21 RedlichKisterVPSSTP::RedlichKisterVPSSTP() :
22 numBinaryInteractions_(0),
23 formRedlichKister_(0),
29 const std::string& id_) :
30 numBinaryInteractions_(0),
31 formRedlichKister_(0),
38 const std::string& id_) :
39 numBinaryInteractions_(0),
40 formRedlichKister_(0),
53 for (
size_t k = 0; k <
m_kk; k++) {
68 for (
size_t k = 0; k <
m_kk; k++) {
79 for (
size_t i = 0; i <
m_kk; i++) {
90 for (
size_t i = 0; i <
m_kk; i++) {
101 for (
size_t i = 0; i <
m_kk; i++) {
118 for (
size_t k = 0; k <
m_kk; k++) {
126 for (
size_t k = 0; k <
m_kk; k++) {
141 for (
size_t k = 0; k <
m_kk; k++) {
145 for (
size_t k = 0; k <
m_kk; k++) {
161 for (
size_t k = 0; k <
m_kk; k++) {
166 for (
size_t k = 0; k <
m_kk; k++) {
175 for (
size_t iK = 0; iK <
m_kk; iK++) {
183 for (
const auto& item :
m_input[
"interactions"].asVector<AnyMap>()) {
184 auto&
species = item[
"species"].asVector<
string>(2);
185 vector_fp h_excess = item.convertVector(
"excess-enthalpy",
"J/kmol");
186 vector_fp s_excess = item.convertVector(
"excess-entropy",
"J/kmol/K");
188 h_excess.data(), h_excess.size(),
189 s_excess.data(), s_excess.size());
203 if ((
int) id_.size() > 0 && phaseNode.
id() != id_) {
204 throw CanteraError(
"RedlichKisterVPSSTP::initThermoXML",
205 "phasenode and Id are incompatible");
210 if (!phaseNode.
hasChild(
"thermo")) {
211 throw CanteraError(
"RedlichKisterVPSSTP::initThermoXML",
212 "no thermo XML node");
216 throw CanteraError(
"RedlichKisterVPSSTP::initThermoXML",
217 "Unknown thermo model: " + thermoNode[
"model"]
218 +
" - This object only knows \"Redlich-Kister\" ");
223 if (thermoNode.
hasChild(
"activityCoefficients")) {
226 throw CanteraError(
"RedlichKisterVPSSTP::initThermoXML",
227 "Unknown activity coefficient model: " + acNode[
"model"]);
229 for (
size_t i = 0; i < acNode.
nChildren(); i++) {
258 doublereal deltaX = XA - XB;
262 doublereal poly = 1.0;
263 doublereal polyMm1 = 1.0;
264 doublereal sum = 0.0;
265 doublereal sumMm1 = 0.0;
266 doublereal sum2 = 0.0;
267 for (
size_t m = 0; m < N; m++) {
268 doublereal A_ge = (he_vec[m] - T * se_vec[m]) / (
GasConstant * T);
270 sum2 += A_ge * (m + 1) * poly;
273 sumMm1 += (A_ge * polyMm1 * m);
277 doublereal oneMXA = 1.0 - XA;
278 doublereal oneMXB = 1.0 - XB;
279 for (
size_t k = 0; k <
m_kk; k++) {
282 }
else if (iB == k) {
302 doublereal deltaX = XA - XB;
304 doublereal poly = 1.0;
305 doublereal sum = 0.0;
307 doublereal sumMm1 = 0.0;
308 doublereal polyMm1 = 1.0;
309 doublereal sum2 = 0.0;
310 for (
size_t m = 0; m < N; m++) {
311 doublereal A_ge = - se_vec[m];
313 sum2 += A_ge * (m + 1) * poly;
316 sumMm1 += (A_ge * polyMm1 * m);
320 doublereal oneMXA = 1.0 - XA;
321 doublereal oneMXB = 1.0 - XB;
322 for (
size_t k = 0; k <
m_kk; k++) {
325 }
else if (iB == k) {
337 for (
size_t k = 0; k <
m_kk; k++) {
345 for (
size_t k = 0; k <
m_kk; k++) {
360 double deltaX = XA - XB;
367 double polyMm1 = 1.0;
368 double polyMm2 = 1.0;
370 for (
size_t m = 0; m < N; m++) {
371 double A_ge = (he_vec[m] - T * se_vec[m]) / (
GasConstant * T);;
375 sumMm1 += (A_ge * polyMm1 * m);
379 sumMm2 += (A_ge * polyMm2 * m * (m - 1.0));
384 for (
size_t k = 0; k <
m_kk; k++) {
387 XA * (- (1-XA+XB) * sum + 2*(1.0 - XA) * XB * sumMm1
388 + sumMm1 * (XB * (1 - 2*XA + XB) - XA * (1 - XA + 2*XB))
389 + 2 * XA * XB * sumMm2 * (1.0 - XA + XB));
390 }
else if (iB == k) {
392 XB * (- (1-XB+XA) * sum - 2*(1.0 - XB) * XA * sumMm1
393 + sumMm1 * (XA * (2*XB - XA - 1) - XB * (-2*XA + XB - 1))
394 - 2 * XA * XB * sumMm2 * (-XA - 1 + XB));
410 doublereal deltaX = XA - XB;
412 doublereal poly = 1.0;
413 doublereal sum = 0.0;
416 doublereal sumMm1 = 0.0;
417 doublereal polyMm1 = 1.0;
418 doublereal polyMm2 = 1.0;
419 doublereal sum2 = 0.0;
420 doublereal sum2Mm1 = 0.0;
421 doublereal sumMm2 = 0.0;
422 for (
size_t m = 0; m < N; m++) {
423 doublereal A_ge = he_vec[m] - T * se_vec[m];
425 sum2 += A_ge * (m + 1) * poly;
428 sumMm1 += (A_ge * polyMm1 * m);
429 sum2Mm1 += (A_ge * polyMm1 * m * (1.0 + m));
433 sumMm2 += (A_ge * polyMm2 * m * (m - 1.0));
438 for (
size_t k = 0; k <
m_kk; k++) {
441 + XB * sumMm1 * (1.0 - 2.0 * XA + XB)
442 + XA * XB * sumMm2 * (1.0 - XA + XB));
445 + XA * sumMm1 * (1.0 + 2.0 * XB - XA)
446 - XA * XB * sumMm2 * (1.0 - XA + XB));
447 }
else if (iB == k) {
449 + XB * sumMm1 * (1.0 - 2.0 * XA + XB)
450 + XA * XB * sumMm2 * (1.0 - XA + XB));
453 + XA * sumMm1 * (XB - XA - (1.0 - XB))
454 - XA * XB * sumMm2 * (-XA - (1.0 - XB)));
464 doublereal* dlnActCoeffds)
const
468 for (
size_t k = 0; k <
m_kk; k++) {
470 for (
size_t j = 0; j <
m_kk; j++) {
479 for (
size_t j = 0; j <
m_kk; j++) {
481 for (
size_t k = 0; k <
m_kk; k++) {
490 for (
size_t k = 0; k <
m_kk; k++) {
499 for (
size_t k = 0; k <
m_kk; k++) {
500 for (
size_t m = 0; m <
m_kk; m++) {
501 dlnActCoeffdlnN[ld * k + m] = data[
m_kk * k + m];
508 std::string xname = xmLBinarySpecies.
name();
509 if (xname !=
"binaryNeutralSpeciesParameters") {
510 throw CanteraError(
"RedlichKisterVPSSTP::readXMLBinarySpecies",
511 "Incorrect name for processing this routine: " + xname);
514 std::string iName = xmLBinarySpecies.
attrib(
"speciesA");
516 throw CanteraError(
"RedlichKisterVPSSTP::readXMLBinarySpecies",
"no speciesA attrib");
518 std::string jName = xmLBinarySpecies.
attrib(
"speciesB");
520 throw CanteraError(
"RedlichKisterVPSSTP::readXMLBinarySpecies",
"no speciesB attrib");
527 if (iSpecies ==
npos) {
531 if (jSpecies ==
npos) {
536 for (
size_t iChild = 0; iChild < xmLBinarySpecies.
nChildren(); iChild++) {
541 if (nodeName ==
"excessenthalpy") {
542 getFloatArray(xmlChild, hParams,
true,
"toSI",
"excessEnthalpy");
543 }
else if (nodeName ==
"excessentropy") {
544 getFloatArray(xmlChild, sParams,
true,
"toSI",
"excessEntropy");
548 sParams.data(), sParams.size());
552 const std::string& speciesA,
const std::string& speciesB,
553 const double* excess_enthalpy,
size_t n_enthalpy,
554 const double* excess_entropy,
size_t n_entropy)
559 throw CanteraError(
"RedlichKisterVPSSTP::addBinaryInteraction",
560 "Species '{}' not present in phase", speciesA);
561 }
else if (kB ==
npos) {
562 throw CanteraError(
"RedlichKisterVPSSTP::addBinaryInteraction",
563 "Species '{}' not present in phase", speciesB);
566 throw CanteraError(
"RedlichKisterVPSSTP::addBinaryInteraction",
567 "Species '{}' should be neutral", speciesA);
568 }
else if (
charge(kB) != 0) {
569 throw CanteraError(
"RedlichKisterVPSSTP::addBinaryInteraction",
570 "Species '{}' should be neutral", speciesB);
575 m_HE_m_ij.emplace_back(excess_enthalpy, excess_enthalpy + n_enthalpy);
576 m_SE_m_ij.emplace_back(excess_entropy, excess_entropy + n_entropy);
577 size_t N = max(n_enthalpy, n_entropy);
(see Thermodynamic Properties and class RedlichKisterVPSSTP).
Headers for the factory class that can create known ThermoPhase objects (see Thermodynamic Properties...
bool hasKey(const std::string &key) const
Returns true if the map contains an item named key.
void resize(size_t n, size_t m, doublereal v=0.0)
Resize the array, and fill the new entries with 'v'.
void zero()
Set all of the entries to zero.
Base class for exceptions thrown by Cantera classes.
Array2D dlnActCoeffdlnN_
Storage for the current derivative values of the gradients with respect to logarithm of the species m...
vector_fp dlnActCoeffdlnX_diag_
Storage for the current derivative values of the gradients with respect to logarithm of the mole frac...
vector_fp lnActCoeff_Scaled_
Storage for the current values of the activity coefficients of the species.
vector_fp d2lnActCoeffdT2_Scaled_
Storage for the current derivative values of the gradients with respect to temperature of the log of ...
vector_fp moleFractions_
Storage for the current values of the mole fractions of the species.
vector_fp dlnActCoeffdT_Scaled_
Storage for the current derivative values of the gradients with respect to temperature of the log of ...
doublereal charge(size_t k) const
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the...
size_t m_kk
Number of species in the phase.
doublereal temperature() const
Temperature (K).
size_t speciesIndex(const std::string &name) const
Returns the index of a species named 'name' within the Phase object.
shared_ptr< Species > species(const std::string &name) const
Return the Species object for the named species.
void s_update_dlnActCoeff_dX_() const
Internal routine that calculates the derivative of the activity coefficients wrt the mole fractions.
Array2D dlnActCoeff_dX_
Two dimensional array of derivatives of activity coefficients wrt mole fractions.
virtual void getd2lnActCoeffdT2(doublereal *d2lnActCoeffdT2) const
Get the array of temperature second derivatives of the log activity coefficients.
virtual void getLnActivityCoefficients(doublereal *lnac) const
Get the array of non-dimensional molar-based ln activity coefficients at the current solution tempera...
RedlichKisterVPSSTP()
Constructor.
virtual doublereal cp_mole() const
Molar heat capacity at constant pressure. Units: J/kmol/K.
virtual void getPartialMolarEnthalpies(doublereal *hbar) const
Returns an array of partial molar enthalpies for the species in the mixture.
virtual void getPartialMolarEntropies(doublereal *sbar) const
Returns an array of partial molar entropies for the species in the mixture.
virtual void getdlnActCoeffdT(doublereal *dlnActCoeffdT) const
Get the array of temperature derivatives of the log activity coefficients.
size_t numBinaryInteractions_
number of binary interaction expressions
virtual void initThermoXML(XML_Node &phaseNode, const std::string &id)
Import and initialize a ThermoPhase object using an XML tree.
virtual doublereal enthalpy_mole() const
Molar enthalpy. Units: J/kmol.
virtual void getPartialMolarVolumes(doublereal *vbar) const
Return an array of partial molar volumes for the species in the mixture.
std::vector< vector_fp > m_HE_m_ij
Enthalpy term for the binary mole fraction interaction of the excess Gibbs free energy expression.
virtual void getdlnActCoeffdlnN(const size_t ld, doublereal *const dlnActCoeffdlnN)
Get the array of derivatives of the log activity coefficients with respect to the log of the species ...
void readXMLBinarySpecies(XML_Node &xmlBinarySpecies)
Process an XML node called "binaryNeutralSpeciesParameters".
std::vector< size_t > m_N_ij
Vector of the length of the polynomial for the interaction.
virtual doublereal cv_mole() const
Molar heat capacity at constant volume. Units: J/kmol/K.
virtual void getdlnActCoeffdlnX_diag(doublereal *dlnActCoeffdlnX_diag) const
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component o...
virtual void getPartialMolarCp(doublereal *cpbar) const
Returns an array of partial molar entropies for the species in the mixture.
std::vector< size_t > m_pSpecies_A_ij
vector of species indices representing species A in the interaction
void s_update_dlnActCoeff_dT() const
Update the derivative of the log of the activity coefficients wrt T.
virtual doublereal entropy_mole() const
Molar entropy. Units: J/kmol/K.
virtual void initThermo()
virtual void getdlnActCoeffdlnN_diag(doublereal *dlnActCoeffdlnN_diag) const
Get the array of log species mole number derivatives of the log activity coefficients.
virtual void getdlnActCoeffds(const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
Get the change in activity coefficients wrt changes in state (temp, mole fraction,...
std::vector< size_t > m_pSpecies_B_ij
vector of species indices representing species B in the interaction
void initLengths()
Initialize lengths of local variables after all species have been identified.
void s_update_dlnActCoeff_dlnX_diag() const
Internal routine that calculates the total derivative of the activity coefficients with respect to th...
void s_update_lnActCoeff() const
Update the activity coefficients.
virtual void getChemPotentials(doublereal *mu) const
Get the species chemical potentials. Units: J/kmol.
std::vector< vector_fp > m_SE_m_ij
Entropy term for the binary mole fraction interaction of the excess Gibbs free energy expression.
void addBinaryInteraction(const std::string &speciesA, const std::string &speciesB, const double *excess_enthalpy, size_t n_enthalpy, const double *excess_entropy, size_t n_entropy)
Add a binary species interaction with the specified parameters.
doublereal RT() const
Return the Gas Constant multiplied by the current temperature.
virtual void initThermoFile(const std::string &inputFile, const std::string &id)
virtual void initThermoXML(XML_Node &phaseNode, const std::string &id)
Import and initialize a ThermoPhase object using an XML tree.
AnyMap m_input
Data supplied via setParameters.
virtual void getStandardVolumes(doublereal *vol) const
Get the molar volumes of the species standard states at the current T and P of the solution.
virtual void getCp_R(doublereal *cpr) const
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the cu...
virtual void getEntropy_R(doublereal *sr) const
Get the array of nondimensional Entropy functions for the standard state species at the current T and...
virtual void initThermo()
virtual void getStandardChemPotentials(doublereal *mu) const
Get the array of chemical potentials at unit activity for the species at their standard states at the...
virtual void getEnthalpy_RT(doublereal *hrt) const
Get the nondimensional Enthalpy functions for the species at their standard states at the current T a...
Class XML_Node is a tree-based representation of the contents of an XML file.
std::string attrib(const std::string &attr) const
Function returns the value of an attribute.
std::string name() const
Returns the name of the XML node.
bool hasChild(const std::string &ch) const
Tests whether the current node has a child node with a particular name.
std::string id() const
Return the id attribute, if present.
size_t nChildren(bool discardComments=false) const
Return the number of children.
XML_Node & child(const size_t n) const
Return a changeable reference to the n'th child of the current node.
CTML ("Cantera Markup Language") is the variant of XML that Cantera uses to store data.
const size_t npos
index returned by functions to indicate "no position"
const double SmallNumber
smallest number to compare to zero.
std::vector< double > vector_fp
Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.
const double GasConstant
Universal Gas Constant [J/kmol/K].
void importPhase(XML_Node &phase, ThermoPhase *th)
Import a phase information into an empty ThermoPhase object.
Namespace for the Cantera kernel.
bool caseInsensitiveEquals(const std::string &input, const std::string &test)
Case insensitive equality predicate.
std::string toLowerCopy(const std::string &input)
Convert to lower case.
size_t getFloatArray(const XML_Node &node, vector_fp &v, const bool convert, const std::string &unitsString, const std::string &nodeName)
This function reads the current node or a child node of the current node with the default name,...
Contains declarations for string manipulation functions within Cantera.