Cantera  2.5.1
Public Member Functions | Protected Attributes | Private Member Functions | List of all members

A simple thermodynamic model for a surface phase, assuming an ideal solution model. More...

#include <SurfPhase.h>

Inheritance diagram for SurfPhase:
[legend]
Collaboration diagram for SurfPhase:
[legend]

Public Member Functions

 SurfPhase (doublereal n0=1.0)
 Constructor. More...
 
 SurfPhase (const std::string &infile, const std::string &id)
 Construct and initialize a SurfPhase ThermoPhase object directly from an ASCII input file. More...
 
 SurfPhase (XML_Node &xmlphase)
 Construct and initialize a SurfPhase ThermoPhase object directly from an XML database. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
virtual doublereal enthalpy_mole () const
 Return the Molar Enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Return the Molar Internal Energy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Return the Molar Entropy. Units: J/kmol-K. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
virtual void getStandardChemPotentials (doublereal *mu0) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 Return a vector of activity concentrations for each species. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters from the argument list. More...
 
virtual void setParametersFromXML (const XML_Node &thermoData)
 Set the Equation-of-State parameters by reading an XML Node Input. More...
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the Surface Phase from an XML_Node. More...
 
doublereal siteDensity ()
 Returns the site density. More...
 
virtual double size (size_t k) const
 Returns the number of sites occupied by one molecule of species k. More...
 
void setSiteDensity (doublereal n0)
 Set the site density of the surface phase (kmol m-2) More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
virtual doublereal pressure () const
 Return the thermodynamic pressure (Pa). More...
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual void getPureGibbs (doublereal *g) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
void setCoverages (const doublereal *theta)
 Set the surface site fractions to a specified state. More...
 
void setCoveragesNoNorm (const doublereal *theta)
 Set the surface site fractions to a specified state. More...
 
void setCoveragesByName (const std::string &cov)
 Set the coverages from a string of colon-separated name:value pairs. More...
 
void setCoveragesByName (const compositionMap &cov)
 Set the coverages from a map of name:value pairs. More...
 
void getCoverages (doublereal *theta) const
 Return a vector of surface coverages. More...
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual std::string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const doublereal *mu_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality). More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description. More...
 
const AnyMapinput () const
 Access input data associated with the phase description. More...
 
AnyMapinput ()
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance. More...
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions. More...
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance. More...
 
virtual std::map< std::string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance. More...
 
virtual std::vector< std::string > fullStates () const
 Return a vector containing full states defining a phase. More...
 
virtual std::vector< std::string > partialStates () const
 Return a vector of settable partial property sets within a phase. More...
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
virtual void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
virtual void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges. More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced. More...
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, e.g. More...
 
virtual void setRoot (std::shared_ptr< Solution > root)
 Set root Solution holding all phase information. More...
 
vector_fp getCompositionFromMap (const compositionMap &comp) const
 Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More...
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions. More...
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
double moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
double massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
double massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const double *const x)
 Set the mole fractions to the specified values. More...
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (double *const y) const
 Get the species mass fractions. More...
 
const double * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const double *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3). More...
 
double concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const double * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual double density () const
 Density (kg/m^3). More...
 
double molarDensity () const
 Molar density (kmol/m^3). More...
 
double molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const double molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setTemperature (const doublereal temp)
 Set the internally stored temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addSpeciesAlias (const std::string &name, const std::string &alias)
 Add a species alias (i.e. More...
 
virtual std::vector< std::string > findIsomers (const compositionMap &compMap) const
 Return a vector with isomers names matching a given composition map. More...
 
virtual std::vector< std::string > findIsomers (const std::string &comp) const
 Return a vector with isomers names matching a given composition string. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Protected Attributes

doublereal m_n0
 Surface site density (kmol m-2) More...
 
vector_fp m_speciesSize
 Vector of species sizes (number of sites occupied). length m_kk. More...
 
doublereal m_logn0
 log of the surface site density More...
 
doublereal m_press
 Current value of the pressure (Pa) More...
 
vector_fp m_h0
 Temporary storage for the reference state enthalpies. More...
 
vector_fp m_s0
 Temporary storage for the reference state entropies. More...
 
vector_fp m_cp0
 Temporary storage for the reference state heat capacities. More...
 
vector_fp m_mu0
 Temporary storage for the reference state Gibbs energies. More...
 
vector_fp m_work
 Temporary work array. More...
 
vector_fp m_logsize
 vector storing the log of the size of each species. More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
AnyMap m_input
 Data supplied via setParameters. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 
bool m_caseSensitiveSpecies
 Flag determining whether case sensitive species names are enforced. More...
 

Private Member Functions

void _updateThermo (bool force=false) const
 Update the species reference state thermodynamic functions. More...
 

Additional Inherited Members

- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void assertCompressible (const std::string &setter) const
 Ensure that phase is compressible. More...
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase. More...
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 

Detailed Description

A simple thermodynamic model for a surface phase, assuming an ideal solution model.

The surface consists of a grid of equivalent sites. Surface species may be defined to occupy one or more sites. The surface species are assumed to be independent, and thus the species form an ideal solution.

The density of surface sites is given by the variable \( n_0 \), which has SI units of kmol m-2.

Specification of Species Standard State Properties

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Pressure is defined as an independent variable in this phase. However, it has no effect on any quantities, as the molar concentration is a constant.

Therefore, The standard state internal energy for species k is equal to the enthalpy for species k.

  \f[
       u^o_k = h^o_k
  \f]

Also, the standard state chemical potentials, entropy, and heat capacities are independent of pressure. The standard state Gibbs free energy is obtained from the enthalpy and entropy functions.

Specification of Solution Thermodynamic Properties

The activity of species defined in the phase is given by

\[ a_k = \theta_k \]

The chemical potential for species k is equal to

\[ \mu_k(T,P) = \mu^o_k(T) + R T \log(\theta_k) \]

Pressure is defined as an independent variable in this phase. However, it has no effect on any quantities, as the molar concentration is a constant.

The internal energy for species k is equal to the enthalpy for species k

\[ u_k = h_k \]

The entropy for the phase is given by the following relation, which is independent of the pressure:

  \f[
       s_k(T,P) = s^o_k(T) - R \log(\theta_k)
  \f]

%Application within Kinetics Managers

The activity concentration, \( C^a_k \), used by the kinetics manager, is equal to the actual concentration, \( C^s_k \), and is given by the following expression.

\[ C^a_k = C^s_k = \frac{\theta_k n_0}{s_k} \]

The standard concentration for species k is:

\[ C^0_k = \frac{n_0}{s_k} \]

Instantiation of the Class

The constructor for this phase is located in the default ThermoFactory for Cantera. A new SurfPhase may be created by the following code snippet:

XML_Node *xc = get_XML_File("diamond.xml");
XML_Node * const xs = xc->findNameID("phase", "diamond_100");
ThermoPhase *diamond100TP_tp = newPhase(*xs);
SurfPhase *diamond100TP = dynamic_cast <SurfPhase *>(diamond100TP_tp);
SurfPhase(doublereal n0=1.0)
Constructor.
Definition: SurfPhase.cpp:23
ThermoPhase()
Constructor.
Definition: ThermoPhase.cpp:27
XML_Node * get_XML_File(const std::string &file, int debug)
Return a pointer to the XML tree for a Cantera input file.
Definition: global.cpp:110
ThermoPhase * newPhase(XML_Node &xmlphase)
Create a new ThermoPhase object and initializes it according to the XML tree.

or by the following constructor:

XML_Node *xc = get_XML_File("diamond.xml");
XML_Node * const xs = xc->findNameID("phase", "diamond_100");
SurfPhase *diamond100TP = new SurfPhase(*xs);

XML Example

An example of an XML Element named phase setting up a SurfPhase object named diamond_100 is given below.

