Cantera  2.1.2
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
LatticePhase Class Reference

A simple thermodynamic model for a bulk phase, assuming a lattice of solid atoms. More...

#include <LatticePhase.h>

Inheritance diagram for LatticePhase:
[legend]
Collaboration diagram for LatticePhase:
[legend]

Public Member Functions

 LatticePhase ()
 Base Empty constructor. More...
 
 LatticePhase (const LatticePhase &right)
 Copy Constructor. More...
 
LatticePhaseoperator= (const LatticePhase &right)
 Assignment operator. More...
 
 LatticePhase (const std::string &inputFile, const std::string &id="")
 Full constructor for a lattice phase. More...
 
 LatticePhase (XML_Node &phaseRef, const std::string &id="")
 Full constructor for a water phase. More...
 
ThermoPhaseduplMyselfAsThermoPhase () const
 Duplication function. More...
 
virtual int eosType () const
 Equation of state flag. Returns the value cLattice. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal enthalpy_mole () const
 Return the Molar Enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy of the solution. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy of the solution. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar gibbs free energy of the solution. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure of the solution. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume of the solution. More...
 
Mechanical Equation of State Properties
virtual doublereal pressure () const
 In this equation of state implementation, the density is a function only of the mole fractions. More...
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
doublereal calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions, but don't normalize them to one. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions, and normalize them to one. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions, but don't normalize them to one. More...
 
virtual void setConcentrations (const doublereal *const c)
 Set the concentration,. More...
 
Activities, Standard States, and Activity Concentrations
virtual void getActivityConcentrations (doublereal *c) const
 The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and the pressure. More...

 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Returns the natural logarithm of the standard concentration of the kth species. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
Partial Molar Properties of the Solution
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity for the species standard states at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
Properties of the Standard State of the Species in the Solution
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species standard states at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the species standard states at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species standard states at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference States
const vector_fpenthalpy_RT_ref () const
 Returns the vector of nondimensional Enthalpies of the reference state at the current temperature of the solution and the reference pressure for the phase. More...
 
const vector_fpgibbs_RT_ref () const
 Returns a reference to the dimensionless reference state Gibbs free energy vector. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
const vector_fpentropy_R_ref () const
 Returns a reference to the dimensionless reference state Entropy vector. More...
 
const vector_fpcp_R_ref () const
 Returns a reference to the dimensionless reference state Heat Capacity vector. More...
 
Utilities for Initialization of the Object
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters from the argument list. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual ~ThermoPhase ()
 Destructor. Deletes the species thermo manager. More...
 
 ThermoPhase (const ThermoPhase &right)
 Copy Constructor for the ThermoPhase object. More...
 
ThermoPhaseoperator= (const ThermoPhase &right)
 Assignment operator. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal cv_vib (int, double) const
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. More...
 
doublereal entropy_mass () const
 Specific entropy. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. More...
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
virtual ~Phase ()
 Destructor. More...
 
 Phase (const Phase &right)
 Copy Constructor. More...
 
Phaseoperator= (const Phase &right)
 Assignment operator. More...
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual void freezeSpecies ()
 Call when finished adding species. More...
 
bool speciesFrozen ()
 True if freezeSpecies has been called. More...
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More...
 
void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setTemperature (const doublereal temp)
 Set the internally stored temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \). More...
 
void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element. More...
 
void addElement (const XML_Node &e)
 Add an element from an XML specification. More...
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree. More...
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species. More...
 
bool elementsFrozen ()
 True if freezeElements has been called. More...
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More...
 

Protected Attributes

doublereal m_Pref
 Reference state pressure. More...
 
doublereal m_Pcurrent
 The current pressure. More...
 
doublereal m_tlast
 Current value of the temperature (Kelvin) More...
 
vector_fp m_h0_RT
 Reference state enthalpies / RT. More...
 
vector_fp m_cp0_R
 Temporary storage for the reference state heat capacities. More...
 
vector_fp m_g0_RT
 Temporary storage for the reference state gibbs energies. More...
 
vector_fp m_s0_R
 Temporary storage for the reference state entropies at the current temperature. More...
 
std::string m_vacancy
 String name for the species which represents a vacancy in the lattice. More...
 
vector_fp m_speciesMolarVolume
 Vector of molar volumes for each species in the solution. More...
 
doublereal m_site_density
 Site Density of the lattice solid. More...
 
- Protected Attributes inherited from ThermoPhase
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition. More...
 
- Protected Attributes inherited from Phase
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 

Private Member Functions

void _updateThermo () const
 Update the species reference state thermodynamic functions. More...
 

Additional Inherited Members

- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Detailed Description

A simple thermodynamic model for a bulk phase, assuming a lattice of solid atoms.

The bulk consists of a matrix of equivalent sites whose molar density does not vary with temperature or pressure. The thermodynamics obeys the ideal solution laws. The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility.

The density of matrix sites is given by the variable \( C_o \), which has SI units of kmol m-3.

Specification of Species Standard State Properties

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). However, how to relate pressure changes to the reference state thermodynamics is within this class.

Pressure is defined as an independent variable in this phase. However, it has no effect on any quantities, as the molar concentration is a constant.

The standard state enthalpy function is given by the following relation, which has a weak dependence on the system pressure, \(P\).

\[ h^o_k(T,P) = h^{ref}_k(T) + \left( \frac{P - P_{ref}}{C_o} \right) \]

For an incompressible substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( \frac{P_{ref}}{C_o} \) is subtracted from the specified reference molar enthalpy to compute the standard state molar internal energy:

\[ u^o_k(T,P) = h^{ref}_k(T) - \frac{P_{ref}}{C_o} \]

The standard state heat capacity, internal energy, and entropy are independent of pressure. The standard state gibbs free energy is obtained from the enthalpy and entropy functions.

The standard state molar volume is independent of temperature, pressure, and species identity:

\[ V^o_k(T,P) = \frac{1.0}{C_o} \]


Specification of Solution Thermodynamic Properties


The activity of species \( k \) defined in the phase, \( a_k \), is given by the ideal solution law:

\[ a_k = X_k , \]

where \( X_k \) is the mole fraction of species k. The chemical potential for species k is equal to

\[ \mu_k(T,P) = \mu^o_k(T, P) + R T \log(X_k) \]

The partial molar entropy for species k is given by the following relation,

\[ \tilde{s}_k(T,P) = s^o_k(T,P) - R \log(X_k) = s^{ref}_k(T) - R \log(X_k) \]

The partial molar enthalpy for species k is

\[ \tilde{h}_k(T,P) = h^o_k(T,P) = h^{ref}_k(T) + \left( \frac{P - P_{ref}}{C_o} \right) \]

The partial molar Internal Energy for species k is

\[ \tilde{u}_k(T,P) = u^o_k(T,P) = u^{ref}_k(T) \]

The partial molar Heat Capacity for species k is

\[ \tilde{Cp}_k(T,P) = Cp^o_k(T,P) = Cp^{ref}_k(T) \]

The partial molar volume is independent of temperature, pressure, and species identity:

\[ \tilde{V}_k(T,P) = V^o_k(T,P) = \frac{1.0}{C_o} \]

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Pressure is defined as an independent variable in this phase. However, it only has a weak dependence on the enthalpy, and doesn't effect the molar concentration.


Application within Kinetics Managers


\( C^a_k\) are defined such that \( C^a_k = a_k = X_k \) \( C^s_k \), the standard concentration, is defined to be equal to one. \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. The activity concentration, \( C^a_k \), is given by the following expression.

\[ C^a_k = C^s_k X_k = X_k \]

The standard concentration for species k is identically one

\[ C^s_k = C^s = 1.0 \]

For example, a bulk-phase binary gas reaction between species j and k, producing a new species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.

\[ R^1 = k^1 C_j^a C_k^a = k^1 X_j X_k \]

The reverse rate constant can then be obtained from the law of microscopic reversibility and the equilibrium expression for the system.

\[ \frac{X_j X_k}{ X_l} = K_a^{o,1} = \exp(\frac{\mu^o_l - \mu^o_j - \mu^o_k}{R T} ) \]

\( K_a^{o,1} \) is the dimensionless form of the equilibrium constant, associated with the pressure dependent standard states \( \mu^o_l(T,P) \) and their associated activities, \( a_l \), repeated here:

\[ \mu_l(T,P) = \mu^o_l(T, P) + R T \log(a_l) \]

The concentration equilibrium constant, \( K_c \), may be obtained by changing over to activity concentrations. When this is done:

\[ \frac{C^a_j C^a_k}{ C^a_l} = C^o K_a^{o,1} = K_c^1 = \exp(\frac{\mu^{o}_l - \mu^{o}_j - \mu^{o}_k}{R T} ) \]

Kinetics managers will calculate the concentration equilibrium constant, \( K_c \), using the second and third part of the above expression as a definition for the concentration equilibrium constant.


Instantiation of the Class


The constructor for this phase is located in the default ThermoFactory for Cantera. A new LatticePhase object may be created by the following code snippet:

XML_Node *xc = get_XML_File("O_lattice_SiO2.xml");
XML_Node * const xs = xc->findNameID("phase", "O_lattice_SiO2");
ThermoPhase *tp = newPhase(*xs);
LatticePhase *o_lattice = dynamic_cast <LatticPhase *>(tp);

or by the following constructor:

XML_Node *xc = get_XML_File("O_lattice_SiO2.xml");
XML_Node * const xs = xc->findNameID("phase", "O_lattice_SiO2");
LatticePhase *o_lattice = new LatticePhase(*xs);

The XML file used in this example is listed in the next section


XML Example


An example of an XML Element named phase setting up a LatticePhase object named "O_lattice_SiO2" is given below.

<!-- phase O_lattice_SiO2 -->
<phase dim="3" id="O_lattice_SiO2">
<elementArray datasrc="elements.xml"> Si H He </elementArray>
<speciesArray datasrc="#species_data">
O_O Vac_O
</speciesArray>
<reactionArray datasrc="#reaction_data"/>
<thermo model="Lattice">
<site_density> 73.159 </site_density>
<vacancy_species> Vac_O </vacancy_species>
</thermo>
<kinetics model="BulkKinetics"/>
<transport model="None"/>
</phase>

The model attribute "Lattice" of the thermo XML element identifies the phase as being of the type handled by the LatticePhase object.

Definition at line 246 of file LatticePhase.h.

Constructor & Destructor Documentation

Base Empty constructor.

Definition at line 21 of file LatticePhase.cpp.

Referenced by LatticePhase::duplMyselfAsThermoPhase().

LatticePhase ( const LatticePhase right)

Copy Constructor.

Parameters
rightObject to be copied

Definition at line 30 of file LatticePhase.cpp.

References LatticePhase::operator=().

LatticePhase ( const std::string &  inputFile,
const std::string &  id = "" 
)

Full constructor for a lattice phase.

Parameters
inputFileString name of the input file
idstring id of the phase name

Definition at line 58 of file LatticePhase.cpp.

References ThermoPhase::initThermoFile().

LatticePhase ( XML_Node phaseRef,
const std::string &  id = "" 
)

Full constructor for a water phase.

Parameters
phaseRefXML node referencing the lattice phase.
idstring id of the phase name

Definition at line 63 of file LatticePhase.cpp.

References Cantera::findXMLPhase(), and Cantera::importPhase().

Member Function Documentation

LatticePhase & operator= ( const LatticePhase right)
ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplication function.

This virtual function is used to create a duplicate of the current phase. It's used to duplicate the phase when given a ThermoPhase pointer to the phase.

Reimplemented from ThermoPhase.

Definition at line 68 of file LatticePhase.cpp.

References LatticePhase::LatticePhase().

virtual int eosType ( ) const
inlinevirtual

Equation of state flag. Returns the value cLattice.

Reimplemented from ThermoPhase.

Definition at line 287 of file LatticePhase.h.

doublereal enthalpy_mole ( ) const
virtual

Return the Molar Enthalpy. Units: J/kmol.

For an ideal solution,

\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T,P), \]

The standard-state pure-species Enthalpies \( \hat h^0_k(T,P) \) are computed first by the species reference state thermodynamic property manager and then a small pressure dependent term is added in.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 73 of file LatticePhase.cpp.

References LatticePhase::enthalpy_RT_ref(), Cantera::GasConstant, ThermoPhase::m_spthermo, Phase::mean_X(), Phase::molarDensity(), LatticePhase::pressure(), SpeciesThermo::refPressure(), and Phase::temperature().

Referenced by LatticePhase::gibbs_mole().

doublereal intEnergy_mole ( ) const
virtual

Molar internal energy of the solution. Units: J/kmol.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:

\[ \hat u(T,X) = \hat h(T,P,X) - p \hat V = \sum_k X_k \hat h^0_k(T) - P_{ref} (\sum_k{X_k \hat V^0_k}) \]

and is a function only of temperature. The reference-state pure-species enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 81 of file LatticePhase.cpp.

References LatticePhase::enthalpy_RT_ref(), Cantera::GasConstant, ThermoPhase::m_spthermo, Phase::mean_X(), Phase::molarDensity(), SpeciesThermo::refPressure(), and Phase::temperature().

doublereal entropy_mole ( ) const
virtual

Molar entropy of the solution. Units: J/kmol/K.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]

The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of pressure since the volume expansivities are equal to zero.

Units: J/kmol/K.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 89 of file LatticePhase.cpp.

References LatticePhase::entropy_R_ref(), Cantera::GasConstant, Phase::mean_X(), and Phase::sum_xlogx().

Referenced by LatticePhase::gibbs_mole().

doublereal gibbs_mole ( ) const
virtual

Molar gibbs free energy of the solution. Units: J/kmol.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k log(X_k) \]

The reference-state pure-species gibbs free energies \( \hat g^0_k(T) \) are computed by the species thermodynamic property manager, while the standard state gibbs free energies \( \hat g^0_k(T,P) \) are computed by the member function, gibbs_RT().

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 95 of file LatticePhase.cpp.

References LatticePhase::enthalpy_mole(), LatticePhase::entropy_mole(), and Phase::temperature().

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure of the solution.

Units: J/kmol/K.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_p(T,P) = \sum_k X_k \hat c^0_{p,k}(T) . \]

The heat capacity is independent of pressure. The reference-state pure-species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 100 of file LatticePhase.cpp.

References LatticePhase::cp_R_ref(), Cantera::GasConstant, and Phase::mean_X().

Referenced by LatticePhase::cv_mole().

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume of the solution.

Units: J/kmol/K.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_v(T,P) = \hat c_p(T,P) \]

The two heat capacities are equal.

Reimplemented from ThermoPhase.

Definition at line 105 of file LatticePhase.cpp.

References LatticePhase::cp_mole().

virtual doublereal pressure ( ) const
inlinevirtual

In this equation of state implementation, the density is a function only of the mole fractions.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown.Pressure. Units: Pa.

For this incompressible system, we return the internally stored independent value of the pressure.

Reimplemented from ThermoPhase.

Definition at line 411 of file LatticePhase.h.

References LatticePhase::m_Pcurrent.

Referenced by LatticePhase::enthalpy_mole().

void setPressure ( doublereal  p)
virtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method sets the pressure within the object. The mass density is not a function of pressure.

Parameters
pInput Pressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 129 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and LatticePhase::m_Pcurrent.

doublereal calcDensity ( )

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

Definition at line 110 of file LatticePhase.cpp.

References LatticePhase::m_site_density, Phase::meanMolecularWeight(), and Phase::setMolarDensity().

Referenced by LatticePhase::setConcentrations(), LatticePhase::setMassFractions(), LatticePhase::setMassFractions_NoNorm(), LatticePhase::setMoleFractions(), LatticePhase::setMoleFractions_NoNorm(), and LatticePhase::setPressure().

void setMoleFractions ( const doublereal *const  x)
virtual

Set the mole fractions.

Parameters
xInput vector of mole fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 135 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setMoleFractions().

void setMoleFractions_NoNorm ( const doublereal *const  x)
virtual

Set the mole fractions, but don't normalize them to one.

Parameters
xInput vector of mole fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 141 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setMoleFractions().

void setMassFractions ( const doublereal *const  y)
virtual

Set the mass fractions, and normalize them to one.

Parameters
yInput vector of mass fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 147 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setMassFractions().

void setMassFractions_NoNorm ( const doublereal *const  y)
virtual

Set the mass fractions, but don't normalize them to one.

Parameters
yInput vector of mass fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 153 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setMassFractions_NoNorm().

void setConcentrations ( const doublereal *const  c)
virtual

Set the concentration,.

Parameters
cInput vector of concentrations. Length: m_kk.

Reimplemented from Phase.

Definition at line 159 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setConcentrations().

void getActivityConcentrations ( doublereal *  c) const
virtual

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and the pressure.

Activity is assumed to be molality-based here. This method returns an array of generalized concentrations \( C_k\) that are defined such that \( a_k = C_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below. These generalized concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions.

Parameters
cArray of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 165 of file LatticePhase.cpp.

References Phase::getMoleFractions().

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration for use

For the time being, we will use the concentration of pure solvent for the the standard concentration of all species. This has the effect of making mass-action reaction rates based on the molality of species proportional to the molality of the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.
Parameters
kSpecies index

Reimplemented from ThermoPhase.

Definition at line 177 of file LatticePhase.cpp.

doublereal logStandardConc ( size_t  k = 0) const
virtual

Returns the natural logarithm of the standard concentration of the kth species.

Parameters
kSpecies index

Reimplemented from ThermoPhase.

Definition at line 182 of file LatticePhase.cpp.

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.

For this phase, the activity coefficients are all equal to one.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 170 of file LatticePhase.cpp.

References Phase::m_kk.

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solid solution at the current temperature, pressure and mole fraction of the solid solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 187 of file LatticePhase.cpp.

References Cantera::GasConstant, LatticePhase::gibbs_RT_ref(), Phase::m_kk, LatticePhase::m_Pcurrent, LatticePhase::m_Pref, LatticePhase::m_speciesMolarVolume, Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol) For this phase, the partial molar enthalpies are equal to the pure species enthalpies

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo
Parameters
hbarOutput vector containing partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 201 of file LatticePhase.cpp.

References LatticePhase::enthalpy_RT_ref(), Cantera::GasConstant, Cantera::scale(), and Phase::temperature().

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.

\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]

The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo
Parameters
sbarOutput vector containing partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 208 of file LatticePhase.cpp.

References LatticePhase::entropy_R_ref(), Cantera::GasConstant, Phase::m_kk, Phase::moleFraction(), and Cantera::SmallNumber.

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.

Parameters
cpbarOutput vector of partial heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 219 of file LatticePhase.cpp.

References Cantera::GasConstant, LatticePhase::getCp_R(), and Phase::m_kk.

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 227 of file LatticePhase.cpp.

References LatticePhase::getStandardVolumes().

void getStandardChemPotentials ( doublereal *  mu) const
virtual

Get the array of chemical potentials at unit activity for the species standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 232 of file LatticePhase.cpp.

References ThermoPhase::_RT(), LatticePhase::gibbs_RT_ref(), and Cantera::scale().

void getPureGibbs ( doublereal *  gpure) const
virtual

Get the Gibbs functions for the standard state of the species at the current T and P of the solution.

Units are Joules/kmol

Parameters
gpureOutput vector of standard state gibbs free energies Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 238 of file LatticePhase.cpp.

References Cantera::GasConstant, LatticePhase::gibbs_RT_ref(), Phase::m_kk, LatticePhase::m_Pcurrent, LatticePhase::m_Pref, LatticePhase::m_speciesMolarVolume, and Phase::temperature().

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the nondimensional Enthalpy functions for the species standard states at their standard states at the current T and P of the solution.

A small pressure dependent term is added onto the reference state enthalpy to get the pressure dependence of this term.

\[ h^o_k(T,P) = h^{ref}_k(T) + \left( \frac{P - P_{ref}}{C_o} \right) \]

The reference state thermodynamics is obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 248 of file LatticePhase.cpp.

References LatticePhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, LatticePhase::m_Pcurrent, LatticePhase::m_Pref, LatticePhase::m_speciesMolarVolume, and Phase::temperature().

void getEntropy_R ( doublereal *  sr) const
virtual

Get the array of nondimensional Entropy functions for the species standard states at the current T and P of the solution.

The entropy of the standard state is defined as independent of pressure here.

\[ s^o_k(T,P) = s^{ref}_k(T) \]

The reference state thermodynamics is obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 257 of file LatticePhase.cpp.

References LatticePhase::entropy_R_ref().

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs functions for the species standard states at the current T and P of the solution.

The standard gibbs free energies are obtained from the enthalpy and entropy formulation.

\[ g^o_k(T,P) = h^{o}_k(T,P) - T s^{o}_k(T,P) \]

Parameters
grtOutput vector of nondimensional standard state gibbs free energies Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 263 of file LatticePhase.cpp.

References ThermoPhase::_RT(), LatticePhase::gibbs_RT_ref(), Phase::m_kk, LatticePhase::m_Pcurrent, LatticePhase::m_Pref, and LatticePhase::m_speciesMolarVolume.

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

The heat capacity of the standard state is independent of pressure

\[ Cp^o_k(T,P) = Cp^{ref}_k(T) \]

The reference state thermodynamics is obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Parameters
cprOutput vector of nondimensional standard state heat capacities Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 281 of file LatticePhase.cpp.

References LatticePhase::cp_R_ref().

Referenced by LatticePhase::getPartialMolarCp().

void getStandardVolumes ( doublereal *  vol) const
virtual

Get the molar volumes of the species standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 287 of file LatticePhase.cpp.

References LatticePhase::m_speciesMolarVolume.

Referenced by LatticePhase::getPartialMolarVolumes().

const vector_fp & enthalpy_RT_ref ( ) const

Returns the vector of nondimensional Enthalpies of the reference state at the current temperature of the solution and the reference pressure for the phase.

Returns
Output vector of nondimensional reference state Enthalpies of the species. Length: m_kk

Definition at line 292 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), and LatticePhase::m_h0_RT.

Referenced by LatticePhase::enthalpy_mole(), LatticePhase::getEnthalpy_RT(), LatticePhase::getPartialMolarEnthalpies(), and LatticePhase::intEnergy_mole().

const vector_fp & gibbs_RT_ref ( ) const

Returns a reference to the dimensionless reference state Gibbs free energy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 298 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), and LatticePhase::m_g0_RT.

Referenced by LatticePhase::getChemPotentials(), LatticePhase::getGibbs_RT(), LatticePhase::getPureGibbs(), and LatticePhase::getStandardChemPotentials().

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 304 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), LatticePhase::m_g0_RT, and Phase::m_kk.

Referenced by LatticePhase::getGibbs_ref().

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

units = J/kmol

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 273 of file LatticePhase.cpp.

References Cantera::GasConstant, LatticePhase::getGibbs_RT_ref(), Phase::m_kk, and Phase::temperature().

const vector_fp & entropy_R_ref ( ) const

Returns a reference to the dimensionless reference state Entropy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 312 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), and LatticePhase::m_s0_R.

Referenced by LatticePhase::entropy_mole(), LatticePhase::getEntropy_R(), and LatticePhase::getPartialMolarEntropies().

const vector_fp & cp_R_ref ( ) const

Returns a reference to the dimensionless reference state Heat Capacity vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 318 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), and LatticePhase::m_cp0_R.

Referenced by LatticePhase::cp_mole(), and LatticePhase::getCp_R().

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method performs any initialization required after all species have been added. For example, it is used to resize internal work arrays that must have an entry for each species. This method is called from ThermoPhase::initThermoXML(), which is called from importPhase(), just prior to returning from the function, importPhase().

See Also
importCTML.cpp

Reimplemented from ThermoPhase.

Definition at line 324 of file LatticePhase.cpp.

References ThermoPhase::initThermo(), LatticePhase::m_cp0_R, LatticePhase::m_g0_RT, LatticePhase::m_h0_RT, Phase::m_kk, LatticePhase::m_Pref, LatticePhase::m_s0_R, LatticePhase::m_speciesMolarVolume, and ThermoPhase::refPressure().

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from ThermoPhase.

Definition at line 337 of file LatticePhase.cpp.

References XML_Node::attrib(), XML_Node::child(), XML_Node::findByAttr(), XML_Node::findByName(), Cantera::get_XML_NameID(), ctml::getFloat(), XML_Node::hasChild(), XML_Node::id(), ThermoPhase::initThermoXML(), Cantera::lowercase(), Phase::m_kk, LatticePhase::m_site_density, LatticePhase::m_speciesMolarVolume, XML_Node::root(), and Phase::speciesNames().

void setParameters ( int  n,
doublereal *const  c 
)
virtual

Set the equation of state parameters from the argument list.

Set equation of state parameters.

Parameters
nnumber of parameters. Must be one
carray of n coefficients c[0] = The bulk lattice density (kmol m-3)
Deprecated:
Use setMolarDensity()

Reimplemented from ThermoPhase.

Definition at line 403 of file LatticePhase.cpp.

References LatticePhase::m_site_density, Phase::setMolarDensity(), and Cantera::warn_deprecated().

void getParameters ( int &  n,
doublereal *const  c 
) const
virtual

Get the equation of state parameters in a vector.

Parameters
nnumber of parameters
carray of n coefficients

For this phase:

Reimplemented from ThermoPhase.

Definition at line 410 of file LatticePhase.cpp.

References Phase::molarDensity(), and Cantera::warn_deprecated().

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.

For this phase, the molar density of the phase is specified in this block, and is a required parameter.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

eosdata points to the thermo block, and looks like this:

<phase id="O_lattice_SiO2" >
<thermo model="Lattice">
<site_density units="kmol/m^3"> 73.159 </site_density>
<vacancy_species> "O_vacancy" </vacancy_species>
</thermo>
</phase>

Reimplemented from ThermoPhase.

Definition at line 418 of file LatticePhase.cpp.

References XML_Node::_require(), ctml::getChildValue(), ctml::getFloat(), LatticePhase::m_site_density, and LatticePhase::m_vacancy.

void _updateThermo ( ) const
private

Update the species reference state thermodynamic functions.

The polynomials for the standard state functions are only reevaluated if the temperature has changed.

Definition at line 390 of file LatticePhase.cpp.

References LatticePhase::m_cp0_R, LatticePhase::m_g0_RT, LatticePhase::m_h0_RT, Phase::m_kk, LatticePhase::m_s0_R, ThermoPhase::m_spthermo, LatticePhase::m_tlast, Phase::temperature(), and SpeciesThermo::update().

Referenced by LatticePhase::cp_R_ref(), LatticePhase::enthalpy_RT_ref(), LatticePhase::entropy_R_ref(), LatticePhase::getGibbs_RT_ref(), and LatticePhase::gibbs_RT_ref().

Member Data Documentation

doublereal m_Pref
protected
doublereal m_Pcurrent
protected

The current pressure.

Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure. The density variable which is inherited as part of the State class, m_dens, is always kept current whenever T, P, or X[] change.

Definition at line 914 of file LatticePhase.h.

Referenced by LatticePhase::getChemPotentials(), LatticePhase::getEnthalpy_RT(), LatticePhase::getGibbs_RT(), LatticePhase::getPureGibbs(), LatticePhase::operator=(), LatticePhase::pressure(), and LatticePhase::setPressure().

doublereal m_tlast
mutableprotected

Current value of the temperature (Kelvin)

Definition at line 917 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), and LatticePhase::operator=().

vector_fp m_h0_RT
mutableprotected

Reference state enthalpies / RT.

Definition at line 920 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), LatticePhase::enthalpy_RT_ref(), LatticePhase::initThermo(), and LatticePhase::operator=().

vector_fp m_cp0_R
mutableprotected

Temporary storage for the reference state heat capacities.

Definition at line 923 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), LatticePhase::cp_R_ref(), LatticePhase::initThermo(), and LatticePhase::operator=().

vector_fp m_g0_RT
mutableprotected

Temporary storage for the reference state gibbs energies.

Definition at line 926 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), LatticePhase::getGibbs_RT_ref(), LatticePhase::gibbs_RT_ref(), LatticePhase::initThermo(), and LatticePhase::operator=().

vector_fp m_s0_R
mutableprotected

Temporary storage for the reference state entropies at the current temperature.

Definition at line 929 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), LatticePhase::entropy_R_ref(), LatticePhase::initThermo(), and LatticePhase::operator=().

std::string m_vacancy
protected

String name for the species which represents a vacancy in the lattice.

This string is currently unused

Definition at line 936 of file LatticePhase.h.

Referenced by LatticePhase::operator=(), and LatticePhase::setParametersFromXML().

vector_fp m_speciesMolarVolume
protected
doublereal m_site_density
protected

Site Density of the lattice solid.

Currently, this is imposed as a function of T, P or composition

units are kmol m-3

Definition at line 950 of file LatticePhase.h.

Referenced by LatticePhase::calcDensity(), LatticePhase::initThermoXML(), LatticePhase::operator=(), LatticePhase::setParameters(), and LatticePhase::setParametersFromXML().


The documentation for this class was generated from the following files: