Cantera
2.5.1
|
Implementation of a multi-species Redlich-Kwong equation of state. More...
#include <RedlichKwongMFTP.h>
Public Member Functions | |
Constructors and Duplicators | |
RedlichKwongMFTP () | |
Base constructor. More... | |
RedlichKwongMFTP (const std::string &infile, const std::string &id="") | |
Construct a RedlichKwongMFTP object from an input file. More... | |
RedlichKwongMFTP (XML_Node &phaseRef, const std::string &id="") | |
Construct and initialize a RedlichKwongMFTP object directly from an XML database. More... | |
virtual std::string | type () const |
String indicating the thermodynamic model implemented. More... | |
Molar Thermodynamic properties | |
virtual doublereal | enthalpy_mole () const |
Molar enthalpy. Units: J/kmol. More... | |
virtual doublereal | entropy_mole () const |
Molar entropy. Units: J/kmol/K. More... | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure. Units: J/kmol/K. More... | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. More... | |
Partial Molar Properties of the Solution | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials. More... | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. More... | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Return an array of partial molar heat capacities for the species in the mixture. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
Return an array of partial molar volumes for the species in the mixture. More... | |
Critical State Properties. | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critVolume () const |
Critical volume (m3/kmol). More... | |
virtual doublereal | critCompressibility () const |
Critical compressibility (unitless). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
Public Member Functions inherited from MixtureFugacityTP | |
MixtureFugacityTP () | |
Constructor. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual void | setForcedSolutionBranch (int solnBranch) |
Set the solution branch to force the ThermoPhase to exist on one branch or another. More... | |
virtual int | forcedSolutionBranch () const |
Report the solution branch which the solution is restricted to. More... | |
virtual int | reportSolnBranchActual () const |
Report the solution branch which the solution is actually on. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. More... | |
int | phaseState (bool checkState=false) const |
Returns the Phase State flag for the current state of the object. More... | |
doublereal | calculatePsat (doublereal TKelvin, doublereal &molarVolGas, doublereal &molarVolLiquid) |
Calculate the saturation pressure at the current mixture content for the given temperature. More... | |
virtual doublereal | satPressure (doublereal TKelvin) |
Calculate the saturation pressure at the current mixture content for the given temperature. More... | |
virtual void | getStandardChemPotentials (doublereal *mu) const |
Get the array of chemical potentials at unit activity. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution. More... | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the pure Gibbs free energies of each species. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of each species in their standard states at the current T and P of the solution. More... | |
virtual void | setPressure (doublereal p) |
Set the internally stored pressure (Pa) at constant temperature and composition. More... | |
virtual void | setState_TP (doublereal T, doublereal pres) |
Set the temperature (K) and pressure (Pa) More... | |
virtual void | setState_TR (doublereal T, doublereal rho) |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More... | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
virtual std::string | phaseOfMatter () const |
String indicating the mechanical phase of the matter in this Phase. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
doublereal | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const size_t k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. More... | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy. Units: J/kmol. More... | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs function. Units: J/kmol. More... | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual Units | standardConcentrationUnits () const |
Returns the units of the "standard concentration" for this phase. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. Units: J/kg. More... | |
doublereal | entropy_mass () const |
Specific entropy. Units: J/kg/K. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. More... | |
doublereal | RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (double h, double p, double tol=1e-9) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (double u, double v, double tol=1e-9) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (double s, double p, double tol=1e-9) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (double s, double v, double tol=1e-9) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). More... | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). More... | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). More... | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). More... | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More... | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_RP (doublereal rho, doublereal p) |
Set the density (kg/m**3) and pressure (Pa) at constant composition. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const doublereal *x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const compositionMap &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const std::string &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const doublereal *y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const compositionMap &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const std::string &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState (const AnyMap &state) |
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More... | |
void | setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
void | setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More... | |
double | mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
double | mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const |
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More... | |
void | setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
void | setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) |
Set the mixture composition according to the equivalence ratio. More... | |
double | equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More... | |
double | equivalenceRatio () const |
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More... | |
void | equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. More... | |
virtual void | setToEquilState (const doublereal *mu_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
void | setState_TPQ (double T, double P, double Q) |
Set the temperature, pressure, and vapor fraction (quality). More... | |
virtual void | modifySpecies (size_t k, shared_ptr< Species > spec) |
