Cantera  2.5.1
MultiSpeciesThermo.h
Go to the documentation of this file.
1 /**
2  * @file MultiSpeciesThermo.h
3  * Header for a general species thermodynamic property manager for a phase (see
4  * \link Cantera::MultiSpeciesThermo MultiSpeciesThermo\endlink).
5  */
6 
7 // This file is part of Cantera. See License.txt in the top-level directory or
8 // at https://cantera.org/license.txt for license and copyright information.
9 
10 #ifndef CT_MULTISPECIESTHERMO_H
11 #define CT_MULTISPECIESTHERMO_H
12 
14 
15 namespace Cantera
16 {
17 
18 //! A species thermodynamic property manager for a phase.
19 /*!
20  * This is a general manager that can handle a wide variety of species
21  * thermodynamic polynomials for individual species and compute their
22  * nondimensional, reference-state thermodynamic properties (i.e. as a function
23  * of temperature only).
24  *
25  * The ThermoPhase object relies on MultiSpeciesThermo to calculate the
26  * thermodynamic properties of the reference state for all of the species in the
27  * phase, for a range of temperatures. Note, the pressure dependence of the
28  * species thermodynamic functions is not handled at this level. Species using
29  * the same parameterization are grouped together in order to minimize the
30  * operation count and achieve better efficiency.
31  *
32  * The most important member function for the MultiSpeciesThermo class is the
33  * member function MultiSpeciesThermo::update(). The function calculates the
34  * values of Cp/R, H/RT, and S/R for all of the species at once at the specified
35  * temperature.
36  *
37  * Usually, all of the species in a phase are installed into a
38  * MultiSpeciesThermo object. However, there is no requirement that a
39  * MultiSpeciesThermo object handles all of the species in a phase. The member
40  * function
41  * \link MultiSpeciesThermo::install_STIT() install_STIT()\endlink
42  * is called to install each species into the MultiSpeciesThermo object.
43  *
44  * @ingroup spthermo
45  */
47 {
48 public:
49  //! Constructor
51 
52  // MultiSpeciesThermo objects are not copyable or assignable
53  MultiSpeciesThermo(const MultiSpeciesThermo& b) = delete;
54  MultiSpeciesThermo& operator=(const MultiSpeciesThermo& b) = delete;
55  virtual ~MultiSpeciesThermo() {}
56 
57  //! Install a new species thermodynamic property parameterization for one
58  //! species.
59  /*!
60  * @param index Index of the species being installed
61  * @param stit Pointer to the SpeciesThermoInterpType object
62  * This will set up the thermo for one species
63  */
64  virtual void install_STIT(size_t index,
65  shared_ptr<SpeciesThermoInterpType> stit);
66 
67  //! Modify the species thermodynamic property parameterization for a species
68  /*!
69  * @param index Index of the species being installed
70  * @param spec Pointer to the SpeciesThermoInterpType object
71  */
72  virtual void modifySpecies(size_t index,
73  shared_ptr<SpeciesThermoInterpType> spec);
74 
75  //! Like update_one, but without applying offsets to the output pointers
76  /*!
77  * @param k species index
78  * @param T Temperature (Kelvin)
79  * @param cp_R Dimensionless heat capacity
80  * @param h_RT Dimensionless enthalpy
81  * @param s_R Dimensionless entropy
82  */
83  virtual void update_single(size_t k, double T, double* cp_R,
84  double* h_RT, double* s_R) const;
85 
86  //! Compute the reference-state properties for all species.
87  /*!
88  * Given temperature T in K, this method updates the values of the non-
89  * dimensional heat capacity at constant pressure, enthalpy, and entropy,
90  * at the reference pressure, Pref of each of the standard states.
91  *
92  * @param T Temperature (Kelvin)
93  * @param cp_R Vector of Dimensionless heat capacities. (length m_kk).
94  * @param h_RT Vector of Dimensionless enthalpies. (length m_kk).
95  * @param s_R Vector of Dimensionless entropies. (length m_kk).
96  */
97  virtual void update(doublereal T, doublereal* cp_R,
98  doublereal* h_RT, doublereal* s_R) const;
99 
100  //! Minimum temperature.
101  /*!
102  * If no argument is supplied, this method returns the minimum temperature
103  * for which \e all parameterizations are valid. If an integer index k is
104  * supplied, then the value returned is the minimum temperature for
105  * species k in the phase.
106  *
107  * @param k Species index
108  */
109  virtual doublereal minTemp(size_t k=npos) const;
110 
111  //! Maximum temperature.
112  /*!
113  * If no argument is supplied, this method returns the maximum temperature
114  * for which \e all parameterizations are valid. If an integer index k is
115  * supplied, then the value returned is the maximum temperature for
116  * parameterization k.
117  *
118  * @param k Species Index
119  */
120  virtual doublereal maxTemp(size_t k=npos) const;
121 
122  //! The reference-state pressure for species k.
123  /*!
124  * Returns the reference state pressure in Pascals for species k. If k is
125  * left out of the argument list, it returns the reference state pressure
126  * for the first species.
127  *
128  * @param k Species Index
129  */
130  virtual doublereal refPressure(size_t k=npos) const;
131 
132  //! This utility function reports the type of parameterization used for the
133  //! species with index number *index*.
134  /*!
135  * @param index Species index
136  */
137  virtual int reportType(size_t index) const;
138 
139  //! This utility function reports back the type of parameterization and
140  //! all of the parameters for the species with index number *index*.
141  /*!
142  * @param index Species index
143  * @param type Integer type of the standard type
144  * @param c Vector of coefficients used to set the
145  * parameters for the standard state.
146  * @param minTemp output - Minimum temperature
147  * @param maxTemp output - Maximum temperature
148  * @param refPressure output - reference pressure (Pa).
149  */
150  virtual void reportParams(size_t index, int& type,
151  doublereal* const c,
152  doublereal& minTemp,
153  doublereal& maxTemp,
154  doublereal& refPressure) const;
155 
156  //! Report the 298 K Heat of Formation of the standard state of one species
157  //! (J kmol-1)
158  /*!
159  * The 298K Heat of Formation is defined as the enthalpy change to create
160  * the standard state of the species from its constituent elements in their
161  * standard states at 298 K and 1 bar.
162  *
163  * @param k species index
164  * @returns the current value of the Heat of Formation at 298K and 1 bar
165  */
166  virtual doublereal reportOneHf298(const size_t k) const;
167 
168  //! Modify the value of the 298 K Heat of Formation of the standard state of
169  //! one species in the phase (J kmol-1)
170  /*!
171  * The 298K heat of formation is defined as the enthalpy change to create
172  * the standard state of the species from its constituent elements in their
173  * standard states at 298 K and 1 bar.
174  *
175  * @param k Index of the species
176  * @param Hf298New Specify the new value of the Heat of Formation at
177  * 298K and 1 bar. units = J/kmol.
178  */
179  virtual void modifyOneHf298(const size_t k, const doublereal Hf298New);
180 
181  //! Restore the original heat of formation of one or more species
182  /*!
183  * Resets changes made by modifyOneHf298(). If the species index is not
184  * specified, the heats of formation for all species are restored.
185  */
186  virtual void resetHf298(const size_t k);
187 
188  //! Check if data for all species (0 through nSpecies-1) has been installed.
189  bool ready(size_t nSpecies);
190 
191 private:
192  //! Provide the SpeciesThermoInterpType object
193  /*!
194  * @param k species index
195  * @return pointer to the SpeciesThermoInterpType object.
196  */
198  const SpeciesThermoInterpType* provideSTIT(size_t k) const;
199 
200 protected:
201  //! Mark species *k* as having its thermodynamic data installed
202  void markInstalled(size_t k);
203 
204  typedef std::pair<size_t, shared_ptr<SpeciesThermoInterpType> > index_STIT;
205  typedef std::map<int, std::vector<index_STIT> > STIT_map;
206  typedef std::map<int, vector_fp> tpoly_map;
207 
208  //! This is the main data structure, which contains the
209  //! SpeciesThermoInterpType objects, sorted by the parameterization type.
210  //! `m_sp[i]` is the vector of [species index, STIT] pairs which use
211  //! parameterization `i`.
212  STIT_map m_sp;
213 
214  //! Temperature polynomials for each thermo parameterization
215  mutable tpoly_map m_tpoly;
216 
217  //! Map from species index to location within #m_sp, such that
218  //! `m_sp[m_speciesLoc[k].first][m_speciesLoc[k].second]` is the
219  //! SpeciesThermoInterpType object for species `k`.
220  std::map<size_t, std::pair<int, size_t> > m_speciesLoc;
221 
222  //! Maximum value of the lowest temperature
223  doublereal m_tlow_max;
224 
225  //! Minimum value of the highest temperature
226  doublereal m_thigh_min;
227 
228  //! reference pressure (Pa)
229  doublereal m_p0;
230 
231  //! indicates if data for species has been installed
232  std::vector<bool> m_installed;
233 };
234 
235 }
236 
237 #endif
Pure Virtual Base class for individual species reference state thermodynamic managers and text for th...
A species thermodynamic property manager for a phase.
bool ready(size_t nSpecies)
Check if data for all species (0 through nSpecies-1) has been installed.
virtual doublereal minTemp(size_t k=npos) const
Minimum temperature.
STIT_map m_sp
This is the main data structure, which contains the SpeciesThermoInterpType objects,...
SpeciesThermoInterpType * provideSTIT(size_t k)
Provide the SpeciesThermoInterpType object.
virtual void install_STIT(size_t index, shared_ptr< SpeciesThermoInterpType > stit)
Install a new species thermodynamic property parameterization for one species.
virtual doublereal refPressure(size_t k=npos) const
The reference-state pressure for species k.
void markInstalled(size_t k)
Mark species k as having its thermodynamic data installed.
std::vector< bool > m_installed
indicates if data for species has been installed
virtual void modifyOneHf298(const size_t k, const doublereal Hf298New)
Modify the value of the 298 K Heat of Formation of the standard state of one species in the phase (J ...
virtual void modifySpecies(size_t index, shared_ptr< SpeciesThermoInterpType > spec)
Modify the species thermodynamic property parameterization for a species.
virtual int reportType(size_t index) const
This utility function reports the type of parameterization used for the species with index number ind...
virtual doublereal reportOneHf298(const size_t k) const
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
doublereal m_thigh_min
Minimum value of the highest temperature.
virtual void update(doublereal T, doublereal *cp_R, doublereal *h_RT, doublereal *s_R) const
Compute the reference-state properties for all species.
virtual void reportParams(size_t index, int &type, doublereal *const c, doublereal &minTemp, doublereal &maxTemp, doublereal &refPressure) const
This utility function reports back the type of parameterization and all of the parameters for the spe...
tpoly_map m_tpoly
Temperature polynomials for each thermo parameterization.
std::map< size_t, std::pair< int, size_t > > m_speciesLoc
Map from species index to location within m_sp, such that m_sp[m_speciesLoc[k].first][m_speciesLoc[k]...
doublereal m_p0
reference pressure (Pa)
virtual void update_single(size_t k, double T, double *cp_R, double *h_RT, double *s_R) const
Like update_one, but without applying offsets to the output pointers.
virtual doublereal maxTemp(size_t k=npos) const
Maximum temperature.
doublereal m_tlow_max
Maximum value of the lowest temperature.
virtual void resetHf298(const size_t k)
Restore the original heat of formation of one or more species.
Abstract Base class for the thermodynamic manager for an individual species' reference state.
const size_t npos
index returned by functions to indicate "no position"
Definition: ct_defs.h:188
Namespace for the Cantera kernel.
Definition: AnyMap.cpp:264