8 #ifndef CT_SEMICONDPHASE_H 9 #define CT_SEMICONDPHASE_H 18 const int cElectron = 0;
33 "To be removed after Cantera 2.3.");
44 m_press = right.m_press;
58 "To be removed after Cantera 2.3.");
59 return cSemiconductor;
61 virtual std::string
type()
const {
62 return "Semiconductor";
73 eosdata.
_require(
"model",
"Semiconductor");
74 doublereal rho =
getFloat(eosdata,
"density",
"-");
76 m_bandgap =
getFloat(eosdata,
"bandgap",
"-");
77 doublereal e_mass =
getFloat(eosdata,
"electron_mass",
"-");
78 doublereal h_mass =
getFloat(eosdata,
"hole_mass",
"-");
79 doublereal e_donor =
getFloat(eosdata,
"donor_energy",
"-");
80 doublereal n_donor =
getFloat(eosdata,
"donor_concentration",
"-");
81 doublereal e_acceptor =
getFloat(eosdata,
"acceptor_energy",
"-");
82 doublereal n_acceptor =
getFloat(eosdata,
"acceptor_concentration",
"-");
83 setEffectiveMasses(e_mass, h_mass);
84 setDonorDoping(n_donor, e_donor);
85 setAcceptorDoping(n_acceptor, e_acceptor);
88 void setEffectiveMasses(doublereal e_mass, doublereal h_mass) {
93 void setDonorDoping(doublereal n_donor, doublereal e_donor) {
98 void setAcceptorDoping(doublereal n_acceptor, doublereal e_acceptor) {
99 m_nacceptor = n_acceptor;
100 m_eacceptor = e_acceptor;
103 doublereal effectiveMass_e()
const {
107 doublereal effectiveMass_h()
const {
111 doublereal fermiLevel()
const {
112 return m_fermi_level;
116 doublereal nc()
const;
117 doublereal nv()
const;
123 doublereal
ec()
const;
124 doublereal ev()
const;
125 doublereal bandgap()
const {
135 doublereal m_nacceptor;
136 doublereal m_eacceptor;
137 doublereal m_fermi_level;
138 doublereal m_bandgap;
Class SemiconductorPhase represents electrons and holes in a semiconductor.
virtual int eosType() const
Equation of state type flag.
CTML ("Cantera Markup Language") is the variant of XML that Cantera uses to store data...
ThermoPhase & operator=(const ThermoPhase &right)
virtual std::string type() const
String indicating the thermodynamic model implemented.
virtual void getChemPotentials(doublereal *mu) const
Get the species chemical potentials. Units: J/kmol.
Class XML_Node is a tree-based representation of the contents of an XML file.
void warn_deprecated(const std::string &method, const std::string &extra)
Print a warning indicating that method is deprecated.
virtual void setPressure(doublereal pres)
Set the internally stored pressure (Pa) at constant temperature and composition.
Base class for a phase with thermodynamic properties.
void _require(const std::string &a, const std::string &v) const
Require that the current XML node have an attribute named by the first argument, a, and that this attribute have the the string value listed in the second argument, v.
virtual void setParametersFromXML(const XML_Node &eosdata)
Set equation of state parameter values from XML entries.
virtual doublereal pressure() const
Return the thermodynamic pressure (Pa).
std::vector< double > vector_fp
Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.
doublereal getFloat(const XML_Node &parent, const std::string &name, const std::string &type)
Get a floating-point value from a child element.
virtual ThermoPhase * duplMyselfAsThermoPhase() const
Duplication routine for objects which inherit from ThermoPhase.
Namespace for the Cantera kernel.
Header file for class ThermoPhase, the base class for phases with thermodynamic properties, and the text for the Module thermoprops (see Thermodynamic Properties and class ThermoPhase).
virtual void setDensity(const doublereal density_)
Set the internally stored density (kg/m^3) of the phase.