Modify the thermodynamic data associated with a species. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual const MultiSpeciesThermo & | speciesThermo (int k=-1) const |
virtual void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
virtual void | setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) |
Set equation of state parameters from an AnyMap phase description. More... | |
const AnyMap & | input () const |
Access input data associated with the phase description. More... | |
AnyMap & | input () |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true, doublereal threshold=-1e-14) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
double | stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
double | stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const |
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
Phase (const Phase &)=delete | |
Phase & | operator= (const Phase &)=delete |
XML_Node & | xml () const |
Returns a const reference to the XML_Node that describes the phase. More... | |
void | setXMLdata (XML_Node &xmlPhase) |
Stores the XML tree information for the current phase. More... | |
virtual bool | isPure () const |
Return whether phase represents a pure (single species) substance. More... | |
virtual bool | hasPhaseTransition () const |
Return whether phase represents a substance with phase transitions. More... | |
virtual bool | isCompressible () const |
Return whether phase represents a compressible substance. More... | |
virtual std::map< std::string, size_t > | nativeState () const |
Return a map of properties defining the native state of a substance. More... | |
virtual std::vector< std::string > | fullStates () const |
Return a vector containing full states defining a phase. More... | |
virtual std::vector< std::string > | partialStates () const |
Return a vector of settable partial property sets within a phase. More... | |
virtual size_t | stateSize () const |
Return size of vector defining internal state of the phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase. More... | |
virtual void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
virtual void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
void | getCharges (double *charges) const |
Copy the vector of species charges into array charges. More... | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. More... | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
bool | caseSensitiveSpecies () const |
Returns true if case sensitive species names are enforced. More... | |
void | setCaseSensitiveSpecies (bool cflag=true) |
Set flag that determines whether case sensitive species are enforced in look-up operations, e.g. More... | |
virtual void | setRoot (std::shared_ptr< Solution > root) |
Set root Solution holding all phase information. More... | |
vector_fp | getCompositionFromMap (const compositionMap &comp) const |
Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More... | |
void | massFractionsToMoleFractions (const double *Y, double *X) const |
Converts a mixture composition from mole fractions to mass fractions. More... | |
void | moleFractionsToMassFractions (const double *X, double *Y) const |
Converts a mixture composition from mass fractions to mole fractions. More... | |
std::string | id () const |
Return the string id for the phase. More... | |
void | setID (const std::string &id) |
Set the string id for the phase. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
void | setMoleFractionsByName (const compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (const compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, const compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
compositionMap | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. More... | |
double | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
double | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
compositionMap | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. More... | |
double | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
double | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (double *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions (const double *const x) |
Set the mole fractions to the specified values. More... | |
virtual void | setMoleFractions_NoNorm (const double *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (double *const y) const |
Get the species mass fractions. More... | |
const double * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
virtual void | setMassFractions (const double *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const double *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
void | getConcentrations (double *const c) const |
Get the species concentrations (kmol/m^3). More... | |
double | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrations (const double *const conc) |
Set the concentrations to the specified values within the phase. More... | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. More... | |
doublereal | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. More... | |
doublereal | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. More... | |
const double * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual double | density () const |
Density (kg/m^3). More... | |
double | molarDensity () const |
Molar density (kmol/m^3). More... | |
double | molarVolume () const |
Molar volume (m^3/kmol). More... | |
virtual void | setDensity (const double density_) |
Set the internally stored density (kg/m^3) of the phase. More... | |
virtual void | setMolarDensity (const double molarDensity) |
Set the internally stored molar density (kmol/m^3) of the phase. More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_X (const vector_fp &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
size_t | addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. More... | |
void | addSpeciesAlias (const std::string &name, const std::string &alias) |
Add a species alias (i.e. More... | |
virtual std::vector< std::string > | findIsomers (const compositionMap &compMap) const |
Return a vector with isomers names matching a given composition map. More... | |
virtual std::vector< std::string > | findIsomers (const std::string &comp) const |
Return a vector with isomers names matching a given composition string. More... | |
shared_ptr< Species > | species (const std::string &name) const |
Return the Species object for the named species. More... | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. More... | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. More... | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. More... | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. More... | |
Initialization Methods - For Internal use | |
int | m_formTempParam |
Form of the temperature parameterization. More... | |
doublereal | m_b_current |
Value of b in the equation of state. More... | |
doublereal | m_a_current |
Value of a in the equation of state. More... | |
vector_fp | a_vec_Curr_ |
vector_fp | b_vec_Curr_ |
Array2D | a_coeff_vec |
int | NSolns_ |
doublereal | Vroot_ [3] |
vector_fp | m_pp |
Temporary storage - length = m_kk. More... | |
vector_fp | m_tmpV |
Temporary storage - length = m_kk. More... | |
vector_fp | m_partialMolarVolumes |
doublereal | dpdV_ |
The derivative of the pressure wrt the volume. More... | |
doublereal | dpdT_ |
The derivative of the pressure wrt the temperature. More... | |
vector_fp | dpdni_ |
Vector of derivatives of pressure wrt mole number. More... | |
static const doublereal | omega_a = 4.27480233540E-01 |
Omega constant for a -> value of a in terms of critical properties. More... | |
static const doublereal | omega_b = 8.66403499650E-02 |
Omega constant for b. More... | |
static const doublereal | omega_vc = 3.33333333333333E-01 |
Omega constant for the critical molar volume. More... | |
virtual bool | addSpecies (shared_ptr< Species > spec) |
virtual void | setParametersFromXML (const XML_Node &thermoNode) |
Set equation of state parameter values from XML entries. More... | |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object using an XML tree. More... | |
virtual void | initThermo () |
Initialize the ThermoPhase object after all species have been set up. More... | |
virtual std::vector< double > | getCoeff (const std::string &iName) |
Retrieve a and b coefficients by looking up tabulated critical parameters. More... | |
void | setSpeciesCoeffs (const std::string &species, double a0, double a1, double b) |
Set the pure fluid interaction parameters for a species. More... | |
void | setBinaryCoeffs (const std::string &species_i, const std::string &species_j, double a0, double a1) |
Set values for the interaction parameter between two species. More... | |
virtual doublereal | liquidVolEst (doublereal TKelvin, doublereal &pres) const |
Estimate for the molar volume of the liquid. More... | |
virtual doublereal | densityCalc (doublereal TKelvin, doublereal pressure, int phase, doublereal rhoguess) |
Calculates the density given the temperature and the pressure and a guess at the density. More... | |
virtual doublereal | densSpinodalLiquid () const |
Return the value of the density at the liquid spinodal point (on the liquid side) for the current temperature. More... | |
virtual doublereal | densSpinodalGas () const |
Return the value of the density at the gas spinodal point (on the gas side) for the current temperature. More... | |
virtual doublereal | pressureCalc (doublereal TKelvin, doublereal molarVol) const |
Calculate the pressure given the temperature and the molar volume. More... | |
virtual doublereal | dpdVCalc (doublereal TKelvin, doublereal molarVol, doublereal &presCalc) const |
Calculate the pressure and the pressure derivative given the temperature and the molar volume. More... | |
void | pressureDerivatives () const |
Calculate dpdV and dpdT at the current conditions. More... | |
virtual void | updateMixingExpressions () |
void | updateAB () |
Update the a and b parameters. More... | |
void | calculateAB (doublereal temp, doublereal &aCalc, doublereal &bCalc) const |
Calculate the a and the b parameters given the temperature. More... | |
doublereal | da_dt () const |
void | calcCriticalConditions (doublereal a, doublereal b, doublereal a0_coeff, doublereal aT_coeff, doublereal &pc, doublereal &tc, doublereal &vc) const |
int | NicholsSolve (double TKelvin, double pres, doublereal a, doublereal b, doublereal Vroot[3]) const |
Solve the cubic equation of state. More... | |
virtual doublereal | sresid () const |
Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture. More... | |
virtual doublereal | hresid () const |
Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture. More... | |
void | readXMLPureFluid (XML_Node &pureFluidParam) |
Read the pure species RedlichKwong input parameters. More... | |
void | readXMLCrossFluid (XML_Node &pureFluidParam) |
Read the cross species RedlichKwong input parameters. More... | |
Mechanical Properties | |
virtual doublereal | pressure () const |
Return the thermodynamic pressure (Pa). More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns an array of generalized concentrations. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration. More... | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | calcDensity () |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More... | |
virtual void | setTemperature (const doublereal temp) |
Set the temperature of the phase. More... | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. More... | |
Additional Inherited Members | |
Protected Member Functions inherited from MixtureFugacityTP | |
doublereal | z () const |
Calculate the value of z. More... | |
virtual doublereal | psatEst (doublereal TKelvin) const |
Estimate for the saturation pressure. More... | |
int | corr0 (doublereal TKelvin, doublereal pres, doublereal &densLiq, doublereal &densGas, doublereal &liqGRT, doublereal &gasGRT) |
Utility routine in the calculation of the saturation pressure. More... | |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. More... | |
void | setMoleFractions_NoState (const doublereal *const x) |
virtual void | _updateReferenceStateThermo () const |
Updates the reference state thermodynamic functions at the current T of the solution. More... | |
const vector_fp & | gibbs_RT_ref () const |
Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | assertCompressible (const std::string &setter) const |
Ensure that phase is compressible. More... | |
void | assignDensity (const double density_) |
Set the internally stored constant density (kg/m^3) of the phase. More... | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
Protected Attributes inherited from MixtureFugacityTP | |
vector_fp | moleFractions_ |
Storage for the current values of the mole fractions of the species. More... | |
int | iState_ |
Current state of the fluid. More... | |
int | forcedState_ |
Force the system to be on a particular side of the spinodal curve. More... | |
doublereal | m_Tlast_ref |
The last temperature at which the reference state thermodynamic properties were calculated at. More... | |
vector_fp | m_h0_RT |
Temporary storage for dimensionless reference state enthalpies. More... | |
vector_fp | m_cp0_R |
Temporary storage for dimensionless reference state heat capacities. More... | |
vector_fp | m_g0_RT |
Temporary storage for dimensionless reference state Gibbs energies. More... | |
vector_fp | m_s0_R |
Temporary storage for dimensionless reference state entropies. More... | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
AnyMap | m_input |
Data supplied via setParameters. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. Units are Volts. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
doublereal | m_tlast |
last value of the temperature processed by reference state More... | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. More... | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
std::map< std::string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior |
Flag determining behavior when adding species with an undefined element. More... | |
bool | m_caseSensitiveSpecies |
Flag determining whether case sensitive species names are enforced. More... | |
Implementation of a multi-species Redlich-Kwong equation of state.
