potentials
136  /*!
137  * These are the phase, partial molar, and the standard state chemical
138  * potentials.
139  * \f$ \mu(T,P) = \mu^0_k(T,P) \f$.
140  *
141  * @param mu On return, Contains the chemical potential of the single
142  * species and the phase. Units are J / kmol . Length = 1
143  */
144  virtual void getChemPotentials(doublereal* mu) const;
145 
146  //! Get the species partial molar enthalpies. Units: J/kmol.
147  /*!
148  * These are the phase enthalpies. \f$ h_k \f$.
149  *
150  * @param hbar Output vector of species partial molar enthalpies.
151  * Length: 1. units are J/kmol.
152  */
153  virtual void getPartialMolarEnthalpies(doublereal* hbar) const;
154 
155  //! Get the species partial molar internal energies. Units: J/kmol.
156  /*!
157  * These are the phase internal energies. \f$ u_k \f$.
158  *
159  * @param ubar On return, Contains the internal energy of the single species
160  * and the phase. Units are J / kmol . Length = 1
161  */
162  virtual void getPartialMolarIntEnergies(doublereal* ubar) const;
163 
164  //! Get the species partial molar entropy. Units: J/kmol K.
165  /*!
166  * This is the phase entropy. \f$ s(T,P) = s_o(T,P) \f$.
167  *
168  * @param sbar On return, Contains the entropy of the single species and the
169  * phase. Units are J / kmol / K . Length = 1
170  */
171  virtual void getPartialMolarEntropies(doublereal* sbar) const;
172 
173  //! Get the species partial molar Heat Capacities. Units: J/ kmol /K.
174  /*!
175  * This is the phase heat capacity. \f$ Cp(T,P) = Cp_o(T,P) \f$.
176  *
177  * @param cpbar On return, Contains the heat capacity of the single species
178  * and the phase. Units are J / kmol / K . Length = 1
179  */
180  virtual void getPartialMolarCp(doublereal* cpbar) const;
181 
182  //! Get the species partial molar volumes. Units: m^3/kmol.
183  /*!
184  * This is the phase molar volume. \f$ V(T,P) = V_o(T,P) \f$.
185  *
186  * @param vbar On return, Contains the molar volume of the single species
187  * and the phase. Units are m^3 / kmol. Length = 1
188  */
189  virtual void getPartialMolarVolumes(doublereal* vbar) const;
190 
191  //@}
192  /// @name Properties of the Standard State of the Species in the Solution
193  /// These functions are the primary way real properties are
194  /// supplied to derived thermodynamics classes of SingleSpeciesTP.
195  /// These functions must be supplied in derived classes. They
196  /// are not resolved at the SingleSpeciesTP level.
197  //@{
198 
199  virtual void getPureGibbs(doublereal* gpure) const;
200 
201  //! Get the molar volumes of each species in their standard states at the
202  //! current *T* and *P* of the solution.
203  /*!
204  * units = m^3 / kmol
205  *
206  * We resolve this function at this level, by assigning the molecular weight
207  * divided by the phase density
208  *
209  * @param vbar On output this contains the standard volume of the species
210  * and phase (m^3/kmol). Vector of length 1
211  */
212  virtual void getStandardVolumes(doublereal* vbar) const;
213 
214  //@}
215  /// @name Thermodynamic Values for the Species Reference State
216  ///
217  /// Almost all functions in this group are resolved by this class. The
218  /// internal energy function is not given by this class, since it would
219  /// involve a specification of the equation of state.
220  //@{
221 
222  virtual void getEnthalpy_RT_ref(doublereal* hrt) const;
223  virtual void getGibbs_RT_ref(doublereal* grt) const;
224  virtual void getGibbs_ref(doublereal* g) const;
225  virtual void getEntropy_R_ref(doublereal* er) const;
226  virtual void getCp_R_ref(doublereal* cprt) const;
227 
228  /**
229  * @name Setting the State
230  *
231  * These methods set all or part of the thermodynamic state.
232  * @{
233  */
234 
235  //! Mass fractions are fixed, with Y[0] = 1.0.
236  virtual void setMassFractions(const doublereal* const y) {};
237 
238  //! Mole fractions are fixed, with x[0] = 1.0.
239  virtual void setMoleFractions(const doublereal* const x) {};
240 
241  virtual void setState_HP(double h, double p, double tol=1e-9);
242  virtual void setState_UV(double u, double v, double tol=1e-9);
243  virtual void setState_SP(double s, double p, double tol=1e-9);
244  virtual void setState_SV(double s, double v, double tol=1e-9);
245  //@}
246 
247  virtual bool addSpecies(shared_ptr<Species> spec);
248 
249 protected:
250  //! The current pressure of the solution (Pa). It gets initialized to 1 atm.
251  doublereal m_press;
252 
253  // Reference pressure (Pa). Must be the same for all species. Defaults to
254  // 1 atm.
255  doublereal m_p0;
256 
257  //! Dimensionless enthalpy at the (mtlast, m_p0)
258  mutable double m_h0_RT;
259  //! Dimensionless heat capacity at the (mtlast, m_p0)
260  mutable double m_cp0_R;
261  //! Dimensionless entropy at the (mtlast, m_p0)
262  mutable double m_s0_R;
263 
264  /**
265  * @internal This crucial internal routine calls the species thermo update
266  * program to calculate new species Cp0, H0, and S0 whenever the
267  * temperature has changed.
268  */
269  void _updateThermo() const;
270 };
271 
272 }
273 
274 #endif
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
The SingleSpeciesTP class is a filter class for ThermoPhase.
virtual void getActivities(doublereal *a) const
Get the array of non-dimensional activities at the current solution temperature, pressure,...
virtual void setState_HP(double h, double p, double tol=1e-9)
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
doublereal m_press
The current pressure of the solution (Pa). It gets initialized to 1 atm.
virtual void setState_UV(double u, double v, double tol=1e-9)
Set the specific internal energy (J/kg) and specific volume (m^3/kg).
virtual bool addSpecies(shared_ptr< Species > spec)
virtual void setMassFractions(const doublereal *const y)
Mass fractions are fixed, with Y[0] = 1.0.
virtual void getGibbs_RT_ref(doublereal *grt) const
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
virtual void getPartialMolarIntEnergies(doublereal *ubar) const
Get the species partial molar internal energies. Units: J/kmol.
virtual doublereal cp_mole() const
Molar heat capacity at constant pressure. Units: J/kmol/K.
virtual void getPartialMolarEnthalpies(doublereal *hbar) const
Get the species partial molar enthalpies. Units: J/kmol.
virtual void getPartialMolarEntropies(doublereal *sbar) const
Get the species partial molar entropy. Units: J/kmol K.
virtual void getActivityCoefficients(doublereal *ac) const
Get the array of non-dimensional molar-based activity coefficients at the current solution temperatur...
virtual doublereal enthalpy_mole() const
Molar enthalpy. Units: J/kmol.
virtual void getPartialMolarVolumes(doublereal *vbar) const
Get the species partial molar volumes. Units: m^3/kmol.
virtual doublereal cv_mole() const
Molar heat capacity at constant volume. Units: J/kmol/K.
virtual void getPartialMolarCp(doublereal *cpbar) const
Get the species partial molar Heat Capacities. Units: J/ kmol /K.
double m_h0_RT
Dimensionless enthalpy at the (mtlast, m_p0)
virtual doublereal entropy_mole() const
Molar entropy. Units: J/kmol/K.
double m_s0_R
Dimensionless entropy at the (mtlast, m_p0)
virtual void getChemPotentials_RT(doublereal *murt) const
Get the array of non-dimensional species chemical potentials.
virtual void setState_SP(double s, double p, double tol=1e-9)
Set the specific entropy (J/kg/K) and pressure (Pa).
virtual void getEntropy_R_ref(doublereal *er) const
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
virtual std::string type() const
String indicating the thermodynamic model implemented.
virtual doublereal gibbs_mole() const
Molar Gibbs function. Units: J/kmol.
virtual bool isPure() const
Return whether phase represents a pure (single species) substance.
virtual void getCp_R_ref(doublereal *cprt) const
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
double m_cp0_R
Dimensionless heat capacity at the (mtlast, m_p0)
virtual void getStandardVolumes(doublereal *vbar) const
Get the molar volumes of each species in their standard states at the current T and P of the solution...
SingleSpeciesTP()
Base empty constructor.
virtual void getChemPotentials(doublereal *mu) const
Get the array of chemical potentials.
virtual void getGibbs_ref(doublereal *g) const
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
virtual void setMoleFractions(const doublereal *const x)
Mole fractions are fixed, with x[0] = 1.0.
virtual void getPureGibbs(doublereal *gpure) const
Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
virtual void setState_SV(double s, double v, double tol=1e-9)
Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
virtual doublereal intEnergy_mole() const
Molar internal energy. Units: J/kmol.
virtual void getEnthalpy_RT_ref(doublereal *hrt) const
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
Base class for a phase with thermodynamic properties.
Definition: ThermoPhase.h:102
Namespace for the Cantera kernel.
Definition: AnyMap.cpp:264