<phase dim="2" id="diamond_100">
<elementArray datasrc="elements.xml">H C</elementArray>
<speciesArray datasrc="#species_data">c6HH c6H* c6*H c6** c6HM c6HM* c6*M c6B </speciesArray>
<reactionArray datasrc="#reaction_data"/>
<state>
<temperature units="K">1200.0</temperature>
<coverages>c6H*:0.1, c6HH:0.9</coverages>
</state>
<thermo model="Surface">
<site_density units="mol/cm2">3e-09</site_density>
</thermo>
<kinetics model="Interface"/>
<transport model="None"/>
<phaseArray>
gas_phase diamond_bulk
</phaseArray>
</phase>
doublereal temperature() const
Temperature (K).
Definition: Phase.h:667

The model attribute, "Surface", on the thermo element identifies the phase as being a SurfPhase object.

Definition at line 142 of file SurfPhase.h.

Constructor & Destructor Documentation

◆ SurfPhase() [1/3]

SurfPhase ( doublereal  n0 = 1.0)

Constructor.

Parameters
n0Site Density of the Surface Phase Units: kmol m-2.

Definition at line 23 of file SurfPhase.cpp.

References Phase::setNDim(), and SurfPhase::setSiteDensity().

◆ SurfPhase() [2/3]

SurfPhase ( const std::string &  infile,
const std::string &  id 
)

Construct and initialize a SurfPhase ThermoPhase object directly from an ASCII input file.

Parameters
infilename of the input file
idname of the phase id in the file. If this is blank, the first phase in the file is used.

Definition at line 30 of file SurfPhase.cpp.

References ThermoPhase::initThermoFile().

◆ SurfPhase() [3/3]

SurfPhase ( XML_Node xmlphase)

Construct and initialize a SurfPhase ThermoPhase object directly from an XML database.

Parameters
xmlphaseXML node pointing to a SurfPhase description
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Definition at line 36 of file SurfPhase.cpp.

References Cantera::importPhase().

Member Function Documentation

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from ThermoPhase.

Reimplemented in EdgePhase.

Definition at line 171 of file SurfPhase.h.

◆ enthalpy_mole()

doublereal enthalpy_mole ( ) const
virtual

Return the Molar Enthalpy. Units: J/kmol.

For an ideal solution,

\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T), \]

and is a function only of temperature. The standard-state pure-species Enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 42 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), SurfPhase::m_h0, SurfPhase::m_n0, and Phase::mean_X().

Referenced by SurfPhase::intEnergy_mole().

◆ intEnergy_mole()

doublereal intEnergy_mole ( ) const
virtual

Return the Molar Internal Energy. Units: J/kmol.

For a surface phase, the pressure is not a relevant thermodynamic variable, and so the Enthalpy is equal to the Internal Energy.

Reimplemented from ThermoPhase.

Definition at line 51 of file SurfPhase.cpp.

References SurfPhase::enthalpy_mole().

◆ entropy_mole()

doublereal entropy_mole ( ) const
virtual

Return the Molar Entropy. Units: J/kmol-K.

\[ \hat s(T,P) = \sum_k X_k (\hat s^0_k(T) - R \log(\theta_k)) \]

Reimplemented from ThermoPhase.

Definition at line 56 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), Phase::concentration(), Cantera::GasConstant, Phase::m_kk, SurfPhase::m_n0, SurfPhase::m_s0, Phase::moleFraction(), SurfPhase::size(), and Cantera::SmallNumber.

◆ cp_mole()

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 67 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), SurfPhase::m_cp0, and Phase::mean_X().

Referenced by SurfPhase::cv_mole().

◆ cv_mole()

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 73 of file SurfPhase.cpp.

References SurfPhase::cp_mole().

◆ getChemPotentials()

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 115 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), SurfPhase::getActivityConcentrations(), SurfPhase::logStandardConc(), Phase::m_kk, SurfPhase::m_mu0, SurfPhase::m_work, and ThermoPhase::RT().

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 78 of file SurfPhase.cpp.

References SurfPhase::getEnthalpy_RT(), Phase::m_kk, and ThermoPhase::RT().

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 86 of file SurfPhase.cpp.

References Cantera::GasConstant, SurfPhase::getEntropy_R(), and Phase::m_kk.

◆ getPartialMolarCp()

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 94 of file SurfPhase.cpp.

References Cantera::GasConstant, SurfPhase::getCp_R(), and Phase::m_kk.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 104 of file SurfPhase.cpp.

References SurfPhase::getStandardVolumes().

◆ getStandardChemPotentials()

void getStandardChemPotentials ( doublereal *  mu) const
virtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 109 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), and SurfPhase::m_mu0.

◆ getActivityConcentrations()

void getActivityConcentrations ( doublereal *  c) const
virtual

Return a vector of activity concentrations for each species.

For this phase the activity concentrations, \( C^a_k \), are defined to be equal to the actual concentrations, \( C^s_k \). Activity concentrations are

 \f[
       C^a_k = C^s_k = \frac{\theta_k  n_0}{s_k}
 \f]

where \( \theta_k \) is the surface site fraction for species k, \( n_0 \) is the surface site density for the phase, and \( s_k \) is the surface size of species k.

\( C^a_k\) that are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages,

Parameters
cvector of activity concentration (kmol m-2).

Reimplemented from ThermoPhase.

Definition at line 125 of file SurfPhase.cpp.

References Phase::getConcentrations().

Referenced by SurfPhase::getChemPotentials().

◆ standardConcentration()

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration. For this phase, the standard concentration is species- specific

   \f[
       C^0_k = \frac{n_0}{s_k}
   \f]

This definition implies that the activity is equal to \( \theta_k \).

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.

Reimplemented from ThermoPhase.

Definition at line 130 of file SurfPhase.cpp.

References SurfPhase::m_n0, and SurfPhase::size().

Referenced by SurfPhase::getStandardVolumes().

◆ logStandardConc()

doublereal logStandardConc ( size_t  k = 0) const
virtual

Natural logarithm of the standard concentration of the kth species.

Parameters
kindex of the species (defaults to zero)

Reimplemented from ThermoPhase.

Definition at line 135 of file SurfPhase.cpp.

References SurfPhase::m_logn0, and SurfPhase::m_logsize.

Referenced by SurfPhase::getChemPotentials().

◆ setParameters()

void setParameters ( int  n,
doublereal *const  c 
)
virtual

Set the equation of state parameters from the argument list.

Set equation of state parameters.

Parameters
nnumber of parameters. Must be one
carray of n coefficients c[0] = The site density (kmol m-2)

Reimplemented from ThermoPhase.

Definition at line 140 of file SurfPhase.cpp.

References SurfPhase::setSiteDensity().

◆ setParametersFromXML()

void setParametersFromXML ( const XML_Node thermoData)
virtual

Set the Equation-of-State parameters by reading an XML Node Input.

The Equation-of-State data consists of one item, the site density.

Parameters
thermoDataReference to an XML_Node named thermo containing the equation-of-state data. The XML_Node is within the phase XML_Node describing the SurfPhase object.

An example of the contents of the thermoData XML_Node is provided below. The units attribute is used to supply the units of the site density in any convenient form. Internally it is changed into MKS form.

<thermo model="Surface">
<site_density units="mol/cm2"> 3e-09 </site_density>
</thermo>
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Reimplemented from ThermoPhase.

Reimplemented in EdgePhase.

Definition at line 319 of file SurfPhase.cpp.

References XML_Node::_require(), Cantera::getFloat(), and SurfPhase::setSiteDensity().

◆ initThermo()

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().

