Sum of Arrhenius terms.
More...
#include <Func1.h>
|
| Arrhenius1 (size_t n, const double *c) |
|
| Arrhenius1 (const Arrhenius1 &b) |
|
Arrhenius1 & | operator= (const Arrhenius1 &right) |
|
virtual Func1 & | duplicate () const |
| Duplicate the current function. More...
|
|
virtual doublereal | eval (doublereal t) const |
| Evaluate the function. More...
|
|
| Func1 (const Func1 &right) |
|
Func1 & | operator= (const Func1 &right) |
|
virtual int | ID () const |
|
doublereal | operator() (doublereal t) const |
| Calls method eval to evaluate the function. More...
|
|
virtual Func1 & | derivative () const |
| Creates a derivative to the current function. More...
|
|
bool | isIdentical (Func1 &other) const |
| Routine to determine if two functions are the same. More...
|
|
virtual doublereal | isProportional (TimesConstant1 &other) |
|
virtual doublereal | isProportional (Func1 &other) |
|
virtual std::string | write (const std::string &arg) const |
|
doublereal | c () const |
| accessor function for the stored constant More...
|
|
void | setC (doublereal c) |
| Function to set the stored constant. More...
|
|
Func1 & | func1 () const |
| accessor function for m_f1 More...
|
|
Func1 & | func2 () const |
| accessor function for m_f2 More...
|
|
virtual int | order () const |
| Return the order of the function, if it makes sense. More...
|
|
Func1 & | func1_dup () const |
|
Func1 & | func2_dup () const |
|
Func1 * | parent () const |
|
void | setParent (Func1 *p) |
|
Sum of Arrhenius terms.
\[ f(T) = \sum_{n=1}^N A_n T^b_n \exp(-E_n/T) \]
Definition at line 979 of file Func1.h.
◆ duplicate()
virtual Func1& duplicate |
( |
| ) |
const |
|
inlinevirtual |
Duplicate the current function.
This duplicates the current function, returning a reference to the newly created function.
Reimplemented from Func1.
Definition at line 1012 of file Func1.h.
◆ eval()
virtual doublereal eval |
( |
doublereal |
t | ) |
const |
|
inlinevirtual |
Evaluate the function.
Reimplemented from Func1.
Definition at line 1017 of file Func1.h.
The documentation for this class was generated from the following file: