Cantera  2.3.0
Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
IonsFromNeutralVPSSTP Class Reference

#include <IonsFromNeutralVPSSTP.h>

Inheritance diagram for IonsFromNeutralVPSSTP:
[legend]
Collaboration diagram for IonsFromNeutralVPSSTP:
[legend]

Public Member Functions

void constructPhaseFile (std::string inputFile, std::string id)
 The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. More...
 
void constructPhaseXML (XML_Node &phaseNode, std::string id)
 Import and initialize an IonsFromNeutralVPSSTP phase specification in an XML tree into the current object. More...
 
void getDissociationCoeffs (vector_fp &fm_neutralMolec_ions, vector_fp &charges, std::vector< size_t > &neutMolIndex) const
 Get the Salt Dissociation Coefficients. More...
 
void getNeutralMolecMoleFractions (vector_fp &neutralMoleculeMoleFractions) const
 Return the current value of the neutral mole fraction vector. More...
 
void getNeutralMoleculeMoleGrads (const doublereal *const dx, doublereal *const dy) const
 Calculate neutral molecule mole fractions. More...
 
void getCationList (std::vector< size_t > &cation) const
 Get the list of cations in this object. More...
 
void getAnionList (std::vector< size_t > &anion) const
 Get the list of anions in this object. More...
 
virtual void initThermo ()
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
Constructors
 IonsFromNeutralVPSSTP ()
 
 IonsFromNeutralVPSSTP (const std::string &inputFile, const std::string &id="", ThermoPhase *neutralPhase=0)
 Construct and initialize an IonsFromNeutralVPSSTP object directly from an ASCII input file. More...
 
 IonsFromNeutralVPSSTP (XML_Node &phaseRoot, const std::string &id="", ThermoPhase *neutralPhase=0)
 Construct and initialize an IonsFromNeutralVPSSTP object directly from an XML database. More...
 
 IonsFromNeutralVPSSTP (const IonsFromNeutralVPSSTP &b)
 
IonsFromNeutralVPSSTPoperator= (const IonsFromNeutralVPSSTP &b)
 
virtual ~IonsFromNeutralVPSSTP ()
 
virtual ThermoPhaseduplMyselfAsThermoPhase () const
 Duplication routine for objects which inherit from ThermoPhase. More...
 
Utilities
virtual int eosType () const
 Equation of state type flag. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
Molar Thermodynamic Properties
virtual doublereal enthalpy_mole () const
 Return the Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and pressure.

virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
Partial Molar Properties of the Solution
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies for the species in the mixture. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
Setting the State

These methods set all or part of the thermodynamic state.

virtual void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 
virtual void calcIonMoleFractions (doublereal *const mf) const
 Calculate ion mole fractions from neutral molecule mole fractions. More...
 
virtual void calcNeutralMoleculeMoleFractions () const
 Calculate neutral molecule mole fractions. More...
 
- Public Member Functions inherited from GibbsExcessVPSSTP
 GibbsExcessVPSSTP ()
 
 GibbsExcessVPSSTP (const GibbsExcessVPSSTP &b)
 
GibbsExcessVPSSTPoperator= (const GibbsExcessVPSSTP &b)
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 The standard concentration \( C^0_k \) used to normalize the generalized concentration. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getActivities (doublereal *ac) const
 Get the array of non-dimensional activities (molality based for this class and classes that derive from it) at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getdlnActCoeffdT (doublereal *dlnActCoeffdT) const
 Get the array of temperature derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnX (doublereal *dlnActCoeffdlnX) const
 Get the array of log concentration-like derivatives of the log activity coefficients. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
virtual const vector_fpgetPartialMolarVolumesVector () const
 
virtual bool addSpecies (shared_ptr< Species > spec)
 
- Public Member Functions inherited from VPStandardStateTP
 VPStandardStateTP ()
 Constructor. More...
 
 VPStandardStateTP (const VPStandardStateTP &b)
 
VPStandardStateTPoperator= (const VPStandardStateTP &b)
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
virtual const vector_fpgetStandardVolumes () const
 
virtual void setTemperature (const doublereal temp)
 Set the temperature of the phase. More...
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual void setState_TP (doublereal T, doublereal pres)
 Set the temperature and pressure at the same time. More...
 
virtual doublereal pressure () const
 Returns the current pressure of the phase. More...
 
virtual void updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
void setVPSSMgr (VPSSMgr *vp_ptr)
 set the VPSS Mgr More...
 
VPSSMgrprovideVPSSMgr ()
 Return a pointer to the VPSSMgr for this phase. More...
 
void createInstallPDSS (size_t k, const XML_Node &s, const XML_Node *phaseNode_ptr)
 
PDSSprovidePDSS (size_t k)
 
const PDSSprovidePDSS (size_t k) const
 
virtual bool addSpecies (shared_ptr< Species > spec)
 Add a Species to this Phase. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
 ThermoPhase (const ThermoPhase &right)
 
ThermoPhaseoperator= (const ThermoPhase &right)
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (MultiSpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void installSlavePhases (XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &right)
 
Phaseoperator= (const Phase &right)
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Public Attributes

ThermoPhaseneutralMoleculePhase_
 This is a pointer to the neutral Molecule Phase. More...
 

Protected Member Functions

virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 
- Protected Member Functions inherited from GibbsExcessVPSSTP
double checkMFSum (const doublereal *const x) const
 utility routine to check mole fraction sum More...
 
- Protected Member Functions inherited from VPStandardStateTP
virtual void _updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
const vector_fpGibbs_RT_ref () const
 
- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Protected Attributes

IonSolnType_enumType ionSolnType_
 Ion solution type. More...
 
size_t numNeutralMoleculeSpecies_
 Number of neutral molecule species. More...
 
size_t indexSpecialSpecies_
 Index of special species. More...
 
size_t indexSecondSpecialSpecies_
 Index of special species. More...
 
vector_fp fm_neutralMolec_ions_
 Formula Matrix for composition of neutral molecules in terms of the molecules in this ThermoPhase. More...
 
std::vector< size_t > fm_invert_ionForNeutral
 Mapping between ion species and neutral molecule for quick invert. More...
 
vector_fp NeutralMolecMoleFractions_
 Mole fractions using the Neutral Molecule Mole fraction basis. More...
 
std::vector< size_t > cationList_
 List of the species in this ThermoPhase which are cation species. More...
 
std::vector< size_t > anionList_
 List of the species in this ThermoPhase which are anion species. More...
 
std::vector< size_t > passThroughList_
 List of the species in this ThermoPhase which are passed through to the neutralMoleculePhase ThermoPhase. More...
 
- Protected Attributes inherited from GibbsExcessVPSSTP
vector_fp moleFractions_
 Storage for the current values of the mole fractions of the species. More...
 
vector_fp lnActCoeff_Scaled_
 Storage for the current values of the activity coefficients of the species. More...
 
vector_fp dlnActCoeffdT_Scaled_
 Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species. More...
 
vector_fp d2lnActCoeffdT2_Scaled_
 Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species. More...
 
vector_fp dlnActCoeffdlnN_diag_
 Storage for the current derivative values of the gradients with respect to logarithm of the mole fraction of the log of the activity coefficients of the species. More...
 
vector_fp dlnActCoeffdlnX_diag_
 Storage for the current derivative values of the gradients with respect to logarithm of the mole fraction of the log of the activity coefficients of the species. More...
 
Array2D dlnActCoeffdlnN_
 Storage for the current derivative values of the gradients with respect to logarithm of the species mole number of the log of the activity coefficients of the species. More...
 
- Protected Attributes inherited from VPStandardStateTP
doublereal m_Pcurrent
 Current value of the pressure - state variable. More...
 
doublereal m_Tlast_ss
 The last temperature at which the standard statethermodynamic properties were calculated at. More...
 
doublereal m_Plast_ss
 The last pressure at which the Standard State thermodynamic properties were calculated at. More...
 
doublereal m_P0
 
std::unique_ptr< VPSSMgrm_VPSS_ptr
 Pointer to the VPSS manager that calculates all of the standard state info efficiently. More...
 
std::vector< std::unique_ptr< PDSS > > m_PDSS_storage
 Storage for the PDSS objects for the species. More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. Length equal to number of elements. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
vector_fp xMol_Ref
 Reference Mole Fraction Composition. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 

Private Member Functions

void initLengths ()
 Initialize lengths of local variables after all species have been identified. More...
 
void s_update_lnActCoeff () const
 Update the activity coefficients. More...
 
void s_update_dlnActCoeffdT () const
 Update the temperature derivative of the ln activity coefficients. More...
 
void s_update_dlnActCoeff () const
 Update the change in the ln activity coefficients. More...
 
void s_update_dlnActCoeff_dlnX_diag () const
 Update the derivative of the log of the activity coefficients wrt log(mole fraction) More...
 
void s_update_dlnActCoeff_dlnN_diag () const
 Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components. More...
 
void s_update_dlnActCoeff_dlnN () const
 Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components. More...
 

Private Attributes

GibbsExcessVPSSTPgeThermo
 
vector_fp y_
 
vector_fp dlnActCoeff_NeutralMolecule_
 
vector_fp dX_NeutralMolecule_
 
vector_fp m_work
 
bool IOwnNThermoPhase_
 If true then we own the underlying neutral Molecule Phase. More...
 
vector_fp moleFractionsTmp_
 Temporary mole fraction vector. More...
 
vector_fp muNeutralMolecule_
 Storage vector for the neutral molecule chemical potentials. More...
 
vector_fp lnActCoeff_NeutralMolecule_
 Storage vector for the neutral molecule ln activity coefficients. More...
 
vector_fp dlnActCoeffdT_NeutralMolecule_
 Storage vector for the neutral molecule d ln activity coefficients dT. More...
 
vector_fp dlnActCoeffdlnX_diag_NeutralMolecule_
 Storage vector for the neutral molecule d ln activity coefficients dX - diagonal component. More...
 
vector_fp dlnActCoeffdlnN_diag_NeutralMolecule_
 Storage vector for the neutral molecule d ln activity coefficients dlnN. More...
 
Array2D dlnActCoeffdlnN_NeutralMolecule_
 Storage vector for the neutral molecule d ln activity coefficients dlnN. More...
 

Detailed Description

The IonsFromNeutralVPSSTP is a derived class of ThermoPhase that handles the specification of the chemical potentials for ionic species, given a specification of the chemical potentials for the same phase expressed in terms of combinations of the ionic species that represent neutral molecules. It's expected that the neutral molecules will be represented in terms of an excess Gibbs free energy approximation that is a derivative of the GibbsExcessVPSSTP object. All of the excess Gibbs free energy formulations in this area employ symmetrical formulations.

Attention
This class currently does not have any test cases or examples. Its implementation may be incomplete, and future changes to Cantera may unexpectedly cause this class to stop working. If you use this class, please consider contributing examples or test cases. In the absence of new tests or examples, this class may be deprecated and removed in a future version of Cantera. See https://github.com/Cantera/cantera/issues/267 for additional information.

This class is used for molten salts.

This object actually employs 4 different mole fraction types.

  1. There is a mole fraction associated the the cations and anions and neutrals from this ThermoPhase object. This is the normal mole fraction vector for this object. Note, however, it isn't the appropriate mole fraction vector to use even for obtaining the correct ideal free energies of mixing.
  2. There is a mole fraction vector associated with the neutral molecule ThermoPhase object.
  3. There is a mole fraction vector associated with the cation lattice.
  4. There is a mole fraction vector associated with the anion lattice

This object can translate between any of the four mole fraction representations.

Definition at line 67 of file IonsFromNeutralVPSSTP.h.

Constructor & Destructor Documentation

◆ IonsFromNeutralVPSSTP() [1/3]

Default constructor

Definition at line 29 of file IonsFromNeutralVPSSTP.cpp.

Referenced by IonsFromNeutralVPSSTP::duplMyselfAsThermoPhase().

◆ IonsFromNeutralVPSSTP() [2/3]

IonsFromNeutralVPSSTP ( const std::string &  inputFile,
const std::string &  id = "",
ThermoPhase neutralPhase = 0 
)

Construct and initialize an IonsFromNeutralVPSSTP object directly from an ASCII input file.

This constructor is a shell around the routine initThermo(), with a reference to the XML database to get the info for the phase.

Parameters
inputFileName of the input file containing the phase XML data to set up the object
idID of the phase in the input file. Defaults to the empty string.
neutralPhaseThe object takes a neutralPhase ThermoPhase object as input. It can either take a pointer to an existing object in the parameter list, in which case it does not own the object, or it can construct a neutral Phase as a slave object, in which case, it does own the slave object, for purposes of who gets to destroy the object. If this parameter is zero, then a slave neutral phase object is created and used.

Definition at line 40 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::constructPhaseFile(), and IonsFromNeutralVPSSTP::IOwnNThermoPhase_.

◆ IonsFromNeutralVPSSTP() [3/3]

IonsFromNeutralVPSSTP ( XML_Node phaseRoot,
const std::string &  id = "",
ThermoPhase neutralPhase = 0 
)

Construct and initialize an IonsFromNeutralVPSSTP object directly from an XML database.

Parameters
phaseRootXML phase node containing the description of the phase
idid attribute containing the name of the phase. (default is the empty string)
neutralPhaseThe object takes a neutralPhase ThermoPhase object as input. It can either take a pointer to an existing object in the parameter list, in which case it does not own the object, or it can construct a neutral Phase as a slave object, in which case, it does own the slave object, for purposes of who gets to destroy the object. If this parameter is zero, then a slave neutral phase object is created and used.

Definition at line 56 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::constructPhaseXML(), and IonsFromNeutralVPSSTP::IOwnNThermoPhase_.

Member Function Documentation

◆ duplMyselfAsThermoPhase()

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplication routine for objects which inherit from ThermoPhase.

This virtual routine can be used to duplicate ThermoPhase objects inherited from ThermoPhase even if the application only has a pointer to ThermoPhase to work with.

These routines are basically wrappers around the derived copy constructor.

Deprecated:
To be removed after Cantera 2.3 for all classes derived from ThermoPhase.

Reimplemented from GibbsExcessVPSSTP.

Definition at line 143 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP().

◆ constructPhaseFile()

void constructPhaseFile ( std::string  inputFile,
std::string  id 
)

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file.

Initialization of an IonsFromNeutralVPSSTP phase using an XML file

This routine is a precursor to initThermo(XML_Node*) routine, which does most of the work.

Parameters
inputFileXML file containing the description of the phase
idOptional parameter identifying the name of the phase. If none is given, the first XML phase element will be used.
Deprecated:
Use initThermoFile() instead. To be removed after Cantera 2.3.

Definition at line 148 of file IonsFromNeutralVPSSTP.cpp.

References ThermoPhase::initThermoFile(), and Cantera::warn_deprecated().

Referenced by IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP().

◆ constructPhaseXML()

void constructPhaseXML ( XML_Node phaseNode,
std::string  id 
)

Import and initialize an IonsFromNeutralVPSSTP phase specification in an XML tree into the current object.

Here we read an XML description of the phase. We import descriptions of the elements that make up the species in a phase. We import information about the species, including their reference state thermodynamic polynomials. We then freeze the state of the species.

Then, we read the species molar volumes from the XML tree to finish the initialization.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.
Deprecated:
Use importPhase() instead. To be removed after Cantera 2.3.

Definition at line 155 of file IonsFromNeutralVPSSTP.cpp.

References Cantera::importPhase(), and Cantera::warn_deprecated().

Referenced by IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP().

◆ eosType()

int eosType ( ) const
virtual

Equation of state type flag.

The base class returns zero. Subclasses should define this to return a unique non-zero value. Constants defined for this purpose are listed in mix_defs.h.

Deprecated:
To be removed after Cantera 2.3. Use type() instead.

Reimplemented from ThermoPhase.

Definition at line 164 of file IonsFromNeutralVPSSTP.cpp.

References Cantera::warn_deprecated().

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from ThermoPhase.

Definition at line 166 of file IonsFromNeutralVPSSTP.h.

◆ enthalpy_mole()

doublereal enthalpy_mole ( ) const
virtual

Return the Molar enthalpy. Units: J/kmol.

This is calculated from the partial molar enthalpies of the species.

Reimplemented from ThermoPhase.

Definition at line 173 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), and Phase::mean_X().

◆ entropy_mole()

doublereal entropy_mole ( ) const
virtual

Molar entropy. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 179 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::getPartialMolarEntropies(), and Phase::mean_X().

◆ gibbs_mole()

doublereal gibbs_mole ( ) const
virtual

Molar Gibbs function. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 185 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::getChemPotentials(), and Phase::mean_X().

◆ cp_mole()

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 191 of file IonsFromNeutralVPSSTP.cpp.

References ThermoPhase::getPartialMolarCp(), and Phase::mean_X().

◆ cv_mole()

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 197 of file IonsFromNeutralVPSSTP.cpp.

References ThermoPhase::getPartialMolarCp(), and Phase::mean_X().

◆ getActivityCoefficients()

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from GibbsExcessVPSSTP.

Definition at line 214 of file IonsFromNeutralVPSSTP.cpp.

References GibbsExcessVPSSTP::lnActCoeff_Scaled_, Phase::m_kk, and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

◆ getChemPotentials()

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 227 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, ThermoPhase::getChemPotentials(), ThermoPhase::getLnActivityCoefficients(), ThermoPhase::getStandardChemPotentials(), IonsFromNeutralVPSSTP::ionSolnType_, IonsFromNeutralVPSSTP::lnActCoeff_NeutralMolecule_, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::muNeutralMolecule_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, IonsFromNeutralVPSSTP::passThroughList_, ThermoPhase::RT(), and Cantera::SmallNumber.

Referenced by IonsFromNeutralVPSSTP::gibbs_mole().

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the molality-based activity coefficient wrt temperature

\[ \bar h_k(T,P) = h^o_k(T,P) - R T^2 \frac{d \ln(\gamma_k)}{dT} \]

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 279 of file IonsFromNeutralVPSSTP.cpp.

References GibbsExcessVPSSTP::dlnActCoeffdT_Scaled_, VPStandardStateTP::getEnthalpy_RT(), Phase::m_kk, ThermoPhase::RT(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), and Phase::temperature().

Referenced by IonsFromNeutralVPSSTP::enthalpy_mole().

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies for the species in the mixture.

Units (J/kmol)

For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the activity coefficient wrt temperature

\[ \bar s_k(T,P) = s^o_k(T,P) - R T^2 \frac{d \ln(\gamma_k)}{dT} - R \ln( \gamma_k X_k) - R T \frac{d \ln(\gamma_k) }{dT} \]

Parameters
sbarOutput vector of species partial molar entropies. Length: m_kk. Units: J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 298 of file IonsFromNeutralVPSSTP.cpp.

References GibbsExcessVPSSTP::dlnActCoeffdT_Scaled_, Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), GibbsExcessVPSSTP::lnActCoeff_Scaled_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), Cantera::SmallNumber, and Phase::temperature().

Referenced by IonsFromNeutralVPSSTP::entropy_mole().

◆ getdlnActCoeffds()

void getdlnActCoeffds ( const doublereal  dTds,
const doublereal *const  dXds,
doublereal *  dlnActCoeffds 
) const
virtual

Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.

Parameters
dTdsInput of temperature change along the path
dXdsInput vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one.
dlnActCoeffdsOutput vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m.

Reimplemented from ThermoPhase.

Definition at line 829 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, ThermoPhase::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, and IonsFromNeutralVPSSTP::passThroughList_.

◆ getdlnActCoeffdlnX_diag()

void getdlnActCoeffdlnX_diag ( doublereal *  dlnActCoeffdlnX_diag) const
virtual

Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.

For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnX_diagOutput vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk

Reimplemented from ThermoPhase.

Definition at line 319 of file IonsFromNeutralVPSSTP.cpp.

References GibbsExcessVPSSTP::dlnActCoeffdlnX_diag_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

◆ getdlnActCoeffdlnN_diag()

void getdlnActCoeffdlnN_diag ( doublereal *  dlnActCoeffdlnN_diag) const
virtual

Get the array of log species mole number derivatives of the log activity coefficients.

For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration- like variable (i.e. moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that species mole number variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnN_diagOutput vector of derivatives of the log Activity Coefficients. length = m_kk

Reimplemented from VPStandardStateTP.

Definition at line 329 of file IonsFromNeutralVPSSTP.cpp.

References GibbsExcessVPSSTP::dlnActCoeffdlnN_diag_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

◆ getdlnActCoeffdlnN()

void getdlnActCoeffdlnN ( const size_t  ld,
doublereal *const  dlnActCoeffdlnN 
)
virtual

Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.

Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.

units = 1 / kmol

dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the m-th species with respect to the number of moles of the k-th species.

\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]

Parameters
ldNumber of rows in the matrix
dlnActCoeffdlnNOutput vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk

Reimplemented from GibbsExcessVPSSTP.

Definition at line 339 of file IonsFromNeutralVPSSTP.cpp.

References GibbsExcessVPSSTP::dlnActCoeffdlnN_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

◆ getDissociationCoeffs()

void getDissociationCoeffs ( vector_fp fm_neutralMolec_ions,
vector_fp charges,
std::vector< size_t > &  neutMolIndex 
) const

Get the Salt Dissociation Coefficients.

Returns the vector of dissociation coefficients and vector of charges

Parameters
fm_neutralMolec_ionsReturns the formula matrix for the composition of neutral molecules in terms of the ions.
chargesReturns a vector containing the charges of all species in this phase
neutMolIndexReturns the vector fm_invert_ionForNeutral This is the mapping between ion species and neutral molecule for quick invert.

Definition at line 206 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, and Phase::m_speciesCharge.

Referenced by LTI_StefanMaxwell_PPN::getMatrixTransProp().

◆ getNeutralMolecMoleFractions()

void getNeutralMolecMoleFractions ( vector_fp neutralMoleculeMoleFractions) const
inline

Return the current value of the neutral mole fraction vector.

Parameters
neutralMoleculeMoleFractionsVector of neutral molecule mole fractions.

Definition at line 269 of file IonsFromNeutralVPSSTP.h.

References IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_.

Referenced by LTI_StefanMaxwell_PPN::getMatrixTransProp().

◆ getNeutralMoleculeMoleGrads()

void getNeutralMoleculeMoleGrads ( const doublereal *const  dx,
doublereal *const  dy 
) const

Calculate neutral molecule mole fractions.

This routine calculates the neutral molecule mole fraction given the vector of ion mole fractions, i.e., the mole fractions from this ThermoPhase. Note, this routine basically assumes that there is charge neutrality. If there isn't, then it wouldn't make much sense.

for the case of cIonSolnType_SINGLEANION, some slough in the charge neutrality is allowed. The cation number is followed, while the difference in charge neutrality is dumped into the anion mole number to fix the imbalance.

Parameters
dxinput vector of ion mole fraction gradients
dyoutput Vector of neutral molecule mole fraction gradients

Definition at line 486 of file IonsFromNeutralVPSSTP.cpp.

References AssertTrace, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, Cantera::npos, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.

Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds().

◆ getCationList()

void getCationList ( std::vector< size_t > &  cation) const
inline

Get the list of cations in this object.

Parameters
cationList of cations

Definition at line 294 of file IonsFromNeutralVPSSTP.h.

References IonsFromNeutralVPSSTP::cationList_.

Referenced by LTI_StefanMaxwell_PPN::getMatrixTransProp().

◆ getAnionList()

void getAnionList ( std::vector< size_t > &  anion) const
inline

Get the list of anions in this object.

Parameters
anionList of anions

Definition at line 302 of file IonsFromNeutralVPSSTP.h.

References IonsFromNeutralVPSSTP::anionList_.

Referenced by LTI_StefanMaxwell_PPN::getMatrixTransProp().

◆ calcDensity()

void calcDensity ( )
virtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.

Reimplemented from GibbsExcessVPSSTP.

Definition at line 351 of file IonsFromNeutralVPSSTP.cpp.

References Phase::density(), IonsFromNeutralVPSSTP::neutralMoleculePhase_, VPStandardStateTP::pressure(), Phase::setDensity(), ThermoPhase::setState_TP(), and Phase::temperature().

◆ calcIonMoleFractions()

void calcIonMoleFractions ( doublereal *const  mf) const
virtual

Calculate ion mole fractions from neutral molecule mole fractions.

Parameters
mfDump the mole fractions into this vector.

Definition at line 361 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, Phase::getMoleFractions(), Phase::m_kk, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, and IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_.

◆ calcNeutralMoleculeMoleFractions()

void calcNeutralMoleculeMoleFractions ( ) const
virtual

Calculate neutral molecule mole fractions.

This routine calculates the neutral molecule mole fraction given the vector of ion mole fractions, i.e., the mole fractions from this ThermoPhase. Note, this routine basically assumes that there is charge neutrality. If there isn't, then it wouldn't make much sense.

for the case of cIonSolnType_SINGLEANION, some slough in the charge neutrality is allowed. The cation number is followed, while the difference in charge neutrality is dumped into the anion mole number to fix the imbalance.

