Cantera
2.0
|
Class PecosTransport implements mixture-averaged transport properties for ideal gas mixtures. More...
#include <PecosTransport.h>
Public Member Functions | |
virtual int | model () const |
Transport model. | |
virtual doublereal | viscosity () |
Viscosity of the mixture. | |
virtual void | getSpeciesViscosities (doublereal *const visc) |
Returns the pure species viscosities. | |
virtual void | getThermalDiffCoeffs (doublereal *const dt) |
Return the thermal diffusion coefficients. | |
virtual doublereal | thermalConductivity () |
The thermal conductivity is computed using the Wilke mixture rule. | |
virtual void | getBinaryDiffCoeffs (const size_t ld, doublereal *const d) |
Returns the matrix of binary diffusion coefficients [m^2/s]. | |
virtual void | getMixDiffCoeffs (doublereal *const d) |
Mixture-averaged diffusion coefficients [m^2/s]. | |
void | getMixDiffCoeffsMole (doublereal *const d) |
Returns the mixture-averaged diffusion coefficients [m^2/s]. | |
void | getMixDiffCoeffsMass (doublereal *const d) |
Returns the mixture-averaged diffusion coefficients [m^2/s]. | |
virtual void | getMobilities (doublereal *const mobil) |
Get the Electrical mobilities (m^2/V/s). | |
virtual void | update_T () |
virtual void | update_C () |
virtual void | getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes) |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. | |
virtual bool | initGas (GasTransportParams &tr) |
Initialize the transport object. | |
void | read_blottner_transport_table () |
Reads the transport table specified (currently defaults to internal file) | |
struct GasTransportData | getGasTransportData (int) |
Return a structure containing all of the pertinent parameters about a species that was used to construct the Transport properties in this object. | |
Public Member Functions inherited from Transport | |
Transport (thermo_t *thermo=0, size_t ndim=1) | |
Constructor. | |
virtual | ~Transport () |
Destructor. | |
Transport (const Transport &right) | |
Copy Constructor for the Transport object. | |
Transport & | operator= (const Transport &right) |
Assignment operator. | |
virtual Transport * | duplMyselfAsTransport () const |
Duplication routine for objects which inherit from Transport. | |
thermo_t & | thermo () |
Phase object. | |
bool | ready () |
Returns true if the transport manager is ready for use. | |
void | setNDim (const int ndim) |
Set the number of dimensions to be expected in flux expressions. | |
size_t | nDim () const |
Return the number of dimensions in flux expressions. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies() | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
virtual doublereal | getElectricConduct () |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1) | |
virtual void | getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current) |
Compute the electric current density in A/m^2. | |
virtual void | getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes) |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. | |
virtual void | getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. | |
virtual void | getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential. | |
virtual void | getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const cfluxes) |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes) |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getMultiDiffCoeffs (const size_t ld, doublereal *const d) |
Return the Multicomponent diffusion coefficients. Units: [m^2/s]. | |
virtual void | setParameters (const int type, const int k, const doublereal *const p) |
Set model parameters for derived classes. | |
void | setVelocityBasis (VelocityBasis ivb) |
Sets the velocity basis. | |
VelocityBasis | getVelocityBasis () const |
Gets the velocity basis. | |
virtual doublereal | bulkViscosity () |
The bulk viscosity in Pa-s. | |
virtual doublereal | ionConductivity () |
The ionic conductivity in 1/ohm/m. | |
virtual void | getSpeciesIonConductivity (doublereal *const ionCond) |
Returns the pure species ionic conductivity. | |
virtual void | mobilityRatio (double *mobRat) |
Returns the pointer to the mobility ratios of the species in the phase. | |
virtual void | getSpeciesMobilityRatio (double **mobRat) |
Returns the pure species limit of the mobility ratios. | |
virtual void | selfDiffusion (doublereal *const selfDiff) |
Returns the self diffusion coefficients of the species in the phase. | |
virtual void | getSpeciesSelfDiffusion (double **selfDiff) |
Returns the pure species self diffusion in solution of each species. | |
virtual doublereal | electricalConductivity () |
The electrical conductivity (Siemens/m). | |
virtual void | getFluidMobilities (doublereal *const mobil_f) |
Get the fluid mobilities (s kmol/kg). | |
virtual bool | initSolid (SolidTransportData &tr) |
Called by TransportFactory to set parameters. | |
virtual void | setThermo (thermo_t &thermo) |
Specifies the ThermPhase object. | |
Protected Member Functions | |
PecosTransport () | |
default constructor | |
Protected Member Functions inherited from Transport | |
virtual bool | initLiquid (LiquidTransportParams &tr) |
Called by TransportFactory to set parameters. | |
void | finalize () |
Enable the transport object for use. | |
Private Member Functions | |
doublereal | pressure_ig () const |
Calculate the pressure from the ideal gas law. | |
void | updateThermal_T () |
void | updateViscosity_T () |
Update the temperature-dependent viscosity terms. | |
void | updateCond_T () |
Update the temperature-dependent parts of the mixture-averaged thermal conductivity. | |
void | updateSpeciesViscosities () |
Update the pure-species viscosities. | |
void | updateDiff_T () |
Update the binary diffusion coefficients. | |
void | correctBinDiffCoeffs () |
Private Attributes | |
int | m_nsp |
vector_fp | m_mw |
std::vector< vector_fp > | m_visccoeffs |
std::vector< vector_fp > | m_condcoeffs |
std::vector< vector_fp > | m_diffcoeffs |
vector_fp | m_polytempvec |
double | a [500] |
double | b [500] |
double | c [500] |
DenseMatrix | m_bdiff |
vector_fp | m_visc |
vector_fp | m_sqvisc |
vector_fp | m_cond |
vector_fp | m_molefracs |
std::vector< std::vector< int > > | m_poly |
std::vector< vector_fp > | m_astar_poly |
std::vector< vector_fp > | m_bstar_poly |
std::vector< vector_fp > | m_cstar_poly |
std::vector< vector_fp > | m_om22_poly |
DenseMatrix | m_astar |
DenseMatrix | m_bstar |
DenseMatrix | m_cstar |
DenseMatrix | m_om22 |
DenseMatrix | m_phi |
DenseMatrix | m_wratjk |
DenseMatrix | m_wratkj1 |
vector_fp | m_zrot |
vector_fp | m_crot |
vector_fp | m_cinternal |
vector_fp | m_eps |
vector_fp | m_alpha |
vector_fp | m_dipoleDiag |
doublereal | m_temp |
doublereal | m_logt |
doublereal | m_kbt |
doublereal | m_t14 |
doublereal | m_t32 |
doublereal | m_sqrt_kbt |
doublereal | m_sqrt_t |
vector_fp | m_sqrt_eps_k |
DenseMatrix | m_log_eps_k |
vector_fp | m_frot_298 |
vector_fp | m_rotrelax |
doublereal | m_lambda |
doublereal | m_viscmix |
vector_fp | m_spwork |
bool | m_viscmix_ok |
bool | m_viscwt_ok |
bool | m_spvisc_ok |
bool | m_diffmix_ok |
bool | m_bindiff_ok |
bool | m_abc_ok |
bool | m_spcond_ok |
bool | m_condmix_ok |
int | m_mode |
DenseMatrix | m_epsilon |
DenseMatrix | m_diam |
DenseMatrix | incl |
bool | m_debug |
vector_fp | cv_rot |
vector_fp | cp_R |
vector_fp | cv_int |
Friends | |
class | TransportFactory |
Additional Inherited Members | |
Protected Attributes inherited from Transport | |
thermo_t * | m_thermo |
pointer to the object representing the phase | |
bool | m_ready |
true if finalize has been called | |
size_t | m_nsp |
Number of species. | |
size_t | m_nDim |
Number of dimensions used in flux expressions. | |
int | m_velocityBasis |
Velocity basis from which diffusion velocities are computed. | |
Class PecosTransport implements mixture-averaged transport properties for ideal gas mixtures.
Definition at line 43 of file PecosTransport.h.
|
protected |
default constructor
Definition at line 25 of file PecosTransport.cpp.
|
inlinevirtual |
Transport model.
The transport model is the set of equations used to compute the transport properties. This virtual method returns an integer flag that identifies the transport model implemented. The base class returns 0.
Reimplemented from Transport.
Definition at line 50 of file PecosTransport.h.
|
virtual |
Viscosity of the mixture.
The viscosity is computed using the Wilke mixture rule.
\[ \mu = \sum_k \frac{\mu_k X_k}{\sum_j \Phi_{k,j} X_j}. \]
Here \( \mu_k \) is the viscosity of pure species k, and
\[ \Phi_{k,j} = \frac{\left[1 + \sqrt{\left(\frac{\mu_k}{\mu_j}\sqrt{\frac{M_j}{M_k}}\right)}\right]^2} {\sqrt{8}\sqrt{1 + M_k/M_j}} \]
Reimplemented from Transport.
Definition at line 134 of file PecosTransport.cpp.
References DATA_PTR, Cantera::multiply(), PecosTransport::update_C(), PecosTransport::update_T(), and PecosTransport::updateViscosity_T().
|
inlinevirtual |
Returns the pure species viscosities.
The units are Pa-s and the length is the number of species
visc | Vector of viscosities |
Reimplemented from Transport.
Definition at line 60 of file PecosTransport.h.
References PecosTransport::update_T(), and PecosTransport::updateViscosity_T().
|
virtual |
Return the thermal diffusion coefficients.
Thermal diffusion is not considered in this pecos model.
For this approximation, these are all zero.
To include thermal diffusion, use transport manager MultiTransport instead. This methods fills out array dt with zeros.
Reimplemented from Transport.
Definition at line 249 of file PecosTransport.cpp.
|
virtual |
The thermal conductivity is computed using the Wilke mixture rule.
returns the mixture thermal conductivity
This is computed using the lumped model,
\[ k = k^{tr} + k^{ve} \]
where,
\[ k^{tr}= 5/2 \mu_s C_{v,s}^{trans} + \mu_s C_{v,s}^{rot} \]
and,
\[ k^{ve}= \mu_s C_{v,s}^{vib} + \mu_s C_{v,s}^{elec} \]
\[ \k = \sum_s \frac{k_s X_s}{\sum_j \Phi_{s,j} X_j}. \]
Here \( \k_s \) is the conductivity of pure species s, and
\[ \Phi_{s,j} = \frac{\left[1 + \sqrt{\left(\frac{\mu_k}{\mu_j}\sqrt{\frac{M_j}{M_s}}\right)}\right]^2} {\sqrt{8}\sqrt{1 + M_s/M_j}} \]
Reimplemented from Transport.
Definition at line 214 of file PecosTransport.cpp.
References DATA_PTR, Cantera::multiply(), PecosTransport::update_C(), PecosTransport::update_T(), and PecosTransport::updateCond_T().
|
virtual |
Returns the matrix of binary diffusion coefficients [m^2/s].
ld | Inner stride for writing the two dimension diffusion coefficients into a one dimensional vector |
d | Diffusion coefficient matrix (must be at least m_k * m_k in length. |
Reimplemented from Transport.
Definition at line 168 of file PecosTransport.cpp.
References PecosTransport::pressure_ig(), PecosTransport::update_T(), and PecosTransport::updateDiff_T().
|
virtual |
Mixture-averaged diffusion coefficients [m^2/s].
For the single species case or the pure fluid case the routine returns the self-diffusion coefficient. This is need to avoid a Nan result in the formula below.
Reimplemented from Transport.
Definition at line 316 of file PecosTransport.cpp.
References Transport::m_thermo, Phase::meanMolecularWeight(), PecosTransport::pressure_ig(), PecosTransport::update_C(), PecosTransport::update_T(), and PecosTransport::updateDiff_T().
Referenced by PecosTransport::getMobilities(), and PecosTransport::getSpeciesFluxes().
|
virtual |
Returns the mixture-averaged diffusion coefficients [m^2/s].
These are the coefficients for calculating the molar diffusive fluxes from the species mole fraction gradients, computed according to Eq. 12.176 in "Chemically Reacting Flow":
\[ D_{km}^* = \frac{1-X_k}{\sum_{j \ne k}^K X_j/\mathcal{D}_{kj}} \]
[out] | d | vector of mixture-averaged diffusion coefficients for each species, length m_nsp. |
Reimplemented from Transport.
Definition at line 353 of file PecosTransport.cpp.
References Transport::m_thermo, ThermoPhase::pressure(), PecosTransport::update_C(), PecosTransport::update_T(), and PecosTransport::updateDiff_T().
|
virtual |
Returns the mixture-averaged diffusion coefficients [m^2/s].
These are the coefficients for calculating the diffusive mass fluxes from the species mass fraction gradients, computed according to Eq. 12.178 in "Chemically Reacting Flow":
\[ \frac{1}{D_{km}} = \sum_{j \ne k}^K \frac{X_j}{\mathcal{D}_{kj}} + //! \frac{X_k}{1-Y_k} \sum_{j \ne k}^K \frac{Y_j}{\mathcal{D}_{kj}} \]
[out] | d | vector of mixture-averaged diffusion coefficients for each species, length m_nsp. |
Reimplemented from Transport.
Definition at line 383 of file PecosTransport.cpp.
References Transport::m_thermo, Phase::meanMolecularWeight(), ThermoPhase::pressure(), PecosTransport::update_C(), PecosTransport::update_T(), and PecosTransport::updateDiff_T().
|
virtual |
Get the Electrical mobilities (m^2/V/s).
This function returns the mobilities. In some formulations this is equal to the normal mobility multiplied by faraday's constant.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^e_k = \frac{F D_k}{R T} \]
mobil_e | Returns the mobilities of the species in array mobil_e . The array must be dimensioned at least as large as the number of species. |
Reimplemented from Transport.
Definition at line 187 of file PecosTransport.cpp.
References Cantera::Boltzmann, Phase::charge(), DATA_PTR, PecosTransport::getMixDiffCoeffs(), and Transport::m_thermo.
|
virtual |
This is called whenever a transport property is requested from ThermoSubstance if the temperature has changed since the last call to update_T.
Definition at line 421 of file PecosTransport.cpp.
References Cantera::Boltzmann, Cantera::fp2str(), Transport::m_thermo, and Phase::temperature().
Referenced by PecosTransport::getBinaryDiffCoeffs(), PecosTransport::getMixDiffCoeffs(), PecosTransport::getMixDiffCoeffsMass(), PecosTransport::getMixDiffCoeffsMole(), PecosTransport::getSpeciesFluxes(), PecosTransport::getSpeciesViscosities(), PecosTransport::thermalConductivity(), and PecosTransport::viscosity().
|
virtual |
This is called the first time any transport property is requested from Mixture after the concentrations have changed.
Definition at line 463 of file PecosTransport.cpp.
References DATA_PTR, Phase::getMoleFractions(), Transport::m_thermo, and Cantera::Tiny.
Referenced by PecosTransport::getMixDiffCoeffs(), PecosTransport::getMixDiffCoeffsMass(), PecosTransport::getMixDiffCoeffsMole(), PecosTransport::getSpeciesFluxes(), PecosTransport::thermalConductivity(), and PecosTransport::viscosity().
|
virtual |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned fluxes are kg m-2 s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ndim | The number of spatial dimensions (1, 2, or 3). |
grad_T | The temperature gradient (ignored in this model). |
ldx | Leading dimension of the grad_X array. The diffusive mass flux of species k is computed from \[ \vec{j}_k = -n M_k D_k \nabla X_k + \frac{\rho_k}{\rho} \sum_r n M_r D_r \nabla X_r \] |
This is neglective pressure, forced and thermal diffusion.
Reimplemented from Transport.
Definition at line 269 of file PecosTransport.cpp.
References DATA_PTR, PecosTransport::getMixDiffCoeffs(), Transport::m_thermo, Phase::massFractions(), Phase::molarDensity(), Phase::molecularWeights(), PecosTransport::update_C(), and PecosTransport::update_T().
|
virtual |
Initialize the transport object.
Here we change all of the internal dimensions to be sufficient. We get the object ready to do property evaluations.
tr | Transport parameters for all of the species in the phase. |
Reimplemented from Transport.
Definition at line 34 of file PecosTransport.cpp.
References GasTransportParams::alpha, GasTransportParams::condcoeffs, GasTransportParams::crot, GasTransportParams::diam, GasTransportParams::diffcoeffs, GasTransportParams::dipole, GasTransportParams::eps, GasTransportParams::epsilon, Transport::m_thermo, TransportParams::mode_, Phase::molecularWeights(), Phase::nSpecies(), GasTransportParams::poly, PecosTransport::read_blottner_transport_table(), DenseMatrix::resize(), TransportParams::thermo, GasTransportParams::visccoeffs, and GasTransportParams::zrot.
void read_blottner_transport_table | ( | ) |
Reads the transport table specified (currently defaults to internal file)
Reads the user-specified transport table, appending new species data and/or replacing default species data.
Definition at line 583 of file PecosTransport.cpp.
References Transport::m_thermo, and Phase::speciesName().
Referenced by PecosTransport::initGas().
|
read |
Return a structure containing all of the pertinent parameters about a species that was used to construct the Transport properties in this object.
k | Species number to obtain the properties from. |
|
inlineprivate |
Calculate the pressure from the ideal gas law.
Definition at line 197 of file PecosTransport.h.
References Cantera::GasConstant, Transport::m_thermo, Phase::molarDensity(), and Phase::temperature().
Referenced by PecosTransport::getBinaryDiffCoeffs(), and PecosTransport::getMixDiffCoeffs().
|
private |
Update the temperature-dependent viscosity terms.
Updates the array of pure species viscosities, and the weighting functions in the viscosity mixture rule. The flag m_visc_ok is set to true.
Definition at line 712 of file PecosTransport.cpp.
References Cantera::SqrtEight, and PecosTransport::updateSpeciesViscosities().
Referenced by PecosTransport::getSpeciesViscosities(), and PecosTransport::viscosity().
|
private |
Update the temperature-dependent parts of the mixture-averaged thermal conductivity.
Calculated as,
\[ k= \mu_s (5/2 * C_{v,s}^{trans} + C_{v,s}^{rot} + C_{v,s}^{vib} \]
Definition at line 500 of file PecosTransport.cpp.
References ThermoPhase::cv_vib(), and Transport::m_thermo.
Referenced by PecosTransport::thermalConductivity().
|
private |
Update the pure-species viscosities.
(Pa-s) = (kg/m/sec)
Using Blottner fit for viscosity. Defines kinematic viscosity of the form
\[ \mu_s\left(T\right) = 0.10 \exp\left(A_s\left(\log T\right)^2 + B_s\log T + C_s\right) \]
where \( A_s \), \( B_s \), and \( C_s \) are constants.
Definition at line 560 of file PecosTransport.cpp.
Referenced by PecosTransport::updateViscosity_T().
|
private |
Update the binary diffusion coefficients.
These are evaluated from the polynomial fits at unit pressure (1 Pa).
Definition at line 518 of file PecosTransport.cpp.
References Cantera::dot4(), and Cantera::dot5().
Referenced by PecosTransport::getBinaryDiffCoeffs(), PecosTransport::getMixDiffCoeffs(), PecosTransport::getMixDiffCoeffsMass(), and PecosTransport::getMixDiffCoeffsMole().