When importing from an AnyMap phase description (or from a YAML file), this method is responsible for setting model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 326 of file SurfPhase.cpp.

References AnyMap::convert(), AnyMap::hasKey(), ThermoPhase::m_input, Phase::m_ndim, and SurfPhase::setSiteDensity().

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
virtual

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().

Reimplemented from ThermoPhase.

Definition at line 207 of file SurfPhase.cpp.

References ThermoPhase::addSpecies(), SurfPhase::m_cp0, SurfPhase::m_h0, Phase::m_kk, SurfPhase::m_logsize, SurfPhase::m_mu0, SurfPhase::m_s0, SurfPhase::m_speciesSize, SurfPhase::m_work, and SurfPhase::setCoverages().

◆ setStateFromXML()

void setStateFromXML ( const XML_Node state)
virtual

Set the initial state of the Surface Phase from an XML_Node.

State variables that can be set by this routine are the temperature and the surface site coverages.

Parameters
stateXML_Node containing the state information

An example of the XML code block is given below.

<state>
<temperature units="K">1200.0</temperature>
<coverages>c6H*:0.1, c6HH:0.9</coverages>
</state>
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Reimplemented from ThermoPhase.

Definition at line 335 of file SurfPhase.cpp.

References Cantera::getChildValue(), Cantera::getOptionalFloat(), XML_Node::hasChild(), SurfPhase::setCoveragesByName(), and Phase::setTemperature().

◆ siteDensity()

doublereal siteDensity ( )
inline

Returns the site density.

Site density kmol m-2

Definition at line 322 of file SurfPhase.h.

References SurfPhase::m_n0.

Referenced by ReactingSurf1D::eval().

◆ size()

virtual double size ( size_t  k) const
inlinevirtual

◆ setSiteDensity()

void setSiteDensity ( doublereal  n0)

Set the site density of the surface phase (kmol m-2)

Parameters
n0Site density of the surface phase (kmol m-2)

Definition at line 226 of file SurfPhase.cpp.

References SurfPhase::m_logn0, and SurfPhase::m_n0.

Referenced by SurfPhase::initThermo(), SurfPhase::setParameters(), EdgePhase::setParametersFromXML(), SurfPhase::setParametersFromXML(), and SurfPhase::SurfPhase().

◆ getGibbs_RT()

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 155 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), SurfPhase::m_mu0, ThermoPhase::RT(), and Cantera::scale().

Referenced by SurfPhase::getGibbs_RT_ref().

◆ getEnthalpy_RT()

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 161 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), SurfPhase::m_h0, ThermoPhase::RT(), and Cantera::scale().

Referenced by SurfPhase::getEnthalpy_RT_ref(), and SurfPhase::getPartialMolarEnthalpies().

◆ getEntropy_R()

void getEntropy_R ( doublereal *  sr) const
virtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 167 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), Cantera::GasConstant, SurfPhase::m_s0, and Cantera::scale().

Referenced by SurfPhase::getEntropy_R_ref(), and SurfPhase::getPartialMolarEntropies().

◆ getCp_R()

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

Parameters
cprOutput vector of nondimensional standard state heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 173 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), Cantera::GasConstant, SurfPhase::m_cp0, and Cantera::scale().

Referenced by SurfPhase::getCp_R_ref(), and SurfPhase::getPartialMolarCp().

◆ getStandardVolumes()

void getStandardVolumes ( doublereal *  vol) const
virtual

Get the molar volumes of the species standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 179 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), Phase::m_kk, and SurfPhase::standardConcentration().

Referenced by SurfPhase::getPartialMolarVolumes().

◆ pressure()

virtual doublereal pressure ( ) const
inlinevirtual

Return the thermodynamic pressure (Pa).

Reimplemented from Phase.

Definition at line 344 of file SurfPhase.h.

References SurfPhase::m_press.

◆ setPressure()

virtual void setPressure ( doublereal  p)
inlinevirtual

Set the internally stored pressure (Pa) at constant temperature and composition.

Parameters
pinput Pressure (Pa)

Reimplemented from Phase.

Definition at line 353 of file SurfPhase.h.

References SurfPhase::m_press.

◆ getPureGibbs()

void getPureGibbs ( doublereal *  gpure) const
virtual

Get the Gibbs functions for the standard state of the species at the current T and P of the solution.

Units are Joules/kmol

Parameters
gpureOutput vector of standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 149 of file SurfPhase.cpp.

References SurfPhase::_updateThermo(), and SurfPhase::m_mu0.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 187 of file SurfPhase.cpp.

References SurfPhase::getGibbs_RT().

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 192 of file SurfPhase.cpp.

References SurfPhase::getEnthalpy_RT().

◆ getEntropy_R_ref()

void getEntropy_R_ref ( doublereal *  er) const
virtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 197 of file SurfPhase.cpp.

References SurfPhase::getEntropy_R().

◆ getCp_R_ref()

void getCp_R_ref ( doublereal *  cprt) const
virtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 202 of file SurfPhase.cpp.

References SurfPhase::getCp_R().

◆ setCoverages()

void setCoverages ( const doublereal *  theta)

Set the surface site fractions to a specified state.

This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.

Parameters
thetaThis is the surface site fraction for the kth species in the surface phase. This is a dimensionless quantity.

This routine normalizes the theta's to 1, before application

Definition at line 236 of file SurfPhase.cpp.

References Phase::m_kk, SurfPhase::m_n0, SurfPhase::m_work, Phase::setConcentrations(), and SurfPhase::size().

Referenced by SurfPhase::addSpecies(), ReactingSurf1D::resetBadValues(), ReactingSurf1D::restore(), and SurfPhase::setCoveragesByName().

◆ setCoveragesNoNorm()

void setCoveragesNoNorm ( const doublereal *  theta)

Set the surface site fractions to a specified state.

This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.

Parameters
thetaThis is the surface site fraction for the kth species in the surface phase. This is a dimensionless quantity.

Definition at line 253 of file SurfPhase.cpp.

References Phase::m_kk, SurfPhase::m_n0, SurfPhase::m_work, Phase::setConcentrationsNoNorm(), and SurfPhase::size().

Referenced by ReactingSurf1D::eval().

◆ setCoveragesByName() [1/2]

void setCoveragesByName ( const std::string &  cov)

Set the coverages from a string of colon-separated name:value pairs.

Parameters
covString containing colon-separated name:value pairs

Definition at line 269 of file SurfPhase.cpp.

References Cantera::parseCompString(), and Phase::speciesNames().

Referenced by SurfPhase::setState(), and SurfPhase::setStateFromXML().

◆ setCoveragesByName() [2/2]

void setCoveragesByName ( const compositionMap cov)

Set the coverages from a map of name:value pairs.

Definition at line 274 of file SurfPhase.cpp.

References Cantera::getValue(), Phase::m_kk, SurfPhase::setCoverages(), and Phase::speciesName().

◆ getCoverages()

void getCoverages ( doublereal *  theta) const

Return a vector of surface coverages.

Get the coverages.

Parameters
thetaArray theta must be at least as long as the number of species.

Definition at line 261 of file SurfPhase.cpp.

References Phase::getConcentrations(), Phase::m_kk, SurfPhase::m_n0, and SurfPhase::size().

Referenced by ReactingSurf1D::_getInitialSoln(), InterfaceKinetics::_update_rates_T(), and ReactingSurf1D::resetBadValues().

◆ setState()

void setState ( const AnyMap state)
virtual

Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.

Accepted keys are:

  • X (mole fractions)
  • Y (mass fractions)
  • T or temperature
  • P or pressure [Pa]
  • H or enthalpy [J/kg]
  • U or internal-energy [J/kg]
  • S or entropy [J/kg/K]
  • V or specific-volume [m^3/kg]
  • D or density [kg/m^3]

Composition can be specified as either an AnyMap of species names to values or as a composition string. All other values can be given as floating point values in Cantera's default units, or as strings with the units specified, which will be converted using the Units class.

If no thermodynamic property pair is given, or only one of temperature or pressure is given, then 298.15 K and 101325 Pa will be used as necessary to fully set the state.

Additionally uses the key coverages to set the fractional coverages.

Reimplemented from ThermoPhase.

Definition at line 292 of file SurfPhase.cpp.

References AnyMap::hasKey(), SurfPhase::setCoveragesByName(), and ThermoPhase::setState().

◆ _updateThermo()

void _updateThermo ( bool  force = false) const
private

Update the species reference state thermodynamic functions.

The polynomials for the standard state functions are only reevaluated if the temperature has changed.

Parameters
forceBoolean, which if true, forces a reevaluation of the thermo polynomials. default = false.

Definition at line 303 of file SurfPhase.cpp.

References Cantera::GasConstant, SurfPhase::m_cp0, SurfPhase::m_h0, Phase::m_kk, SurfPhase::m_mu0, SurfPhase::m_s0, ThermoPhase::m_spthermo, ThermoPhase::m_tlast, Phase::temperature(), and MultiSpeciesThermo::update().

Referenced by SurfPhase::cp_mole(), SurfPhase::enthalpy_mole(), SurfPhase::entropy_mole(), SurfPhase::getChemPotentials(), SurfPhase::getCp_R(), SurfPhase::getEnthalpy_RT(), SurfPhase::getEntropy_R(), SurfPhase::getGibbs_RT(), SurfPhase::getPureGibbs(), SurfPhase::getStandardChemPotentials(), and SurfPhase::getStandardVolumes().

Member Data Documentation

◆ m_n0

doublereal m_n0
protected

◆ m_speciesSize

vector_fp m_speciesSize
protected

Vector of species sizes (number of sites occupied). length m_kk.

Definition at line 418 of file SurfPhase.h.

Referenced by SurfPhase::addSpecies(), and SurfPhase::size().

◆ m_logn0

doublereal m_logn0
protected

log of the surface site density

Definition at line 421 of file SurfPhase.h.

Referenced by SurfPhase::logStandardConc(), and SurfPhase::setSiteDensity().

◆ m_press

doublereal m_press
protected

Current value of the pressure (Pa)

Definition at line 424 of file SurfPhase.h.

Referenced by SurfPhase::pressure(), and SurfPhase::setPressure().

◆ m_h0

vector_fp m_h0
mutableprotected

Temporary storage for the reference state enthalpies.

Definition at line 427 of file SurfPhase.h.

Referenced by SurfPhase::_updateThermo(), SurfPhase::addSpecies(), SurfPhase::enthalpy_mole(), and SurfPhase::getEnthalpy_RT().

◆ m_s0

vector_fp m_s0
mutableprotected

Temporary storage for the reference state entropies.

Definition at line 430 of file SurfPhase.h.

Referenced by SurfPhase::_updateThermo(), SurfPhase::addSpecies(), SurfPhase::entropy_mole(), and SurfPhase::getEntropy_R().

◆ m_cp0

vector_fp m_cp0
mutableprotected

Temporary storage for the reference state heat capacities.

Definition at line 433 of file SurfPhase.h.

Referenced by SurfPhase::_updateThermo(), SurfPhase::addSpecies(), SurfPhase::cp_mole(), and SurfPhase::getCp_R().

◆ m_mu0

vector_fp m_mu0
mutableprotected

◆ m_work

vector_fp m_work
mutableprotected

◆ m_logsize

vector_fp m_logsize
mutableprotected

vector storing the log of the size of each species.

The size of each species is defined as the number of surface sites each species occupies.

Definition at line 446 of file SurfPhase.h.

Referenced by SurfPhase::addSpecies(), and SurfPhase::logStandardConc().


The documentation for this class was generated from the following files: