Cantera
2.5.1
|
This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one. More...
#include <IdealMolalSoln.h>
Public Member Functions | |
IdealMolalSoln () | |
Constructor. More... | |
IdealMolalSoln (const std::string &inputFile, const std::string &id="") | |
Constructor for phase initialization. More... | |
IdealMolalSoln (XML_Node &phaseRef, const std::string &id="") | |
Constructor for phase initialization. More... | |
virtual std::string | type () const |
String indicating the thermodynamic model implemented. More... | |
Molar Thermodynamic Properties of the Solution | |
virtual doublereal | enthalpy_mole () const |
Molar enthalpy of the solution. Units: J/kmol. More... | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy of the solution: Units: J/kmol. More... | |
virtual doublereal | entropy_mole () const |
Molar entropy of the solution. Units: J/kmol/K. More... | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs function for the solution: Units J/kmol. More... | |
virtual doublereal | cp_mole () const |
Molar heat capacity of the solution at constant pressure. Units: J/kmol/K. More... | |
Activities and Activity Concentrations | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T)\) is the chemical potential at unit activity, which depends only on temperature and the pressure. | |
virtual Units | standardConcentrationUnits () const |
Returns the units of the "standard concentration" for this phase. More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns an array of generalized concentrations. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
Return the standard concentration for the kth species. More... | |
virtual void | getActivities (doublereal *ac) const |
virtual void | getMolalityActivityCoefficients (doublereal *acMolality) const |
Public Member Functions inherited from MolalityVPSSTP | |
MolalityVPSSTP () | |
Default Constructor. More... | |
virtual std::string | phaseOfMatter () const |
String indicating the mechanical phase of the matter in this Phase. More... | |
void | setpHScale (const int pHscaleType) |
Set the pH scale, which determines the scale for single-ion activity coefficients. More... | |
int | pHScale () const |
Reports the pH scale, which determines the scale for single-ion activity coefficients. More... | |
void | setMoleFSolventMin (doublereal xmolSolventMIN) |
Sets the minimum mole fraction in the molality formulation. More... | |
doublereal | moleFSolventMin () const |
Returns the minimum mole fraction in the molality formulation. More... | |
void | calcMolalities () const |
Calculates the molality of all species and stores the result internally. More... | |
void | getMolalities (doublereal *const molal) const |
This function will return the molalities of the species. More... | |
void | setMolalities (const doublereal *const molal) |
Set the molalities of the solutes in a phase. More... | |
void | setMolalitiesByName (const compositionMap &xMap) |
Set the molalities of a phase. More... | |
void | setMolalitiesByName (const std::string &name) |
Set the molalities of a phase. More... | |
int | activityConvention () const |
We set the convention to molality here. More... | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual double | osmoticCoefficient () const |
Calculate the osmotic coefficient. More... | |
virtual void | setStateFromXML (const XML_Node &state) |
Set equation of state parameter values from XML entries. More... | |
void | setState_TPM (doublereal t, doublereal p, const doublereal *const molalities) |
Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes. More... | |
void | setState_TPM (doublereal t, doublereal p, const compositionMap &m) |
Set the temperature (K), pressure (Pa), and molalities. More... | |
void | setState_TPM (doublereal t, doublereal p, const std::string &m) |
Set the temperature (K), pressure (Pa), and molalities. More... | |
virtual void | setState (const AnyMap &state) |
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
virtual std::string | report (bool show_thermo=true, doublereal threshold=1e-14) const |
returns a summary of the state of the phase as a string More... | |
Public Member Functions inherited from VPStandardStateTP | |
VPStandardStateTP () | |
Constructor. More... | |
virtual bool | isCompressible () const |
Return whether phase represents a compressible substance. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials. More... | |
void | installPDSS (size_t k, std::unique_ptr< PDSS > &&pdss) |
Install a PDSS object for species k More... | |
PDSS * | providePDSS (size_t k) |
const PDSS * | providePDSS (size_t k) const |
virtual bool | addSpecies (shared_ptr< Species > spec) |
Add a Species to this Phase. More... | |
virtual void | getStandardChemPotentials (doublereal *mu) const |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More... | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of the species standard states at the current T and P of the solution. More... | |
virtual const vector_fp & | getStandardVolumes () const |
virtual void | setTemperature (const doublereal temp) |
Set the temperature of the phase. More... | |
virtual void | setPressure (doublereal p) |
Set the internally stored pressure (Pa) at constant temperature and composition. More... | |
virtual void | setState_TP (doublereal T, doublereal pres) |
Set the temperature and pressure at the same time. More... | |
virtual doublereal | pressure () const |
Returns the current pressure of the phase. More... | |
virtual void | updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. More... | |
virtual double | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
virtual double | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More... | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
doublereal | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const size_t k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. Units: J/kg. More... | |
doublereal | entropy_mass () const |
