45 double h_nonideal =
hresid();
46 return h_ideal + h_nonideal;
54 double s_nonideal =
sresid();
55 return s_ideal + s_nonideal;
64 for (
size_t k = 0; k <
m_kk; k++) {
65 g[k] =
RT() * (g[k] + tmp);
78 for (
size_t k = 0; k <
m_kk; k++) {
87 for (
size_t k = 0; k <
m_kk; k++) {
95 "To be removed after Cantera 3.2. Use getStandardChemPotentials instead.");
99 for (
size_t k = 0; k <
m_kk; k++) {
107 for (
size_t i = 0; i <
m_kk; i++) {
119 for (
size_t i = 0; i <
m_kk; i++) {
139 scale(gibbsrt.begin(), gibbsrt.end(), g,
RT());
159 for (
size_t i = 0; i <
m_kk; i++) {
186 updateMixingExpressions();
222 if (
iState_ < FLUID_LIQUID_0) {
227 if (
iState_ >= FLUID_LIQUID_0) {
237 if (
iState_ >= FLUID_LIQUID_0) {
258 updateMixingExpressions();
265 for (
size_t k = 0; k <
m_kk; k++) {
292 double lpr = -0.8734*tt*tt - 3.4522*tt + 4.2918;
293 return pcrit*exp(lpr);
302 int phase,
double rhoguess)
306 if (rhoguess == -1.0) {
308 if (TKelvin > tcrit) {
311 if (phase == FLUID_GAS || phase == FLUID_SUPERCRIT) {
313 }
else if (phase >= FLUID_LIQUID_0) {
315 rhoguess = mmw / lqvol;
325 double molarVolBase = mmw / rhoguess;
326 double molarVolLast = molarVolBase;
331 double molarVolSpinodal = vc;
335 bool gasSide = molarVolBase > vc;
344 for (
int n = 0; n < 200; n++) {
349 double dpdVBase =
dpdVCalc(TKelvin, molarVolBase, presBase);
354 if (dpdVBase >= 0.0) {
355 if (TKelvin > tcrit) {
357 "T > tcrit unexpectedly");
364 if (molarVolBase >= vc) {
365 molarVolSpinodal = molarVolBase;
366 molarVolBase = 0.5 * (molarVolLast + molarVolSpinodal);
368 molarVolBase = 0.5 * (molarVolLast + molarVolSpinodal);
371 if (molarVolBase <= vc) {
372 molarVolSpinodal = molarVolBase;
373 molarVolBase = 0.5 * (molarVolLast + molarVolSpinodal);
375 molarVolBase = 0.5 * (molarVolLast + molarVolSpinodal);
382 if (fabs(presBase-presPa) < 1.0E-30 + 1.0E-8 * presPa) {
388 double dpdV = dpdVBase;
390 dpdV = dpdVBase * 1.5;
395 double delMV = - (presBase - presPa) / dpdV;
396 if ((!gasSide || delMV < 0.0) && fabs(delMV) > 0.2 * molarVolBase) {
397 delMV = delMV / fabs(delMV) * 0.2 * molarVolBase;
400 if (TKelvin < tcrit) {
402 if (delMV < 0.0 && -delMV > 0.5 * (molarVolBase - molarVolSpinodal)) {
403 delMV = - 0.5 * (molarVolBase - molarVolSpinodal);
406 if (delMV > 0.0 && delMV > 0.5 * (molarVolSpinodal - molarVolBase)) {
407 delMV = 0.5 * (molarVolSpinodal - molarVolBase);
412 molarVolLast = molarVolBase;
413 molarVolBase += delMV;
415 if (fabs(delMV/molarVolBase) < 1.0E-14) {
421 if (molarVolBase <= 0.0) {
422 molarVolBase = std::min(1.0E-30, fabs(delMV*1.0E-4));
427 double densBase = 0.0;
431 "Process did not converge");
433 densBase = mmw / molarVolBase;
438void MixtureFugacityTP::updateMixingExpressions()
443 double& densGasGuess,
double& liqGRT,
double& gasGRT)
446 double densLiq =
densityCalc(TKelvin, pres, FLUID_LIQUID_0, densLiqGuess);
447 if (densLiq <= 0.0) {
450 densLiqGuess = densLiq;
455 double densGas =
densityCalc(TKelvin, pres, FLUID_GAS, densGasGuess);
456 if (densGas <= 0.0) {
459 "Error occurred trying to find gas density at (T,P) = {} {}",
464 densGasGuess = densGas;
479 return FLUID_SUPERCRIT;
481 double tmid = tcrit - 100.;
489 double densLiqTmid = mmw / molVolLiqTmid;
490 double densGasTmid = mmw / molVolGasTmid;
491 double densMidTmid = 0.5 * (densLiqTmid + densGasTmid);
492 double rhoMid = rhocrit + (t - tcrit) * (rhocrit - densMidTmid) / (tcrit - tmid);
495 int iStateGuess = FLUID_LIQUID_0;
497 iStateGuess = FLUID_GAS;
499 double molarVol = mmw / rho;
502 double dpdv =
dpdVCalc(t, molarVol, presCalc);
525 double molarVolLiquid;
530 double& molarVolLiquid)
560 double RhoLiquidGood = mw / volLiquid;
561 double RhoGasGood = pres * mw / (
GasConstant * TKelvin);
562 double delGRT = 1.0E6;
563 double liqGRT, gasGRT;
567 double presLiquid = 0.;
569 double presBase = pres;
570 bool foundLiquid =
false;
571 bool foundGas =
false;
573 double densLiquid =
densityCalc(TKelvin, presBase, FLUID_LIQUID_0, RhoLiquidGood);
574 if (densLiquid > 0.0) {
577 RhoLiquidGood = densLiquid;
580 for (
int i = 0; i < 50; i++) {
582 densLiquid =
densityCalc(TKelvin, pres, FLUID_LIQUID_0, RhoLiquidGood);
583 if (densLiquid > 0.0) {
586 RhoLiquidGood = densLiquid;
593 double densGas =
densityCalc(TKelvin, pres, FLUID_GAS, RhoGasGood);
594 if (densGas <= 0.0) {
599 RhoGasGood = densGas;
602 for (
int i = 0; i < 50; i++) {
604 densGas =
densityCalc(TKelvin, pres, FLUID_GAS, RhoGasGood);
608 RhoGasGood = densGas;
614 if (foundGas && foundLiquid && presGas != presLiquid) {
615 pres = 0.5 * (presLiquid + presGas);
618 for (
int i = 0; i < 50; i++) {
619 densLiquid =
densityCalc(TKelvin, pres, FLUID_LIQUID_0, RhoLiquidGood);
620 if (densLiquid <= 0.0) {
624 RhoLiquidGood = densLiquid;
627 densGas =
densityCalc(TKelvin, pres, FLUID_GAS, RhoGasGood);
628 if (densGas <= 0.0) {
632 RhoGasGood = densGas;
635 if (goodGas && goodLiq) {
638 if (!goodLiq && !goodGas) {
639 pres = 0.5 * (pres + presLiquid);
641 if (goodLiq || goodGas) {
642 pres = 0.5 * (presLiquid + presGas);
646 if (!foundGas || !foundLiquid) {
647 warn_user(
"MixtureFugacityTP::calculatePsat",
648 "could not find a starting pressure; exiting.");
651 if (presGas != presLiquid) {
652 warn_user(
"MixtureFugacityTP::calculatePsat",
653 "could not find a starting pressure; exiting");
658 double presLast = pres;
659 double RhoGas = RhoGasGood;
660 double RhoLiquid = RhoLiquidGood;
663 for (
int i = 0; i < 20; i++) {
664 int stab =
corr0(TKelvin, pres, RhoLiquid, RhoGas, liqGRT, gasGRT);
667 delGRT = liqGRT - gasGRT;
668 double delV = mw * (1.0/RhoLiquid - 1.0/RhoGas);
669 double dp = - delGRT *
GasConstant * TKelvin / delV;
671 if (fabs(dp) > 0.1 * pres) {
679 }
else if (stab == -1) {
681 if (presLast > pres) {
682 pres = 0.5 * (presLast + pres);
687 }
else if (stab == -2) {
688 if (presLast < pres) {
689 pres = 0.5 * (presLast + pres);
695 molarVolGas = mw / RhoGas;
696 molarVolLiquid = mw / RhoLiquid;
698 if (fabs(delGRT) < 1.0E-8) {
704 molarVolGas = mw / RhoGas;
705 molarVolLiquid = mw / RhoLiquid;
713 molarVolLiquid = molarVolGas;
735 for (
size_t k = 0; k <
m_kk; k++) {
740 throw CanteraError(
"MixtureFugacityTP::_updateReferenceStateThermo",
741 "negative reference pressure");
749 calcCriticalConditions(pc, tc, vc);
756 calcCriticalConditions(pc, tc, vc);
763 calcCriticalConditions(pc, tc, vc);
770 calcCriticalConditions(pc, tc, vc);
777 calcCriticalConditions(pc, tc, vc);
782void MixtureFugacityTP::calcCriticalConditions(
double& pc,
double& tc,
double& vc)
const
788 double aAlpha,
double Vroot[3],
double an,
789 double bn,
double cn,
double dn,
double tc,
double vc)
const
791 fill_n(Vroot, 3, 0.0);
794 "negative temperature T = {}", T);
798 double xN = - bn /(3 * an);
801 double delta2 = (bn * bn - 3 * an * cn) / (9 * an * an);
806 double ratio1 = 3.0 * an * cn / (bn * bn);
808 if (fabs(ratio1) < 1.0E-7) {
810 if (fabs(ratio2) < 1.0E-5 && fabs(ratio3) < 1.0E-5) {
813 for (
int i = 0; i < 10; i++) {
814 double znew = zz / (zz - ratio2) - ratio3 / (zz + ratio1);
815 double deltaz = znew - zz;
817 if (fabs(deltaz) < 1.0E-14) {
827 int nSolnValues = -1;
828 double h2 = 4. * an * an * delta2 * delta2 * delta2;
830 delta = sqrt(delta2);
833 double h = 2.0 * an * delta * delta2;
834 double yN = 2.0 * bn * bn * bn / (27.0 * an * an) - bn * cn / (3.0 * an) + dn;
835 double disc = yN * yN - h2;
838 if (fabs(fabs(h) - fabs(yN)) < 1.0E-10) {
841 "value of yN and h are too high, unrealistic roots may be obtained");
849 }
else if (fabs(disc) < 1e-14) {
853 }
else if (disc > 1e-14) {
861 double tmpD = sqrt(disc);
862 double tmp1 = (- yN + tmpD) / (2.0 * an);
868 double tmp2 = (- yN - tmpD) / (2.0 * an);
874 double p1 = pow(tmp1, 1./3.);
875 double p2 = pow(tmp2, 1./3.);
876 double alpha = xN + sgn1 * p1 + sgn2 * p2;
880 }
else if (disc < 0.0) {
882 double val = acos(-yN / h);
883 double theta = val / 3.0;
884 double twoThirdPi = 2. *
Pi / 3.;
885 double alpha = xN + 2. * delta * cos(theta);
886 double beta = xN + 2. * delta * cos(theta + twoThirdPi);
887 double gamma = xN + 2. * delta * cos(theta + 2.0 * twoThirdPi);
892 for (
int i = 0; i < 3; i++) {
893 tmp = an * Vroot[i] * Vroot[i] * Vroot[i] + bn * Vroot[i] * Vroot[i] + cn * Vroot[i] + dn;
894 if (fabs(tmp) > 1.0E-4) {
895 for (
int j = 0; j < 3; j++) {
896 if (j != i && fabs(Vroot[i] - Vroot[j]) < 1.0E-4 * (fabs(Vroot[i]) + fabs(Vroot[j]))) {
897 warn_user(
"MixtureFugacityTP::solveCubic",
898 "roots have merged for T = {}, p = {}: {}, {}",
899 T, pres, Vroot[i], Vroot[j]);
904 }
else if (disc == 0.0) {
906 if (yN < 1e-18 && h < 1e-18) {
914 tmp = pow(yN/(2*an), 1./3.);
916 if (fabs(tmp - delta) > 1.0E-9) {
918 "Inconsistency in solver: solver is ill-conditioned.");
920 Vroot[1] = xN + delta;
921 Vroot[0] = xN - 2.0*delta;
923 tmp = pow(yN/(2*an), 1./3.);
925 if (fabs(tmp - delta) > 1.0E-9) {
927 "Inconsistency in solver: solver is ill-conditioned.");
930 Vroot[0] = xN + delta;
931 Vroot[1] = xN - 2.0*delta;
937 double res, dresdV = 0.0;
938 for (
int i = 0; i < nSolnValues; i++) {
939 for (
int n = 0; n < 20; n++) {
940 res = an * Vroot[i] * Vroot[i] * Vroot[i] + bn * Vroot[i] * Vroot[i] + cn * Vroot[i] + dn;
941 if (fabs(res) < 1.0E-14) {
944 dresdV = 3.0 * an * Vroot[i] * Vroot[i] + 2.0 * bn * Vroot[i] + cn;
945 double del = - res / dresdV;
947 if (fabs(del) / (fabs(Vroot[i]) + fabs(del)) < 1.0E-14) {
950 double res2 = an * Vroot[i] * Vroot[i] * Vroot[i] + bn * Vroot[i] * Vroot[i] + cn * Vroot[i] + dn;
951 if (fabs(res2) < fabs(res)) {
955 Vroot[i] += 0.1 * del;
958 if ((fabs(res) > 1.0E-14) && (fabs(res) > 1.0E-14 * fabs(dresdV) * fabs(Vroot[i]))) {
960 "root failed to converge for T = {}, p = {} with "
961 "V = {}", T, pres, Vroot[i]);
965 if (nSolnValues == 1) {
982 if (nSolnValues == 2 && delta > 1e-14) {
Header file for a derived class of ThermoPhase that handles non-ideal mixtures based on the fugacity ...
#define FLUID_UNSTABLE
Various states of the Fugacity object.
Base class for exceptions thrown by Cantera classes.
int iState_
Current state of the fluid.
int reportSolnBranchActual() const
Report the solution branch which the solution is actually on.
double enthalpy_mole() const override
Molar enthalpy. Units: J/kmol.
int standardStateConvention() const override
This method returns the convention used in specification of the standard state, of which there are cu...
vector< double > m_g0_RT
Temporary storage for dimensionless reference state Gibbs energies.
double critPressure() const override
Critical pressure (Pa).
double critDensity() const override
Critical density (kg/m3).
void getEntropy_R(double *sr) const override
Get the array of nondimensional Enthalpy functions for the standard state species at the current T an...
vector< double > m_h0_RT
Temporary storage for dimensionless reference state enthalpies.
void getGibbs_ref(double *g) const override
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
void getStandardChemPotentials(double *mu) const override
Get the array of chemical potentials at unit activity.
double critTemperature() const override
Critical temperature (K).
void getCp_R(double *cpr) const override
Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at ...
virtual double densSpinodalLiquid() const
Return the value of the density at the liquid spinodal point (on the liquid side) for the current tem...
virtual void _updateReferenceStateThermo() const
Updates the reference state thermodynamic functions at the current T of the solution.
double satPressure(double TKelvin) override
Calculate the saturation pressure at the current mixture content for the given temperature.
void getActivityConcentrations(double *c) const override
This method returns an array of generalized concentrations.
int solveCubic(double T, double pres, double a, double b, double aAlpha, double Vroot[3], double an, double bn, double cn, double dn, double tc, double vc) const
Solve the cubic equation of state.
double critCompressibility() const override
Critical compressibility (unitless).
void setPressure(double p) override
Set the internally stored pressure (Pa) at constant temperature and composition.
const vector< double > & gibbs_RT_ref() const
Returns the vector of nondimensional Gibbs free energies of the reference state at the current temper...
void getStandardVolumes_ref(double *vol) const override
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
virtual double densSpinodalGas() const
Return the value of the density at the gas spinodal point (on the gas side) for the current temperatu...
void getPureGibbs(double *gpure) const override
Get the pure Gibbs free energies of each species.
double calculatePsat(double TKelvin, double &molarVolGas, double &molarVolLiquid)
Calculate the saturation pressure at the current mixture content for the given temperature.
vector< double > moleFractions_
Storage for the current values of the mole fractions of the species.
void getEnthalpy_RT(double *hrt) const override
Get the nondimensional Enthalpy functions for the species at their standard states at the current T a...
void getEntropy_R_ref(double *er) const override
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
void setTemperature(const double temp) override
Set the temperature of the phase.
vector< double > m_s0_R
Temporary storage for dimensionless reference state entropies.
virtual double dpdVCalc(double TKelvin, double molarVol, double &presCalc) const
Calculate the pressure and the pressure derivative given the temperature and the molar volume.
void getGibbs_RT(double *grt) const override
Get the nondimensional Gibbs functions for the species at their standard states of solution at the cu...
double entropy_mole() const override
Molar entropy. Units: J/kmol/K.
virtual double densityCalc(double TKelvin, double pressure, int phaseRequested, double rhoguess)
Calculates the density given the temperature and the pressure and a guess at the density.
double critVolume() const override
Critical volume (m3/kmol).
virtual double psatEst(double TKelvin) const
Estimate for the saturation pressure.
void getCp_R_ref(double *cprt) const override
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
void getStandardVolumes(double *vol) const override
Get the molar volumes of each species in their standard states at the current T and P of the solution...
virtual double sresid() const
Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture.
void getIntEnergy_RT(double *urt) const override
Returns the vector of nondimensional internal Energies of the standard state at the current temperatu...
int forcedState_
Force the system to be on a particular side of the spinodal curve.
virtual double liquidVolEst(double TKelvin, double &pres) const
Estimate for the molar volume of the liquid.
int forcedSolutionBranch() const
Report the solution branch which the solution is restricted to.
void compositionChanged() override
Apply changes to the state which are needed after the composition changes.
vector< double > m_cp0_R
Temporary storage for dimensionless reference state heat capacities.
int corr0(double TKelvin, double pres, double &densLiq, double &densGas, double &liqGRT, double &gasGRT)
Utility routine in the calculation of the saturation pressure.
void setForcedSolutionBranch(int solnBranch)
Set the solution branch to force the ThermoPhase to exist on one branch or another.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
virtual double hresid() const
Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture.
void getGibbs_RT_ref(double *grt) const override
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
double z() const
Calculate the value of z.
int phaseState(bool checkState=false) const
Returns the Phase State flag for the current state of the object.
void getEnthalpy_RT_ref(double *hrt) const override
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
virtual void update(double T, double *cp_R, double *h_RT, double *s_R) const
Compute the reference-state properties for all species.
An error indicating that an unimplemented function has been called.
size_t m_kk
Number of species in the phase.
void setState_TD(double t, double rho)
Set the internally stored temperature (K) and density (kg/m^3)
double temperature() const
Temperature (K).
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
virtual void setDensity(const double density_)
Set the internally stored density (kg/m^3) of the phase.
void getMoleFractions(double *const x) const
Get the species mole fraction vector.
double sum_xlogx() const
Evaluate .
double moleFraction(size_t k) const
Return the mole fraction of a single species.
virtual double density() const
Density (kg/m^3).
virtual void compositionChanged()
Apply changes to the state which are needed after the composition changes.
virtual void setTemperature(double temp)
Set the internally stored temperature of the phase (K).
double mean_X(const double *const Q) const
Evaluate the mole-fraction-weighted mean of an array Q.
virtual double pressure() const
Return the thermodynamic pressure (Pa).
virtual void setState_TP(double t, double p)
Set the temperature (K) and pressure (Pa)
double RT() const
Return the Gas Constant multiplied by the current temperature.
double m_tlast
last value of the temperature processed by reference state
virtual void getActivityCoefficients(double *ac) const
Get the array of non-dimensional molar-based activity coefficients at the current solution temperatur...
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
virtual double refPressure() const
Returns the reference pressure in Pa.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
virtual double gibbs_mole() const
Molar Gibbs function. Units: J/kmol.
This file contains definitions for utility functions and text for modules, inputfiles and logging,...
void scale(InputIter begin, InputIter end, OutputIter out, S scale_factor)
Multiply elements of an array by a scale factor.
const double GasConstant
Universal Gas Constant [J/kmol/K].
void warn_user(const string &method, const string &msg, const Args &... args)
Print a user warning raised from method as CanteraWarning.
Namespace for the Cantera kernel.
const int cSS_CONVENTION_TEMPERATURE
Standard state uses the molar convention.
void warn_deprecated(const string &source, const AnyBase &node, const string &message)
A deprecation warning for syntax in an input file.
Contains declarations for string manipulation functions within Cantera.
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...