Definition at line 19 of file RedlichKwongMFTP.h.
RedlichKwongMFTP | ( | ) |
Base constructor.
Definition at line 25 of file RedlichKwongMFTP.cpp.
RedlichKwongMFTP | ( | const std::string & | infile, |
const std::string & | id = "" |
||
) |
Construct a RedlichKwongMFTP object from an input file.
inputFile | Name of the input file containing the phase definition |
id | name (ID) of the phase in the input file. If empty, the first phase definition in the input file will be used. |
Definition at line 36 of file RedlichKwongMFTP.cpp.
References ThermoPhase::initThermoFile().
RedlichKwongMFTP | ( | XML_Node & | phaseRef, |
const std::string & | id = "" |
||
) |
Construct and initialize a RedlichKwongMFTP object directly from an XML database.
phaseRef | XML phase node containing the description of the phase |
id | id attribute containing the name of the phase. (default is the empty string) |
Definition at line 48 of file RedlichKwongMFTP.cpp.
References Cantera::importPhase().
|
inlinevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from MixtureFugacityTP.
Definition at line 48 of file RedlichKwongMFTP.h.
|
virtual |
Molar enthalpy. Units: J/kmol.
Reimplemented from ThermoPhase.
Definition at line 128 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::_updateReferenceStateThermo(), RedlichKwongMFTP::hresid(), MixtureFugacityTP::m_h0_RT, Phase::mean_X(), and ThermoPhase::RT().
|
virtual |
Molar entropy. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 136 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::_updateReferenceStateThermo(), Cantera::GasConstant, MixtureFugacityTP::m_s0_R, Phase::mean_X(), RedlichKwongMFTP::pressure(), ThermoPhase::refPressure(), RedlichKwongMFTP::sresid(), and Phase::sum_xlogx().
|
virtual |
Molar heat capacity at constant pressure. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 145 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::_updateReferenceStateThermo(), RedlichKwongMFTP::dpdT_, RedlichKwongMFTP::dpdV_, Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, MixtureFugacityTP::m_cp0_R, Phase::mean_X(), Phase::molarVolume(), RedlichKwongMFTP::pressureDerivatives(), and Phase::temperature().
|
virtual |
Molar heat capacity at constant volume. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 161 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::_updateReferenceStateThermo(), Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, MixtureFugacityTP::m_cp0_R, Phase::mean_X(), Phase::molarVolume(), and Phase::temperature().
|
virtual |
Return the thermodynamic pressure (Pa).
Since the mass density, temperature, and mass fractions are stored, this method uses these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \).
\[ P = \frac{RT}{v-b_{mix}} - \frac{a_{mix}}{T^{0.5} v \left( v + b_{mix} \right) } \]
Reimplemented from Phase.
Definition at line 175 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::_updateReferenceStateThermo().
Referenced by RedlichKwongMFTP::entropy_mole(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getActivityConcentrations(), RedlichKwongMFTP::getChemPotentials(), and RedlichKwongMFTP::getPartialMolarVolumes().
|
protectedvirtual |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
The formula for this is
\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]
where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.
Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the species standard state molar volumes. The species molar volumes may be functions of temperature and pressure.
Reimplemented from MixtureFugacityTP.
Definition at line 186 of file RedlichKwongMFTP.cpp.
References Cantera::dot(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKwongMFTP::m_tmpV, Phase::moleFractdivMMW(), and Phase::setDensity().
|
protectedvirtual |
Set the temperature of the phase.
Currently this passes down to setState_TP(). It does not make sense to calculate the standard state without first setting T and P.
temp | Temperature (kelvin) |
Reimplemented from MixtureFugacityTP.
Definition at line 198 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::_updateReferenceStateThermo(), Phase::setTemperature(), and RedlichKwongMFTP::updateAB().
Referenced by RedlichKwongMFTP::densityCalc().
|
protectedvirtual |
Apply changes to the state which are needed after the composition changes.
This function is called after any call to setMassFractions(), setMoleFractions(), or similar. For phases which need to execute a callback after any change to the composition, it should be done by overriding this function rather than overriding all of the composition- setting functions. Derived class implementations of compositionChanged() should call the parent class method as well.
Reimplemented from MixtureFugacityTP.
Definition at line 205 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::compositionChanged(), and RedlichKwongMFTP::updateAB().
|
virtual |
This method returns an array of generalized concentrations.
\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.
c | Output array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase. |
Reimplemented from ThermoPhase.
Definition at line 211 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::getActivityCoefficients(), Phase::m_kk, Phase::moleFraction(), RedlichKwongMFTP::pressure(), and ThermoPhase::RT().
|
virtual |
Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.
This is defined as the concentration by which the generalized concentration is normalized to produce the activity. In many cases, this quantity will be the same for all species in a phase. Since the activity for an ideal gas mixture is simply the mole fraction, for an ideal gas \( C^0_k = P/\hat R T \).
k | Optional parameter indicating the species. The default is to assume this refers to species 0. |
Reimplemented from ThermoPhase.
Definition at line 219 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::getStandardVolumes(), and RedlichKwongMFTP::m_tmpV.
|
virtual |
Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.
For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution. The activities are based on this standard state.
ac | Output vector of activity coefficients. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 225 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), ThermoPhase::RT(), and Phase::temperature().
Referenced by RedlichKwongMFTP::getActivityConcentrations().
|
virtual |
Get the array of non-dimensional species chemical potentials.
These are partial molar Gibbs free energies.
\( \mu_k / \hat R T \). Units: unitless
We close the loop on this function, here, calling getChemPotentials() and then dividing by RT. No need for child classes to handle.
mu | Output vector of non-dimensional species chemical potentials Length: m_kk. |
Reimplemented from MixtureFugacityTP.
Definition at line 257 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::getChemPotentials(), Phase::m_kk, and ThermoPhase::RT().
|
virtual |
Get the species chemical potentials. Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.
mu | Output vector of species chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 265 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::getGibbs_ref(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, Phase::molarVolume(), Phase::moleFraction(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), ThermoPhase::refPressure(), ThermoPhase::RT(), Cantera::SmallNumber, and Phase::temperature().
Referenced by RedlichKwongMFTP::getChemPotentials_RT().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol)
hbar | Output vector of species partial molar enthalpies. Length: m_kk. units are J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 299 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::dpdni_, RedlichKwongMFTP::dpdT_, RedlichKwongMFTP::dpdV_, MixtureFugacityTP::getEnthalpy_RT_ref(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressureDerivatives(), ThermoPhase::RT(), Cantera::scale(), and Phase::temperature().
|
virtual |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol/K.
sbar | Output vector of species partial molar entropies. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 344 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::dpdT_, Cantera::GasConstant, MixtureFugacityTP::getEntropy_R_ref(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, Phase::molarVolume(), Phase::moleFraction(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressureDerivatives(), ThermoPhase::refPressure(), Cantera::scale(), Cantera::SmallNumber, and Phase::temperature().
|
virtual |
Return an array of partial molar internal energies for the species in the mixture.
Units: J/kmol.
ubar | Output vector of species partial molar internal energies. Length = m_kk. units are J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 395 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::getIntEnergy_RT(), Phase::m_kk, ThermoPhase::RT(), and Cantera::scale().
|
virtual |
Return an array of partial molar heat capacities for the species in the mixture.
Units: J/kmol/K
cpbar | Output vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 401 of file RedlichKwongMFTP.cpp.
References Cantera::GasConstant, MixtureFugacityTP::getCp_R(), Phase::m_kk, and Cantera::scale().
|
virtual |
Return an array of partial molar volumes for the species in the mixture.
Units: m^3/kmol.
vbar | Output vector of species partial molar volumes. Length = m_kk. units are m^3/kmol. |
Reimplemented from ThermoPhase.
Definition at line 407 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), ThermoPhase::RT(), and Phase::temperature().
Referenced by RedlichKwongMFTP::calcDensity(), and RedlichKwongMFTP::getPartialMolarEntropies().
|
virtual |
Critical temperature (K).
Reimplemented from ThermoPhase.
Definition at line 440 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.
Referenced by RedlichKwongMFTP::densityCalc().
|
virtual |
Critical pressure (Pa).
Reimplemented from ThermoPhase.
Definition at line 456 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.
Referenced by RedlichKwongMFTP::getCoeff(), and RedlichKwongMFTP::liquidVolEst().
|
virtual |
Critical volume (m3/kmol).
Reimplemented from ThermoPhase.
Definition at line 472 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.
|
virtual |
Critical compressibility (unitless).
Reimplemented from ThermoPhase.
Definition at line 488 of file RedlichKwongMFTP.cpp.
References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.
|
virtual |
Critical density (kg/m3).
Reimplemented from ThermoPhase.
Definition at line 504 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, Phase::meanMolecularWeight(), and MixtureFugacityTP::moleFractions_.
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from MixtureFugacityTP.
Definition at line 521 of file RedlichKwongMFTP.cpp.
References MixtureFugacityTP::addSpecies(), RedlichKwongMFTP::dpdni_, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, and Array2D::resize().
|
virtual |
Set equation of state parameter values from XML entries.
This method is called by function importPhase() when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.
eosdata | An XML_Node object corresponding to the "thermo" entry for this phase in the input file. |
Reimplemented from ThermoPhase.
Definition at line 807 of file RedlichKwongMFTP.cpp.
References ThermoPhase::setParametersFromXML().
|
virtual |
Import and initialize a ThermoPhase object using an XML tree.
Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.
The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented from ThermoPhase.
Definition at line 540 of file RedlichKwongMFTP.cpp.
References Cantera::caseInsensitiveEquals(), XML_Node::child(), Array2D::data(), RedlichKwongMFTP::getCoeff(), XML_Node::hasChild(), ThermoPhase::initThermoXML(), Phase::m_kk, XML_Node::name(), XML_Node::nChildren(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), RedlichKwongMFTP::setSpeciesCoeffs(), Phase::speciesIndex(), and Phase::speciesName().
|
virtual |
Initialize the ThermoPhase object after all species have been set up.
Initialize.
This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.
When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().
When importing from an AnyMap phase description (or from a YAML file), this method is responsible for setting model parameters from the data stored in m_input.
Reimplemented from ThermoPhase.
Definition at line 612 of file RedlichKwongMFTP.cpp.
References UnitSystem::convert(), RedlichKwongMFTP::getCoeff(), Phase::m_kk, RedlichKwongMFTP::setBinaryCoeffs(), RedlichKwongMFTP::setSpeciesCoeffs(), Phase::speciesIndex(), and AnyMap::units().
|
virtual |
Retrieve a and b coefficients by looking up tabulated critical parameters.
If pureFluidParameters are not provided for any species in the phase, consult the critical properties tabulated in /thermo/critProperties.xml. If the species is found there, calculate pure fluid parameters a_k and b_k as:
\[ a_k = 0.4278*R**2*T_c^2.5/P_c \]
and:
\[ b_k = 0.08664*R*T_c/P_c \]
iName | Name of the species |
Definition at line 665 of file RedlichKwongMFTP.cpp.
References XML_Node::attrib(), XML_Node::child(), RedlichKwongMFTP::critPressure(), Cantera::GasConstant, Cantera::get_XML_File(), XML_Node::hasAttrib(), XML_Node::hasChild(), XML_Node::nChildren(), RedlichKwongMFTP::omega_a, RedlichKwongMFTP::omega_b, Cantera::strSItoDbl(), and Cantera::toLowerCopy().
Referenced by RedlichKwongMFTP::initThermo(), and RedlichKwongMFTP::initThermoXML().
void setSpeciesCoeffs | ( | const std::string & | species, |
double | a0, | ||
double | a1, | ||
double | b | ||
) |
Set the pure fluid interaction parameters for a species.
The "a" parameter for species i in the Redlich-Kwong model is assumed to be a linear function of temperature:
\[ a = a_0 + a_1 T \]
species | Name of the species |
a0 | constant term in the expression for the "a" parameter of the specified species [Pa-m^6/kmol^2] |
a1 | temperature-proportional term in the expression for the "a" parameter of the specified species [Pa-m^6/kmol^2/K] |
b | "b" parameter in the Redlich-Kwong model [m^3/kmol] |
Definition at line 60 of file RedlichKwongMFTP.cpp.
References Array2D::getRow(), RedlichKwongMFTP::m_formTempParam, Phase::m_kk, Cantera::npos, Phase::species(), and Phase::speciesIndex().
Referenced by RedlichKwongMFTP::initThermo(), RedlichKwongMFTP::initThermoXML(), and RedlichKwongMFTP::readXMLPureFluid().
void setBinaryCoeffs | ( | const std::string & | species_i, |
const std::string & | species_j, | ||
double | a0, | ||
double | a1 | ||
) |
Set values for the interaction parameter between two species.
The "a" parameter for interactions between species i and j is assumed by default to be computed as:
\[ a_{ij} = \sqrt(a_{i,0} a_{j,0}) + \sqrt(a_{i,1} a_{j,1}) T \]
This function overrides the defaults with the specified parameters:
\[ a_{ij} = a_{ij,0} + a_{ij,1} T \]
species_i | Name of one species |
species_j | Name of the other species |
a0 | constant term in the "a" expression [Pa-m^6/kmol^2] |
a1 | temperature-proportional term in the "a" expression [Pa-m^6/kmol^2/K] |
Definition at line 102 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_formTempParam, Phase::m_kk, Cantera::npos, and Phase::speciesIndex().
Referenced by RedlichKwongMFTP::initThermo(), and RedlichKwongMFTP::readXMLCrossFluid().
|
private |
Read the pure species RedlichKwong input parameters.
pureFluidParam | XML_Node for the pure fluid parameters |
Definition at line 736 of file RedlichKwongMFTP.cpp.
References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), Cantera::getFloatCurrent(), XML_Node::name(), XML_Node::nChildren(), RedlichKwongMFTP::setSpeciesCoeffs(), and Cantera::toLowerCopy().
Referenced by RedlichKwongMFTP::initThermoXML().
|
private |
Read the cross species RedlichKwong input parameters.
pureFluidParam | XML_Node for the cross fluid parameters |
Definition at line 774 of file RedlichKwongMFTP.cpp.
References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), XML_Node::name(), XML_Node::nChildren(), RedlichKwongMFTP::setBinaryCoeffs(), and Cantera::toLowerCopy().
Referenced by RedlichKwongMFTP::initThermoXML().
|
protectedvirtual |
Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture.
Reimplemented from MixtureFugacityTP.
Definition at line 813 of file RedlichKwongMFTP.cpp.
References Phase::density(), RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), and MixtureFugacityTP::z().
Referenced by RedlichKwongMFTP::entropy_mole().
|
protectedvirtual |
Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture.
Reimplemented from MixtureFugacityTP.
Definition at line 829 of file RedlichKwongMFTP.cpp.
References Phase::density(), RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), and MixtureFugacityTP::z().
Referenced by RedlichKwongMFTP::enthalpy_mole().
|
virtual |
Estimate for the molar volume of the liquid.
Note: this is only used as a starting guess for later routines that actually calculate an accurate value for the liquid molar volume. This routine doesn't change the state of the system.
TKelvin | temperature in kelvin |
pres | Pressure in Pa. This is used as an initial guess. If the routine needs to change the pressure to find a stable liquid state, the new pressure is returned in this variable. |
Reimplemented from MixtureFugacityTP.
Definition at line 844 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::calculateAB(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::NicholsSolve(), and MixtureFugacityTP::psatEst().
|
virtual |
Calculates the density given the temperature and the pressure and a guess at the density.
Note, below T_c, this is a multivalued function. We do not cross the vapor dome in this. This is protected because it is called during setState_TP() routines. Infinite loops would result if it were not protected.
-> why is this not const?
TKelvin | Temperature in Kelvin |
pressure | Pressure in Pascals (Newton/m**2) |
phaseRequested | int representing the phase whose density we are requesting. If we put a gas or liquid phase here, we will attempt to find a volume in that part of the volume space, only, in this routine. A value of FLUID_UNDEFINED means that we will accept anything. |
rhoguess | Guessed density of the fluid. A value of -1.0 indicates that there is no guessed density |
Reimplemented from MixtureFugacityTP.
Definition at line 876 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::critTemperature(), Phase::meanMolecularWeight(), and RedlichKwongMFTP::setTemperature().
|
virtual |
Return the value of the density at the liquid spinodal point (on the liquid side) for the current temperature.
Reimplemented from MixtureFugacityTP.
Definition at line 938 of file RedlichKwongMFTP.cpp.
|
virtual |
Return the value of the density at the gas spinodal point (on the gas side) for the current temperature.
Reimplemented from MixtureFugacityTP.
Definition at line 960 of file RedlichKwongMFTP.cpp.
|
virtual |
Calculate the pressure given the temperature and the molar volume.
TKelvin | temperature in kelvin |
molarVol | molar volume ( m3/kmol) |
Reimplemented from MixtureFugacityTP.
Definition at line 982 of file RedlichKwongMFTP.cpp.
References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, and RedlichKwongMFTP::m_b_current.
|
virtual |
Calculate the pressure and the pressure derivative given the temperature and the molar volume.
Temperature and mole number are held constant
TKelvin | temperature in kelvin |
molarVol | molar volume ( m3/kmol) |
presCalc | Returns the pressure. |
Reimplemented from MixtureFugacityTP.
Definition at line 990 of file RedlichKwongMFTP.cpp.
References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, and RedlichKwongMFTP::m_b_current.
Referenced by RedlichKwongMFTP::pressureDerivatives().
void pressureDerivatives | ( | ) | const |
Calculate dpdV and dpdT at the current conditions.
These are stored internally.
Definition at line 1003 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::dpdT_, RedlichKwongMFTP::dpdV_, RedlichKwongMFTP::dpdVCalc(), Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::molarVolume(), and Phase::temperature().
Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), and RedlichKwongMFTP::getPartialMolarEntropies().
void updateAB | ( | ) |
Update the a and b parameters.
The a and the b parameters depend on the mole fraction and the temperature. This function updates the internal numbers based on the state of the object.
Definition at line 1023 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::m_formTempParam, Phase::m_kk, MixtureFugacityTP::moleFractions_, and Phase::temperature().
Referenced by RedlichKwongMFTP::compositionChanged(), and RedlichKwongMFTP::setTemperature().
void calculateAB | ( | doublereal | temp, |
doublereal & | aCalc, | ||
doublereal & | bCalc | ||
) | const |
Calculate the a and the b parameters given the temperature.
This function doesn't change the internal state of the object, so it is a const function. It does use the stored mole fractions in the object.
temp | Temperature (TKelvin) |
aCalc | (output) Returns the a value |
bCalc | (output) Returns the b value. |
Definition at line 1060 of file RedlichKwongMFTP.cpp.
References RedlichKwongMFTP::m_formTempParam, Phase::m_kk, and MixtureFugacityTP::moleFractions_.
Referenced by RedlichKwongMFTP::liquidVolEst().
int NicholsSolve | ( | double | TKelvin, |
double | pres, | ||
doublereal | a, | ||
doublereal | b, | ||
doublereal | Vroot[3] | ||
) | const |
Solve the cubic equation of state.
The R-K equation of state may be solved via the following formula:
V**3 - V**2(RT/P) - V(RTb/P - a/(P T**.5) + b*b) - (a b / (P T**.5)) = 0
Returns the number of solutions found. If it only finds the liquid branch solution, it will return a -1 or a -2 instead of 1 or 2. If it returns 0, then there is an error.
Definition at line 1141 of file RedlichKwongMFTP.cpp.
References Cantera::GasConstant, RedlichKwongMFTP::omega_a, RedlichKwongMFTP::omega_b, and RedlichKwongMFTP::omega_vc.
Referenced by RedlichKwongMFTP::liquidVolEst().
|
protected |
Form of the temperature parameterization.
Definition at line 312 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::calculateAB(), RedlichKwongMFTP::setBinaryCoeffs(), RedlichKwongMFTP::setSpeciesCoeffs(), and RedlichKwongMFTP::updateAB().
|
protected |
Value of b in the equation of state.
m_b is a function of the temperature and the mole fraction.
Definition at line 318 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::critCompressibility(), RedlichKwongMFTP::critDensity(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::critTemperature(), RedlichKwongMFTP::critVolume(), RedlichKwongMFTP::cv_mole(), RedlichKwongMFTP::dpdVCalc(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getChemPotentials(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKwongMFTP::hresid(), RedlichKwongMFTP::liquidVolEst(), RedlichKwongMFTP::pressureCalc(), RedlichKwongMFTP::pressureDerivatives(), RedlichKwongMFTP::sresid(), and RedlichKwongMFTP::updateAB().
|
protected |
Value of a in the equation of state.
a_b is a function of the temperature and the mole fraction.
Definition at line 324 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::critCompressibility(), RedlichKwongMFTP::critDensity(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::critTemperature(), RedlichKwongMFTP::critVolume(), RedlichKwongMFTP::cv_mole(), RedlichKwongMFTP::dpdVCalc(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getChemPotentials(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKwongMFTP::pressureCalc(), RedlichKwongMFTP::pressureDerivatives(), and RedlichKwongMFTP::updateAB().
|
mutableprotected |
Temporary storage - length = m_kk.
Definition at line 336 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::addSpecies(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getChemPotentials(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), and RedlichKwongMFTP::getPartialMolarVolumes().
|
mutableprotected |
Temporary storage - length = m_kk.
Definition at line 339 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::addSpecies(), RedlichKwongMFTP::calcDensity(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarVolumes(), and RedlichKwongMFTP::standardConcentration().
|
mutableprotected |
The derivative of the pressure wrt the volume.
Calculated at the current conditions. temperature and mole number kept constant
Definition at line 349 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), and RedlichKwongMFTP::pressureDerivatives().
|
mutableprotected |
The derivative of the pressure wrt the temperature.
Calculated at the current conditions. Total volume and mole number kept constant
Definition at line 356 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), and RedlichKwongMFTP::pressureDerivatives().
|
mutableprotected |
Vector of derivatives of pressure wrt mole number.
Calculated at the current conditions. Total volume, temperature and other mole number kept constant
Definition at line 363 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::addSpecies(), and RedlichKwongMFTP::getPartialMolarEnthalpies().
|
static |
Omega constant for a -> value of a in terms of critical properties.
this was calculated from a small nonlinear solve
Definition at line 370 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::getCoeff(), and RedlichKwongMFTP::NicholsSolve().
|
static |
Omega constant for b.
Definition at line 373 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::getCoeff(), and RedlichKwongMFTP::NicholsSolve().
|
static |
Omega constant for the critical molar volume.
Definition at line 376 of file RedlichKwongMFTP.h.
Referenced by RedlichKwongMFTP::NicholsSolve().