Specific entropy. Units: J/kg/K. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. More... | |
doublereal | RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (double h, double p, double tol=1e-9) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (double u, double v, double tol=1e-9) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (double s, double p, double tol=1e-9) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (double s, double v, double tol=1e-9) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). More... | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). More... | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). More... | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). More... | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More... | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_RP (doublereal rho, doublereal p) |
Set the density (kg/m**3) and pressure (Pa) at constant composition. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const doublereal *x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const compositionMap &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const std::string &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const doublereal *y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const compositionMap &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const std::string &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
void | setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
double | mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
void | setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
double | equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio () const |
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More... | |
void | equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. More... | |
virtual void | setToEquilState (const doublereal *mu_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More... | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critVolume () const |
Critical volume (m3/kmol). More... | |
virtual doublereal | critCompressibility () const |
Critical compressibility (unitless). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | satPressure (doublereal t) |
Return the saturation pressure given the temperature. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
void | setState_TPQ (double T, double P, double Q) |
Set the temperature, pressure, and vapor fraction (quality). More... | |
virtual void | modifySpecies (size_t k, shared_ptr< Species > spec) |
Modify the thermodynamic data associated with a species. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual const MultiSpeciesThermo & | speciesThermo (int k=-1) const |
virtual void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
virtual void | setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) |
Set equation of state parameters from an AnyMap phase description. More... | |
const AnyMap & | input () const |
Access input data associated with the phase description. More... | |
AnyMap & | input () |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
double | stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
Phase (const Phase &)=delete | |
Phase & | operator= (const Phase &)=delete |
XML_Node & | xml () const |
Returns a const reference to the XML_Node that describes the phase. More... | |
void | setXMLdata (XML_Node &xmlPhase) |
Stores the XML tree information for the current phase. More... | |
virtual bool | isPure () const |
Return whether phase represents a pure (single species) substance. More... | |
virtual bool | hasPhaseTransition () const |
Return whether phase represents a substance with phase transitions. More... | |
virtual std::map< std::string, size_t > | nativeState () const |
Return a map of properties defining the native state of a substance. More... | |
virtual std::vector< std::string > | fullStates () const |
Return a vector containing full states defining a phase. More... | |
virtual std::vector< std::string > | partialStates () const |
Return a vector of settable partial property sets within a phase. More... | |
virtual size_t | stateSize () const |
Return size of vector defining internal state of the phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase. More... | |
virtual void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
virtual void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
void | getCharges (double *charges) const |
Copy the vector of species charges into array charges. More... | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. More... | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
bool | caseSensitiveSpecies () const |
Returns true if case sensitive species names are enforced. More... | |
void | setCaseSensitiveSpecies (bool cflag=true) |
Set flag that determines whether case sensitive species are enforced in look-up operations, e.g. More... | |
virtual void | setRoot (std::shared_ptr< Solution > root) |
Set root Solution holding all phase information. More... | |
vector_fp | getCompositionFromMap (const compositionMap &comp) const |
Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More... | |
void | massFractionsToMoleFractions (const double *Y, double *X) const |
Converts a mixture composition from mole fractions to mass fractions. More... | |
void | moleFractionsToMassFractions (const double *X, double *Y) const |
Converts a mixture composition from mass fractions to mole fractions. More... | |
std::string | id () const |
Return the string id for the phase. More... | |
void | setID (const std::string &id) |
Set the string id for the phase. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
void | setMoleFractionsByName (const compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (const compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, const compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
compositionMap | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. More... | |
double | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
double | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
compositionMap | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. More... | |
double | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
double | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (double *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions (const double *const x) |
Set the mole fractions to the specified values. More... | |
virtual void | setMoleFractions_NoNorm (const double *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (double *const y) const |
Get the species mass fractions. More... | |
const double * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
virtual void | setMassFractions (const double *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const double *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
void | getConcentrations (double *const c) const |
Get the species concentrations (kmol/m^3). More... | |
double | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrations (const double *const conc) |
Set the concentrations to the specified values within the phase. More... | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. More... | |
doublereal | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. More... | |
doublereal | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. More... | |
const double * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual double | density () const |
Density (kg/m^3). More... | |
double | molarDensity () const |
Molar density (kmol/m^3). More... | |
double | molarVolume () const |
Molar volume (m^3/kmol). More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_X (const vector_fp &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
size_t | addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. More... | |
void | addSpeciesAlias (const std::string &name, const std::string &alias) |
Add a species alias (i.e. More... | |
virtual std::vector< std::string > | findIsomers (const compositionMap &compMap) const |
Return a vector with isomers names matching a given composition map. More... | |
virtual std::vector< std::string > | findIsomers (const std::string &comp) const |
Return a vector with isomers names matching a given composition string. More... | |
shared_ptr< Species > | species (const std::string &name) const |
Return the Species object for the named species. More... | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. More... | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. More... | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. More... | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. More... | |
Private Member Functions | |
void | s_updateIMS_lnMolalityActCoeff () const |
This function will be called to update the internally stored natural logarithm of the molality activity coefficients. More... | |
void | calcIMSCutoffParams_ () |
Calculate parameters for cutoff treatments of activity coefficients. More... | |
Partial Molar Properties of the Solution | |
vector_fp | m_speciesMolarVolume |
Species molar volume \( m^3 kmol^{-1} \). More... | |
int | m_formGC |
The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'molar_volume', 2 = 'solvent_volume'. More... | |
int | IMS_typeCutoff_ |
Cutoff type. More... | |
vector_fp | m_tmpV |
vector of size m_kk, used as a temporary holding area. More... | |
vector_fp | IMS_lnActCoeffMolal_ |
Logarithm of the molal activity coefficients. More... | |
doublereal | IMS_X_o_cutoff_ |
value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process; More... | |
doublereal | IMS_gamma_o_min_ |
gamma_o value for the cutoff process at the zero solvent point More... | |
doublereal | IMS_gamma_k_min_ |
gamma_k minimum for the cutoff process at the zero solvent point More... | |
doublereal | IMS_slopefCut_ |
Parameter in the polyExp cutoff treatment. More... | |
doublereal | IMS_slopegCut_ |
Parameter in the polyExp cutoff treatment. More... | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials: Units: J/kmol. More... | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Partial molar heat capacity of the solution:. UnitsL J/kmol/K. More... | |
virtual bool | addSpecies (shared_ptr< Species > spec) |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id="") |
Import and initialize a ThermoPhase object using an XML tree. More... | |
virtual void | initThermo () |
void | setStandardConcentrationModel (const std::string &model) |
Set the standard concentration model. More... | |
void | setCutoffModel (const std::string &model) |
Set cutoff model. Must be one of 'none', 'poly', or 'polyExp'. More... | |
double | speciesMolarVolume (int k) const |
Report the molar volume of species k. More... | |
void | getSpeciesMolarVolumes (double *smv) const |
Mechanical Equation of State Properties | |
In this equation of state implementation, the density is a function only of the mole fractions. Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() will cause an exception to be thrown. | |
virtual void | setDensity (const doublereal rho) |
Overridden setDensity() function is necessary because the density is not an independent variable. More... | |
virtual void | setMolarDensity (const doublereal rho) |
Overridden setMolarDensity() function is necessary because the density is not an independent variable. More... | |
virtual doublereal | isothermalCompressibility () const |
The isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
The thermal expansion coefficient. Units: 1/K. More... | |
void | calcDensity () |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More... | |
Additional Inherited Members | |
Protected Member Functions inherited from MolalityVPSSTP | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
virtual void | getUnscaledMolalityActivityCoefficients (doublereal *acMolality) const |
Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | applyphScale (doublereal *acMolality) const |
Apply the current phScale to a set of activity Coefficients or activities. More... | |
Protected Member Functions inherited from VPStandardStateTP | |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. More... | |
virtual void | _updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. More... | |
const vector_fp & | Gibbs_RT_ref () const |
Protected Member Functions inherited from ThermoPhase | |
Protected Member Functions inherited from Phase | |
void | assertCompressible (const std::string &setter) const |
Ensure that phase is compressible. More... | |
void | assignDensity (const double density_) |
Set the internally stored constant density (kg/m^3) of the phase. More... | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. More... | |
Protected Attributes inherited from MolalityVPSSTP | |
int | m_pHScalingType |
Scaling to be used for output of single-ion species activity coefficients. More... | |
size_t | m_indexCLM |
Index of the phScale species. More... | |
doublereal | m_weightSolvent |
Molecular weight of the Solvent. More... | |
doublereal | m_xmolSolventMIN |
doublereal | m_Mnaught |
This is the multiplication factor that goes inside log expressions involving the molalities of species. More... | |
vector_fp | m_molalities |
Current value of the molalities of the species in the phase. More... | |
Protected Attributes inherited from VPStandardStateTP | |
doublereal | m_Pcurrent |
Current value of the pressure - state variable. More... | |
double | m_minTemp |
The minimum temperature at which data for all species is valid. More... | |
double | m_maxTemp |
The maximum temperature at which data for all species is valid. More... | |
doublereal | m_Tlast_ss |
The last temperature at which the standard state thermodynamic properties were calculated at. More... | |
doublereal | m_Plast_ss |
The last pressure at which the Standard State thermodynamic properties were calculated at. More... | |
std::vector< std::unique_ptr< PDSS > > | m_PDSS_storage |
Storage for the PDSS objects for the species. More... | |
vector_fp | m_h0_RT |
Vector containing the species reference enthalpies at T = m_tlast and P = p_ref. More... | |
vector_fp | m_cp0_R |
Vector containing the species reference constant pressure heat capacities at T = m_tlast and P = p_ref. More... | |
vector_fp | m_g0_RT |
Vector containing the species reference Gibbs functions at T = m_tlast and P = p_ref. More... | |
vector_fp | m_s0_R |
Vector containing the species reference entropies at T = m_tlast and P = p_ref. More... | |
vector_fp | m_V0 |
Vector containing the species reference molar volumes. More... | |
vector_fp | m_hss_RT |
Vector containing the species Standard State enthalpies at T = m_tlast and P = m_plast. More... | |
vector_fp | m_cpss_R |
Vector containing the species Standard State constant pressure heat capacities at T = m_tlast and P = m_plast. More... | |
vector_fp | m_gss_RT |
Vector containing the species Standard State Gibbs functions at T = m_tlast and P = m_plast. More... | |
vector_fp | m_sss_R |
Vector containing the species Standard State entropies at T = m_tlast and P = m_plast. More... | |
vector_fp | m_Vss |
Vector containing the species standard state volumes at T = m_tlast and P = m_plast. More... | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
AnyMap | m_input |
Data supplied via setParameters. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. Units are Volts. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
doublereal | m_tlast |
last value of the temperature processed by reference state More... | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. More... | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
std::map< std::string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior |
Flag determining behavior when adding species with an undefined element. More... | |
bool | m_caseSensitiveSpecies |
Flag determining whether case sensitive species names are enforced. More... | |
This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one.
This is a full instantiation of a ThermoPhase object. The assumption is that the molality-based activity coefficient is equal to one. This also implies that the osmotic coefficient is equal to one.
Note, this does not mean that the solution is an ideal solution. In fact, there is a singularity in the formulation as the solvent concentration goes to zero.
The mechanical equation of state is currently assumed to be that of an incompressible solution. This may change in the future. Each species has its own molar volume. The molar volume is a constant.
Class IdealMolalSoln represents a condensed phase. The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for incompressible mixtures.
The standard concentrations can have three different forms. See setStandardConcentrationModel().
\( V^0_0 \) is the solvent standard molar volume. \( m^{\Delta} \) is a constant equal to a molality of \( 1.0 \quad\mbox{gm kmol}^{-1} \).
The current default is to have mformGC = 2.
The value and form of the activity concentration will affect reaction rate constants involving species in this phase.
<thermo model="IdealMolalSoln"> <standardConc model="solvent_volume" /> <solvent> H2O(l) </solvent> <activityCoefficients model="IdealMolalSoln" > <idealMolalSolnCutoff model="polyExp"> <gamma_O_limit> 1.0E-5 </gamma_O_limit> <gamma_k_limit> 1.0E-5 <gamma_k_limit> <X_o_cutoff> 0.20 </X_o_cutoff> <C_0_param> 0.05 </C_0_param> <slope_f_limit> 0.6 </slope_f_limit> <slope_g_limit> 0.0 </slope_g_limit> </idealMolalSolnCutoff> </activityCoefficients> </thermo>
Definition at line 78 of file IdealMolalSoln.h.
IdealMolalSoln | ( | ) |
Constructor.
Definition at line 28 of file IdealMolalSoln.cpp.
IdealMolalSoln | ( | const std::string & | inputFile, |
const std::string & | id = "" |
||
) |
Constructor for phase initialization.
This constructor will initialize a phase, by reading the required information from an input file.
inputFile | Name of the Input file that contains information about the phase |
id | id of the phase within the input file |
Definition at line 48 of file IdealMolalSoln.cpp.
References ThermoPhase::initThermoFile().
IdealMolalSoln | ( | XML_Node & | phaseRef, |
const std::string & | id = "" |
||
) |
Constructor for phase initialization.
This constructor will initialize a phase, by reading the required information from XML_Node tree.
phaseRef | reference for an XML_Node tree that contains the information necessary to initialize the phase. |
id | id of the phase within the input file |
Definition at line 71 of file IdealMolalSoln.cpp.
References Cantera::importPhase().
|
inlinevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from ThermoPhase.
Definition at line 109 of file IdealMolalSoln.h.
|
virtual |
Molar enthalpy of the solution. Units: J/kmol.
Returns the amount of enthalpy per mole of solution. For an ideal molal solution,
\[ \bar{h}(T, P, X_k) = \sum_k X_k \bar{h}_k(T) \]
The formula is written in terms of the partial molar enthalpies. \( \bar{h}_k(T, p, m_k) \). See the partial molar enthalpy function, getPartialMolarEnthalpies(), for details.
Units: J/kmol
Reimplemented from ThermoPhase.
Definition at line 93 of file IdealMolalSoln.cpp.
References IdealMolalSoln::getPartialMolarEnthalpies(), IdealMolalSoln::m_tmpV, and Phase::mean_X().
|
virtual |
Molar internal energy of the solution: Units: J/kmol.
Returns the amount of internal energy per mole of solution. For an ideal molal solution,
\[ \bar{u}(T, P, X_k) = \sum_k X_k \bar{u}_k(T) \]
The formula is written in terms of the partial molar internal energy. \( \bar{u}_k(T, p, m_k) \).
Reimplemented from ThermoPhase.
Definition at line 99 of file IdealMolalSoln.cpp.
References IdealMolalSoln::getPartialMolarEnthalpies(), IdealMolalSoln::m_tmpV, and Phase::mean_X().
|
virtual |
Molar entropy of the solution. Units: J/kmol/K.
Returns the amount of entropy per mole of solution. For an ideal molal solution,
\[ \bar{s}(T, P, X_k) = \sum_k X_k \bar{s}_k(T) \]
The formula is written in terms of the partial molar entropies. \( \bar{s}_k(T, p, m_k) \). See the partial molar entropies function, getPartialMolarEntropies(), for details.
Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 105 of file IdealMolalSoln.cpp.
References IdealMolalSoln::getPartialMolarEntropies(), IdealMolalSoln::m_tmpV, and Phase::mean_X().
|
virtual |
Molar Gibbs function for the solution: Units J/kmol.
Returns the Gibbs free energy of the solution per mole of the solution.
\[ \bar{g}(T, P, X_k) = \sum_k X_k \mu_k(T) \]
Units: J/kmol
Reimplemented from ThermoPhase.
Definition at line 111 of file IdealMolalSoln.cpp.
References IdealMolalSoln::getChemPotentials(), IdealMolalSoln::m_tmpV, and Phase::mean_X().
|
virtual |
Molar heat capacity of the solution at constant pressure. Units: J/kmol/K.
\[ \bar{c}_p(T, P, X_k) = \sum_k X_k \bar{c}_{p,k}(T) \]
Units: J/kmol/K
Reimplemented from ThermoPhase.
Definition at line 117 of file IdealMolalSoln.cpp.
References IdealMolalSoln::getPartialMolarCp(), IdealMolalSoln::m_tmpV, and Phase::mean_X().
|
protectedvirtual |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
The formula for this is
\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]
where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.
Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.
Reimplemented from VPStandardStateTP.
Definition at line 125 of file IdealMolalSoln.cpp.
References Phase::assignDensity(), IdealMolalSoln::getPartialMolarVolumes(), IdealMolalSoln::m_tmpV, Phase::mean_X(), and Phase::meanMolecularWeight().
|
virtual |
Overridden setDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition
May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.
rho | Input Density |
Reimplemented from Phase.
Definition at line 142 of file IdealMolalSoln.cpp.
References Phase::density(), and Cantera::warn_deprecated().
|
virtual |
Overridden setMolarDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition.
rho | Input Density |
Reimplemented from Phase.
Definition at line 153 of file IdealMolalSoln.cpp.
References Phase::molarDensity(), and Cantera::warn_deprecated().
|
virtual |
The isothermal compressibility. Units: 1/Pa.
The isothermal compressibility is defined as
\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]
It's equal to zero for this model, since the molar volume doesn't change with pressure or temperature.
Reimplemented from ThermoPhase.
Definition at line 132 of file IdealMolalSoln.cpp.
|
virtual |
The thermal expansion coefficient. Units: 1/K.
The thermal expansion coefficient is defined as
\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]
It's equal to zero for this model, since the molar volume doesn't change with pressure or temperature.
Reimplemented from ThermoPhase.
Definition at line 137 of file IdealMolalSoln.cpp.
|
virtual |
Returns the units of the "standard concentration" for this phase.
These are the units of the values returned by the functions getActivityConcentrations() and standardConcentration(), which can vary between different ThermoPhase-derived classes, or change within a single class depending on input options. See the documentation for standardConcentration() for the derived class for specific details.
Reimplemented from ThermoPhase.
Definition at line 166 of file IdealMolalSoln.cpp.
References IdealMolalSoln::m_formGC, and Phase::nDim().
|
virtual |
This method returns an array of generalized concentrations.
\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.
c | Output array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase. |
Reimplemented from MolalityVPSSTP.
Definition at line 176 of file IdealMolalSoln.cpp.
References IdealMolalSoln::getActivities(), IdealMolalSoln::m_formGC, Phase::m_kk, and IdealMolalSoln::standardConcentration().
|
virtual |
Return the standard concentration for the kth species.
The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (e.g. surface species of different sizes), this method may be called with an optional parameter indicating the species.
k | Optional parameter indicating the species. The default is to assume this refers to species 0. |
Reimplemented from MolalityVPSSTP.
Definition at line 193 of file IdealMolalSoln.cpp.
References IdealMolalSoln::m_formGC, and IdealMolalSoln::m_speciesMolarVolume.
Referenced by IdealMolalSoln::getActivityConcentrations().
|
virtual |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
(note solvent is on molar scale)
ac | Output activity coefficients. Length: m_kk. |
Reimplemented from MolalityVPSSTP.
Definition at line 209 of file IdealMolalSoln.cpp.
References VPStandardStateTP::_updateStandardStateThermo(), MolalityVPSSTP::calcMolalities(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, Phase::m_kk, MolalityVPSSTP::m_molalities, MolalityVPSSTP::m_xmolSolventMIN, Phase::moleFraction(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().
Referenced by IdealMolalSoln::getActivityConcentrations().
|
virtual |
Get the array of non-dimensional molality-based activity coefficients at the current solution temperature, pressure, and solution concentration.
(note solvent is on molar scale. The solvent molar based activity coefficient is returned).
acMolality | Output Molality-based activity coefficients. Length: m_kk. |
Reimplemented from MolalityVPSSTP.
Definition at line 238 of file IdealMolalSoln.cpp.
References IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, Phase::m_kk, MolalityVPSSTP::m_xmolSolventMIN, Phase::moleFraction(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().
|
virtual |
Get the species chemical potentials: Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution.
\[ \mu_k = \mu^{o}_k(T,P) + R T \ln(\frac{m_k}{m^\Delta}) \]
\[ \mu_w = \mu^{o}_w(T,P) + R T ((X_w - 1.0) / X_w) \]
\( w \) refers to the solvent species. \( X_w \) is the mole fraction of the solvent. \( m_k \) is the molality of the kth solute. \( m^\Delta \) is 1 gmol solute per kg solvent.
Units: J/kmol.
mu | Output vector of species chemical potentials. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 260 of file IdealMolalSoln.cpp.
References MolalityVPSSTP::calcMolalities(), VPStandardStateTP::getStandardChemPotentials(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, Phase::m_kk, MolalityVPSSTP::m_molalities, Phase::moleFraction(), ThermoPhase::RT(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), and Cantera::SmallNumber.
Referenced by IdealMolalSoln::gibbs_mole().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol). For this phase, the partial molar enthalpies are equal to the species standard state enthalpies.
\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]
The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
hbar | Output vector of partial molar enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 298 of file IdealMolalSoln.cpp.
References VPStandardStateTP::getEnthalpy_RT(), Phase::m_kk, and ThermoPhase::RT().
Referenced by IdealMolalSoln::enthalpy_mole(), and IdealMolalSoln::intEnergy_mole().
|
virtual |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol.
Maxwell's equations provide an insight in how to calculate this (p.215 Smith and Van Ness)
\[ \frac{d(\mu_k)}{dT} = -\bar{s}_i \]
For this phase, the partial molar entropies are equal to the standard state species entropies plus the ideal molal solution contribution.
\[ \bar{s}_k(T,P) = s^0_k(T) - R \ln( \frac{m_k}{m^{\triangle}} ) \]
\[ \bar{s}_w(T,P) = s^0_w(T) - R ((X_w - 1.0) / X_w) \]
The subscript, w, refers to the solvent species. \( X_w \) is the mole fraction of solvent. The reference-state pure-species entropies, \( s^0_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
sbar | Output vector of partial molar entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 306 of file IdealMolalSoln.cpp.
References MolalityVPSSTP::calcMolalities(), Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, Phase::m_kk, MolalityVPSSTP::m_molalities, Phase::moleFraction(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), and Cantera::SmallNumber.
Referenced by IdealMolalSoln::entropy_mole().
|
virtual |
For this solution, the partial molar volumes are equal to the constant species molar volumes.
Units: m^3 kmol-1.
vbar | Output vector of partial molar volumes. |
Reimplemented from ThermoPhase.
Definition at line 335 of file IdealMolalSoln.cpp.
References VPStandardStateTP::getStandardVolumes().
Referenced by IdealMolalSoln::calcDensity().
|
virtual |
Partial molar heat capacity of the solution:. UnitsL J/kmol/K.
The kth partial molar heat capacity is equal to the temperature derivative of the partial molar enthalpy of the kth species in the solution at constant P and composition (p. 220 Smith and Van Ness).
\[ \bar{Cp}_k(T,P) = {Cp}^0_k(T) \]
For this solution, this is equal to the reference state heat capacities.
Units: J/kmol/K
cpbar | Output vector of partial molar heat capacities. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 340 of file IdealMolalSoln.cpp.
References Cantera::GasConstant, VPStandardStateTP::getCp_R(), and Phase::m_kk.
Referenced by IdealMolalSoln::cp_mole().
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from MolalityVPSSTP.
Definition at line 352 of file IdealMolalSoln.cpp.
References VPStandardStateTP::addSpecies(), IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::m_speciesMolarVolume, and IdealMolalSoln::m_tmpV.
|
virtual |
Import and initialize a ThermoPhase object using an XML tree.
Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.
The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented from ThermoPhase.
Definition at line 363 of file IdealMolalSoln.cpp.
References XML_Node::attrib(), XML_Node::child(), Cantera::getFloat(), XML_Node::hasChild(), XML_Node::id(), IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_slopefCut_, IdealMolalSoln::IMS_slopegCut_, IdealMolalSoln::IMS_X_o_cutoff_, ThermoPhase::initThermoXML(), IdealMolalSoln::setCutoffModel(), and IdealMolalSoln::setStandardConcentrationModel().
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from MolalityVPSSTP.
Definition at line 422 of file IdealMolalSoln.cpp.
References IdealMolalSoln::calcIMSCutoffParams_(), AnyMap::hasKey(), IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_slopefCut_, IdealMolalSoln::IMS_slopegCut_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, MolalityVPSSTP::initThermo(), ThermoPhase::m_input, IdealMolalSoln::m_speciesMolarVolume, PDSS::molarVolume(), Phase::nSpecies(), IdealMolalSoln::setCutoffModel(), MolalityVPSSTP::setMoleFSolventMin(), and IdealMolalSoln::setStandardConcentrationModel().
void setStandardConcentrationModel | ( | const std::string & | model | ) |
Set the standard concentration model.
Must be one of 'unity', 'molar_volume', or 'solvent_volume'. The default is 'solvent_volume'.
model | ActivityConc | StandardConc |
---|---|---|
unity | \( {m_k}/ { m^{\Delta}}\) | \( 1.0 \) |
molar_volume | \( m_k / (m^{\Delta} V_k)\) | \( 1.0 / V_k \) |
solvent_volume | \( m_k / (m^{\Delta} V^0_0)\) | \( 1.0 / V^0_0\) |
Definition at line 461 of file IdealMolalSoln.cpp.
References Cantera::caseInsensitiveEquals(), and IdealMolalSoln::m_formGC.
Referenced by IdealMolalSoln::initThermo(), and IdealMolalSoln::initThermoXML().
void setCutoffModel | ( | const std::string & | model | ) |
Set cutoff model. Must be one of 'none', 'poly', or 'polyExp'.
Definition at line 477 of file IdealMolalSoln.cpp.
References Cantera::caseInsensitiveEquals(), and IdealMolalSoln::IMS_typeCutoff_.
Referenced by IdealMolalSoln::initThermo(), and IdealMolalSoln::initThermoXML().
double speciesMolarVolume | ( | int | k | ) | const |
void getSpeciesMolarVolumes | ( | double * | smv | ) | const |
Fill in a return vector containing the species molar volumes units - \( m^3 kmol^{-1} \)
smv | Output vector of species molar volumes. |
|
private |
This function will be called to update the internally stored natural logarithm of the molality activity coefficients.
Normally the solutes are all zero. However, sometimes they are not, due to stability schemes.
gamma_k_molar = gamma_k_molal / Xmol_solvent
gamma_o_molar = gamma_o_molal
Definition at line 493 of file IdealMolalSoln.cpp.
References MolalityVPSSTP::calcMolalities(), IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_lnActCoeffMolal_, IdealMolalSoln::IMS_typeCutoff_, IdealMolalSoln::IMS_X_o_cutoff_, Phase::m_kk, MolalityVPSSTP::m_xmolSolventMIN, and Phase::moleFraction().
Referenced by IdealMolalSoln::getActivities(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::getMolalityActivityCoefficients(), and IdealMolalSoln::getPartialMolarEntropies().
|
private |
Calculate parameters for cutoff treatments of activity coefficients.
Some cutoff treatments for the activity coefficients actually require some calculations to create a consistent treatment.
This routine is called during the setup to calculate these parameters
Definition at line 594 of file IdealMolalSoln.cpp.
References IdealMolalSoln::IMS_gamma_k_min_, IdealMolalSoln::IMS_gamma_o_min_, IdealMolalSoln::IMS_slopefCut_, IdealMolalSoln::IMS_slopegCut_, and IdealMolalSoln::IMS_X_o_cutoff_.
Referenced by IdealMolalSoln::initThermo().
|
protected |
Species molar volume \( m^3 kmol^{-1} \).
Definition at line 456 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::addSpecies(), IdealMolalSoln::initThermo(), and IdealMolalSoln::standardConcentration().
|
protected |
The standard concentrations can have one of three different forms: 0 = 'unity', 1 = 'molar_volume', 2 = 'solvent_volume'.
See setStandardConcentrationModel().
Definition at line 463 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::getActivityConcentrations(), IdealMolalSoln::setStandardConcentrationModel(), IdealMolalSoln::standardConcentration(), and IdealMolalSoln::standardConcentrationUnits().
|
protected |
Cutoff type.
Definition at line 466 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::getActivities(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::getMolalityActivityCoefficients(), IdealMolalSoln::getPartialMolarEntropies(), IdealMolalSoln::initThermo(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), and IdealMolalSoln::setCutoffModel().
|
mutableprivate |
vector of size m_kk, used as a temporary holding area.
Definition at line 470 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::addSpecies(), IdealMolalSoln::calcDensity(), IdealMolalSoln::cp_mole(), IdealMolalSoln::enthalpy_mole(), IdealMolalSoln::entropy_mole(), IdealMolalSoln::gibbs_mole(), and IdealMolalSoln::intEnergy_mole().
|
mutableprivate |
Logarithm of the molal activity coefficients.
Normally these are all one. However, stability schemes will change that
Definition at line 476 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::addSpecies(), IdealMolalSoln::getActivities(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::getMolalityActivityCoefficients(), IdealMolalSoln::getPartialMolarEntropies(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().
doublereal IMS_X_o_cutoff_ |
value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process;
Definition at line 480 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::getChemPotentials(), IdealMolalSoln::initThermo(), IdealMolalSoln::initThermoXML(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().
doublereal IMS_gamma_o_min_ |
gamma_o value for the cutoff process at the zero solvent point
Definition at line 483 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::initThermo(), IdealMolalSoln::initThermoXML(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().
doublereal IMS_gamma_k_min_ |
gamma_k minimum for the cutoff process at the zero solvent point
Definition at line 486 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::initThermo(), IdealMolalSoln::initThermoXML(), and IdealMolalSoln::s_updateIMS_lnMolalityActCoeff().
doublereal IMS_slopefCut_ |
Parameter in the polyExp cutoff treatment.
This is the slope of the f function at the zero solvent point. Default value is 0.6
Definition at line 490 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::initThermo(), and IdealMolalSoln::initThermoXML().
doublereal IMS_slopegCut_ |
Parameter in the polyExp cutoff treatment.
This is the slope of the g function at the zero solvent point. Default value is 0.0
Definition at line 494 of file IdealMolalSoln.h.
Referenced by IdealMolalSoln::calcIMSCutoffParams_(), IdealMolalSoln::initThermo(), and IdealMolalSoln::initThermoXML().