Definition at line 390 of file IonsFromNeutralVPSSTP.cpp.

References Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, and IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_.

Referenced by IonsFromNeutralVPSSTP::compositionChanged().

◆ initThermo()

void initThermo ( )
virtual

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().

Reimplemented from VPStandardStateTP.

Definition at line 565 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::initLengths(), VPStandardStateTP::initThermo(), and IonsFromNeutralVPSSTP::neutralMoleculePhase_.

◆ initThermoXML()

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from VPStandardStateTP.

Definition at line 627 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, Phase::charge(), XML_Node::child(), Phase::elementNames(), Cantera::factorOverlap(), IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, Cantera::get_XML_Node(), XML_Node::hasChild(), XML_Node::id(), IonsFromNeutralVPSSTP::indexSecondSpecialSpecies_, IonsFromNeutralVPSSTP::indexSpecialSpecies_, Phase::m_kk, Phase::nAtoms(), Phase::nElements(), IonsFromNeutralVPSSTP::neutralMoleculePhase_, Cantera::newPhase(), Cantera::npos, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, IonsFromNeutralVPSSTP::passThroughList_, and PDSS_IonsFromNeutral::specialSpecies_.

◆ initLengths()

void initLengths ( )
private

◆ s_update_lnActCoeff()

void s_update_lnActCoeff ( ) const
private

◆ s_update_dlnActCoeffdT()

void s_update_dlnActCoeffdT ( ) const
private

◆ s_update_dlnActCoeff()

void s_update_dlnActCoeff ( ) const
private

Update the change in the ln activity coefficients.

This function will be called to update the internally stored change of the natural logarithm of the activity coefficients w.r.t a change in state (temp, mole fraction, etc)

◆ s_update_dlnActCoeff_dlnX_diag()

void s_update_dlnActCoeff_dlnX_diag ( ) const
private

Update the derivative of the log of the activity coefficients wrt log(mole fraction)

This function will be called to update the internally stored derivative of the natural logarithm of the activity coefficients wrt logarithm of the mole fractions.

Definition at line 934 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, GibbsExcessVPSSTP::dlnActCoeffdlnX_diag_, IonsFromNeutralVPSSTP::dlnActCoeffdlnX_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, ThermoPhase::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, and IonsFromNeutralVPSSTP::passThroughList_.

Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag().

◆ s_update_dlnActCoeff_dlnN_diag()

void s_update_dlnActCoeff_dlnN_diag ( ) const
private

Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components.

This function will be called to update the internally stored derivative of the natural logarithm of the activity coefficients wrt logarithm of the number of moles of given species.

Definition at line 984 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, GibbsExcessVPSSTP::dlnActCoeffdlnN_diag_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, VPStandardStateTP::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, and IonsFromNeutralVPSSTP::passThroughList_.

Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag().

◆ s_update_dlnActCoeff_dlnN()

void s_update_dlnActCoeff_dlnN ( ) const
private

◆ compositionChanged()

void compositionChanged ( )
protectedvirtual

Apply changes to the state which are needed after the composition changes.

This function is called after any call to setMassFractions(), setMoleFractions(), or similar. For phases which need to execute a callback after any change to the composition, it should be done by overriding this function rather than overriding all of the composition- setting functions. Derived class implementations of compositionChanged() should call the parent class method as well.

Reimplemented from GibbsExcessVPSSTP.

Definition at line 556 of file IonsFromNeutralVPSSTP.cpp.

References IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), GibbsExcessVPSSTP::compositionChanged(), IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, and Phase::setMoleFractions().

Member Data Documentation

◆ ionSolnType_

IonSolnType_enumType ionSolnType_
protected

◆ numNeutralMoleculeSpecies_

size_t numNeutralMoleculeSpecies_
protected

◆ indexSpecialSpecies_

size_t indexSpecialSpecies_
protected

Index of special species.

Definition at line 413 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::initThermoXML().

◆ indexSecondSpecialSpecies_

size_t indexSecondSpecialSpecies_
protected

Index of special species.

Definition at line 416 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::initThermoXML().

◆ fm_neutralMolec_ions_

vector_fp fm_neutralMolec_ions_
protected

◆ fm_invert_ionForNeutral

std::vector<size_t> fm_invert_ionForNeutral
protected

Mapping between ion species and neutral molecule for quick invert.

fm_invert_ionForNeutral returns vector of int. Each element represents an ionic species and stores the value of the corresponding neutral molecule

For the case of fm_invert_simple_ = true, we assume that there is a quick way to invert the formula matrix so that we can quickly calculate the neutral molecule mole fraction given the ion mole fraction vector.

We assume that for a selected set of ion species, that that ion is only in the neutral molecule, jNeut.

therefore,

NeutralMolecMoleFractions_[jNeut] += moleFractions_[i_ion] / fmij;

where fmij is the number of ions in neutral molecule jNeut.

Thus, we formulate the neutral molecule mole fraction NeutralMolecMoleFractions_[] vector from this association. We further assume that there are no other associations. If fm_invert_simple_ is not true, then we need to do a formal inversion which takes a great deal of time and is not currently implemented.

Definition at line 451 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getDissociationCoeffs(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

◆ NeutralMolecMoleFractions_

vector_fp NeutralMolecMoleFractions_
mutableprotected

◆ cationList_

std::vector<size_t> cationList_
protected

◆ anionList_

std::vector<size_t> anionList_
protected

◆ passThroughList_

std::vector<size_t> passThroughList_
protected

◆ neutralMoleculePhase_

ThermoPhase* neutralMoleculePhase_

◆ IOwnNThermoPhase_

bool IOwnNThermoPhase_
private

If true then we own the underlying neutral Molecule Phase.

If this is false, then the neutral molecule phase is considered as a shallow pointer.

Definition at line 488 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP().

◆ moleFractionsTmp_

vector_fp moleFractionsTmp_
mutableprivate

Temporary mole fraction vector.

Definition at line 491 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::initLengths().

◆ muNeutralMolecule_

vector_fp muNeutralMolecule_
mutableprivate

Storage vector for the neutral molecule chemical potentials.

This vector is used as a temporary storage area when calculating the ion chemical potentials.

  • Units = Joules/kmol
  • Length = numNeutralMoleculeSpecies_

Definition at line 501 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::initLengths().

◆ lnActCoeff_NeutralMolecule_

vector_fp lnActCoeff_NeutralMolecule_
mutableprivate

Storage vector for the neutral molecule ln activity coefficients.

This vector is used as a temporary storage area when calculating the ion chemical potentials and activity coefficients

  • Units = none
  • Length = numNeutralMoleculeSpecies_

Definition at line 511 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::initLengths(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

◆ dlnActCoeffdT_NeutralMolecule_

vector_fp dlnActCoeffdT_NeutralMolecule_
mutableprivate

Storage vector for the neutral molecule d ln activity coefficients dT.

This vector is used as a temporary storage area when calculating the ion derivatives

  • Units = 1/Kelvin
  • Length = numNeutralMoleculeSpecies_

Definition at line 521 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::initLengths(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT().

◆ dlnActCoeffdlnX_diag_NeutralMolecule_

vector_fp dlnActCoeffdlnX_diag_NeutralMolecule_
mutableprivate

Storage vector for the neutral molecule d ln activity coefficients dX - diagonal component.

This vector is used as a temporary storage area when calculating the ion derivatives

  • Units = none
  • Length = numNeutralMoleculeSpecies_

Definition at line 532 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::initLengths(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().

◆ dlnActCoeffdlnN_diag_NeutralMolecule_

vector_fp dlnActCoeffdlnN_diag_NeutralMolecule_
mutableprivate

Storage vector for the neutral molecule d ln activity coefficients dlnN.

  • diagonal component

This vector is used as a temporary storage area when calculating the ion derivatives

  • Units = none
  • Length = numNeutralMoleculeSpecies_

Definition at line 543 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag().

◆ dlnActCoeffdlnN_NeutralMolecule_

Array2D dlnActCoeffdlnN_NeutralMolecule_
mutableprivate

Storage vector for the neutral molecule d ln activity coefficients dlnN.

This vector is used as a temporary storage area when calculating the ion derivatives

  • Units = none
  • Length = numNeutralMoleculeSpecies_

Definition at line 553 of file IonsFromNeutralVPSSTP.h.

Referenced by IonsFromNeutralVPSSTP::initLengths(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN().


The documentation for this class was generated from the following files: