Cantera  2.3.0
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
MultiPhaseEquil Class Reference

#include <MultiPhaseEquil.h>

Collaboration diagram for MultiPhaseEquil:
[legend]

Public Member Functions

 MultiPhaseEquil (MultiPhase *mix, bool start=true, int loglevel=0)
 Construct a multiphase equilibrium manager for a multiphase mixture. More...
 
size_t constituent (size_t m)
 
void getStoichVector (size_t rxn, vector_fp &nu)
 
int iterations ()
 
doublereal equilibrate (int XY, doublereal err=1.0e-9, int maxsteps=1000, int loglevel=-99)
 
doublereal error ()
 
std::string reactionString (size_t j)
 
void setInitialMixMoles (int loglevel=0)
 
size_t componentIndex (size_t n)
 
void reportCSV (const std::string &reportFile)
 
double phaseMoles (size_t iph) const
 

Protected Member Functions

void getComponents (const std::vector< size_t > &order)
 This method finds a set of component species and a complete set of formation reactions for the non-components in terms of the components. More...
 
int setInitialMoles (int loglevel=0)
 Estimate the initial mole numbers. More...
 
void computeN ()
 
doublereal stepComposition (int loglevel=0)
 Take one step in composition, given the gradient of G at the starting point, and a vector of reaction steps dxi. More...
 
void unsort (vector_fp &x)
 Re-arrange a vector of species properties in sorted form (components first) into unsorted, sequential form. More...
 
void step (doublereal omega, vector_fp &deltaN, int loglevel=0)
 
doublereal computeReactionSteps (vector_fp &dxi)
 Compute the change in extent of reaction for each reaction. More...
 
void updateMixMoles ()
 
void finish ()
 Clean up the composition. More...
 
double moles (size_t ns) const
 
double & moles (size_t ns)
 
int solutionSpecies (size_t n) const
 
bool isStoichPhase (size_t n) const
 
doublereal mu (size_t n) const
 
std::string speciesName (size_t n) const
 
size_t nFree () const
 Number of degrees of freedom. More...
 

Protected Attributes

size_t m_nel_mix
 
size_t m_nsp_mix
 
size_t m_nel
 
size_t m_nsp
 
size_t m_eloc
 
int m_iter
 
MultiPhasem_mix
 
doublereal m_press
 
doublereal m_temp
 
std::vector< size_t > m_order
 
DenseMatrix m_N
 
DenseMatrix m_A
 
vector_fp m_work
 
vector_fp m_work2
 
vector_fp m_work3
 
vector_fp m_moles
 
vector_fp m_lastmoles
 
vector_fp m_dxi
 
vector_fp m_deltaG_RT
 
vector_fp m_mu
 
std::vector< bool > m_majorsp
 
std::vector< size_t > m_sortindex
 
vector_int m_lastsort
 
vector_int m_dsoln
 
vector_int m_incl_element
 
vector_int m_incl_species
 
std::vector< size_t > m_species
 
std::vector< size_t > m_element
 
std::vector< bool > m_solnrxn
 
bool m_force
 

Detailed Description

Multiphase chemical equilibrium solver. Class MultiPhaseEquil is designed to be used to set a mixture containing one or more phases to a state of chemical equilibrium. It implements the VCS algorithm, described in Smith and Missen, "Chemical Reaction Equilibrium."

This class only handles chemical equilibrium at a specified temperature and pressure. To compute equilibrium holding other properties fixed, it is necessary to iterate on T and P in an "outer" loop, until the specified properties have the desired values. This is done, for example, in method equilibrate of class MultiPhase.

This class is primarily meant to be used internally by the equilibrate method of class MultiPhase, although there is no reason it cannot be used directly in application programs if desired.

Definition at line 32 of file MultiPhaseEquil.h.

Constructor & Destructor Documentation

◆ MultiPhaseEquil()

MultiPhaseEquil ( MultiPhase mix,
bool  start = true,
int  loglevel = 0 
)

Construct a multiphase equilibrium manager for a multiphase mixture.

Parameters
mixPointer to a multiphase mixture object.
startIf true, the initial composition will be determined by a linear Gibbs minimization, otherwise the initial mixture composition will be used.
loglevelDesired level of debug printing. loglevel = 0 suppresses printing. Higher values request more verbose logging output.

Definition at line 19 of file MultiPhaseEquil.cpp.

References Array2D::data(), MultiPhase::elementMoles(), MultiPhase::elementName(), Cantera::multiply(), MultiPhase::nAtoms(), MultiPhase::nElements(), MultiPhaseEquil::nFree(), MultiPhase::nSpecies(), MultiPhase::pressure(), DenseMatrix::resize(), MultiPhaseEquil::setInitialMoles(), MultiPhase::solutionSpecies(), MultiPhase::speciesMoles(), MultiPhase::speciesName(), MultiPhase::speciesPhaseIndex(), MultiPhase::temperature(), MultiPhase::tempOK(), and MultiPhaseEquil::unsort().

Member Function Documentation

◆ getComponents()

void getComponents ( const std::vector< size_t > &  order)
protected

This method finds a set of component species and a complete set of formation reactions for the non-components in terms of the components.

In most cases, many different component sets are possible, and therefore neither the components returned by this method nor the formation reactions are unique. The algorithm used here is described in Smith and Missen, Chemical Reaction Equilibrium Analysis.

The component species are taken to be the first M species in array 'species' that have linearly-independent compositions.

Parameters
orderOn entry, vector order should contain species index numbers in the order of decreasing desirability as a component. For example, if it is desired to choose the components from among the major species, this array might list species index numbers in decreasing order of mole fraction. If array 'species' does not have length = nSpecies(), then the species will be considered as candidates to be components in declaration order, beginning with the first phase added.

Definition at line 255 of file MultiPhaseEquil.cpp.

References MultiPhase::nAtoms(), MultiPhaseEquil::nFree(), Cantera::npos, MultiPhase::solutionSpecies(), and Cantera::Tiny.

◆ setInitialMoles()

int setInitialMoles ( int  loglevel = 0)
protected

Estimate the initial mole numbers.

This is done by running each reaction as far forward or backward as possible, subject to the constraint that all mole numbers remain non-negative. Reactions for which \( \Delta \mu^0 \) are positive are run in reverse, and ones for which it is negative are run in the forward direction. The end result is equivalent to solving the linear programming problem of minimizing the linear Gibbs function subject to the element and non- negativity constraints.

Definition at line 198 of file MultiPhaseEquil.cpp.

References MultiPhase::getValidChemPotentials(), and MultiPhaseEquil::nFree().

Referenced by MultiPhaseEquil::MultiPhaseEquil().

◆ stepComposition()

doublereal stepComposition ( int  loglevel = 0)
protected

Take one step in composition, given the gradient of G at the starting point, and a vector of reaction steps dxi.

Definition at line 432 of file MultiPhaseEquil.cpp.

References MultiPhaseEquil::computeReactionSteps(), MultiPhase::getValidChemPotentials(), Cantera::multiply(), MultiPhaseEquil::nFree(), Cantera::Tiny, and MultiPhaseEquil::unsort().

◆ unsort()

void unsort ( vector_fp x)
protected

Re-arrange a vector of species properties in sorted form (components first) into unsorted, sequential form.

Definition at line 398 of file MultiPhaseEquil.cpp.

Referenced by MultiPhaseEquil::MultiPhaseEquil(), and MultiPhaseEquil::stepComposition().

◆ computeReactionSteps()

doublereal computeReactionSteps ( vector_fp dxi)
protected

◆ finish()

void finish ( )
protected

Clean up the composition.

The solution algorithm can leave some species in stoichiometric condensed phases with very small negative mole numbers. This method simply sets these to zero.

Definition at line 189 of file MultiPhaseEquil.cpp.

References MultiPhase::setMoles().

◆ nFree()

size_t nFree ( ) const
inlineprotected

The documentation for this class was generated from the following files: