============================== One-Dimensional Reacting Flows ============================== Domain1D -------- .. mat:class:: Domain1D(a, b, c) Domain1D class constructor. :param a: Integer type of domain. Possible values are * 1 - Stagnation Flow * 2 - Inlet1D * 3 - Surf1D * 4 - Symm1D * 5 - Outlet1D * 6 - Reacting Surface * 8 - Sim1D * -2 - OutletRes :param b: Instance of class :mat:func:`Solution` (for ``a == 1``) or :mat:func:`Interface` (for ``a == 6``). Not used for all other valid values of ``a``. :param c: Integer, either 1 or 2, indicating whether an axisymmetric stagnation flow or a free flame should be created. If not specified, defaults to 1. Ignored if ``a != 1``. .. mat:function:: AxiStagnFlow(gas) Get an axisymmetric stagnation flow domain. :param gas: Instance of class :mat:func:`Solution` :return: Domain1D instance representing an axisymmetric stagnation flow. .. mat:function:: AxisymmetricFlow(gas, id) Create an axisymmetric flow domain. :param gas: Instance of class :mat:func:`Solution` :param id: String, ID of the flow :return: Domain1D instance representing an axisymmetric flow. .. mat:function:: Inlet(id) Create an inlet domain. Note that an inlet can only be a terminal domain - it must be either the leftmost or rightmost domain in a stack. :param id: String name of the inlet. :return: Instance of class :mat:func:`Domain1D` representing an inlet. .. mat:function:: Outlet(id) Create an outlet domain. :param id: String ID of the outlet. :return: Instance of :mat:func:`Domain1D` representing an outlet. .. mat:function:: OutletRes(id) Create an outlet reservoir domain. :return: Instance of :mat:func:`Domain1D` representing an outlet reservoir. .. mat:function:: Surface(id, surface_mech) Create a surface domain. :param id: String ID of surface :param surface_mech: Instance of class :mat:func:`Interface` defining the surface reaction mechanism to be used. Optional. :return: Instance of class :mat:func:`Domain1D` representing a non-reacting or reacting surface. .. mat:function:: SymmPlane(id) Create a symmetry plane domain. :param id: String ID of the symmetry plane. :return: Instance of class :mat:func:`Domain1D` representing a symmetry plane. .. mat:function:: componentIndex(d, name) Get the index of a component given its name. :param d: Instance of class :mat:func:`Domain1D` :param name: String name of the component to look up. If a numeric value is passed, it will be returned. :return: Index of the component, or input numeric value. .. mat:function:: componentName(d, n) Get the name of a component given its index. :param d: Instance of class :mat:func:`Domain1D` :param n: Integer or vector of integers of components' names to get. :return: Cell array of component names. .. mat:function:: disableEnergy(d) Disable the energy equation. :param d: Instance of class :mat:func:`Domain1D` .. mat:function:: domainIndex(d) Get the domain index. :param d: Instance of class :mat:func:`Domain1D` :return: This function returns an integer flag denoting the location of the domain, beginning with 1 at the left. .. mat:function:: domainType(d) Get the type of domain. :param d: Instance of class :mat:func:`Domain1D` :return: This function returns an integer flag denoting the domain type. .. mat:function:: enableEnergy(d) Enable the energy equation. :param d: Instance of class :mat:func:`Domain1D` .. mat:function:: gridPoints(d, n) Get grid points from a domain. :param d: Instance of class :mat:func:`Domain1D` :param n: Optional, vector of grid points to be retrieved. :return: Vector of grid points. Length of ``n`` or :mat:func:`nPoints`. .. mat:function:: isFlow(d) Determine whether a domain is a flow. :param d: Instance of class :mat:func:`Domain1D` :return: 1 if the domain is a flow domain, and 0 otherwise. .. mat:function:: isInlet(d) Determine whether a domain is an inlet. :param d: Instance of class :mat:func:`Domain1D` :return: 1 if the domain is an inlet, and 0 otherwise. .. mat:function:: isSurface(d) Determine if a domain is a surface. :param d: Instance of class :mat:func:`Domain1D` :return: 1 if the domain is a surface, and 0 otherwise. .. mat:function:: massFlux(d) Get the mass flux. :param d: Instance of class :mat:func:`Domain1D` :return: The mass flux in the domain. .. mat:function:: massFraction(d, k) Get the mass fraction of a species given its integer index. This method returns the mass fraction of species ``k``, where k is the integer index of the species in the flow domain to which the boundary domain is attached. :param d: Instance of class :mat:func:`Domain1D` :param k: Integer species index :return: Mass fraction of species .. mat:function:: nComponents(d) Get the number of components. :param d: Instance of class :mat:func:`Domain1D` :return: Number of variables at each grid point .. mat:function:: nPoints(d) Get the number of grid points. :param d: Instance of class :mat:func:`Domain1D` :return: Integer number of grid points. .. mat:function:: set(a,varargin) Set properties of a Domain1D. The properties that may be set are * Temperature (T) * Pressure (P) * Mole Fractions (X) * Mass Flux (mdot) * tol * tol-time * grid * bounds * T_fixed * ID Either the full property name or the symbol may be specified. Mole and mass fractions must be input as vectors (either row or column) with length equal to the number of species. Examples:: >> set(gas,'Temperature',600.0); >> set(gas,'T',600.0); >> set(gas,'T',600.0,'P',2*oneatm,'Y',massfracs); >> set(gas,'X',ones(nSpecies(gas),1)); Alternatively, individual methods to set properties may be called (setTemperature, setMoleFractions, etc.) See also: :mat:func:`setBounds`, :mat:func:`setFixedTempProfile` :mat:func:`setID`, :mat:func:`setMdot`, :mat:func:`setMoleFractions`, :mat:func:`setPressure`, :mat:func:`setProfile`, :mat:func:`setSteadyTolerances`, :mat:func:`setTemperature`, :mat:func:`setTransientTolerances`, :mat:func:`setupGrid` :param a: Instance of class :mat:func:`Domain1D` :param varargin: Comma separated list of ``property, value`` pairs to be set .. mat:function:: setBounds(d, component, lower, upper) Set bounds on the solution components. :param d: Instance of class :mat:func:`Domain1D` :param component: String, component to set the bounds on :param lower: Lower bound :param upper: Upper bound .. mat:function:: setCoverageEqs(d, onoff) Enable or disable solving the coverage equations. :param d: Instance of class :mat:func:`Domain1D` :param onoff: String, one of ``'on'`` or ``'yes'`` to turn solving the coverage equations on. One of ``'off'`` or ``'no'`` to turn off the coverage equations. .. mat:function:: setFixedTempProfile(d, profile) Set a fixed temperature profile. Set the temperature profile to use when the energy equation is not being solved. The profile must be entered as an array of positions / temperatures, which may be in rows or columns. :param d: Instance of class :mat:func:`Domain1D` :param profile: n x 2 or 2 x n array of ``n`` points at which the temperature is specified. .. mat:function:: setID(d, id) Set the ID tag for a domain. :param d: Instance of class :mat:func:`Domain1D` :param id: String ID to assign .. mat:function:: setMdot(d, mdot) Set the mass flow rate. :param d: Instance of class :mat:func:`Domain1D` :param mdot: Mass flow rate .. mat:function:: setMoleFractions(d, x) Set the mole fractions. :param d: Instance of class :mat:func:`Domain1D` :param x: String specifying the species and mole fractions in the format ``'SPEC:X,SPEC2:X2'``. .. mat:function:: setPressure(d, p) Set the pressure. :param d: Instance of class :mat:func:`Domain1D` :param p: Pressure to be set. Units: Pa .. mat:function:: setProfile(d, n, p) Set the profile of a component. Convenience function to allow an instance of :mat:func:`Domain1D` to have a profile of its components set when it is part of a :mat:func:`Stack`. :param d: Instance of class :mat:func:`Domain1D` :param n: Integer index of component, vector of component indices, string of component name, or cell array of strings of component names. :param p: n x 2 array, whose columns are the relative (normalized) positions and the component values at those points. The number of positions ``n`` is arbitrary. .. mat:function:: setSteadyTolerances(d, component, rtol, atol) Set the steady-state tolerances. :param d: Instance of class :mat:func:`Domain1D` :param component: String or cell array of strings of component values whose tolerances should be set. If ``'default'`` is specified, the tolerance of all components will be set. :param rtol: Relative tolerance :param atol: Absolute tolerance .. mat:function:: setTemperature(d, t) Set the temperature. :param d: Instance of class :mat:func:`Domain1D` :param t: Temperature to be set. Units: K .. mat:function:: setTransientTolerances(d, component, rtol, atol) Set the transient tolerances. :param d: Instance of class :mat:func:`Domain1D` :param component: String or cell array of strings of component values whose tolerances should be set. If ``'default'`` is specified, the tolerance of all components will be set. :param rtol: Relative tolerance :param atol: Absolute tolerance .. mat:function:: setupGrid(d, grid) Set up the solution grid. :param d: Instance of class :mat:func:`Domain1D` :param grid: .. mat:function:: temperature(d) Get the boundary temperature. :param d: Instance of class :mat:func:`Domain1D` :return: Temperature. Units: K Stack ----- .. mat:class:: Stack(domains) Stack class constructor. A stack object is a container for one-dimensional domains, which are instances of class Domain1D. The domains are of two types - extended domains, and connector domains. See also: :mat:func:`Domain1D` :param domains: Vector of domain instances :return: Instance of class :mat:func:`Stack` .. mat:function:: CounterFlowDiffusionFlame(left, flow, right, tp_f, tp_o, oxidizer) Create a counter flow diffusion flame stack. :param left: Object representing the left inlet, which must be created using function :mat:func:`Inlet`. :param flow: Object representing the flow, created with function :mat:func:`AxisymmetricFlow`. :param right: Object representing the right inlet, which must be created using function :mat:func:`Inlet`. :param tp_f: Object representing the fuel inlet gas, instance of class :mat:func:`Solution`, and an ideal gas. :param tp_o: Object representing the oxidizer inlet gas, instance of class :mat:func:`Solution`, and an ideal gas. :param oxidizer: String representing the oxidizer species. Most commonly O2. :return: Instance of :mat:func:`Stack` object representing the left inlet, flow, and right inlet. .. mat:function:: FreeFlame(gas, id) Create a freely-propagating flat flame. :param gas: Instance of class :mat:func:`Solution` :param id: String, ID of the flow :return: Domain1D instance representing a freely propagating, adiabatic flame .. mat:function:: domainIndex(s, name) Get the index of a domain in a stack given its name. :param s: Instance of class :mat:func:`Stack` :param name: If double, the value is returned. Otherwise, the name is looked up and its index is returned. :return: Index of domain .. mat:function:: grid(s, name) Get the grid in one domain. :param s: Instance of class :mat:func:`Stack` :param name: Name of the domain for which the grid should be retrieved. :return: The grid in domain name .. mat:function:: plotSolution(s, domain, component) Plot a specified solution component. :param s: Instance of class :mat:func:`Stack` :param domain: Name of domain from which the component should be retrieved :param component: Name of the component to be plotted .. mat:function:: resid(s, domain, rdt, count) Get the residuals. :param s: Instance of class :mat:func:`Stack` :param domain: Name of the domain :param rdt: :param count: :returns: .. mat:function:: restore(s, fname, id) Restore a previously-saved solution. This method can be used to provide an initial guess for the solution. See also: :mat:func:`save` :param s: Instance of class :mat:func:`Stack` :param fname: File name of an XML file containing solution information :param id: ID of the element that should be restored .. mat:function:: save(s, fname, id, desc) Save a solution to a file. The output file is in a format that can be used by :mat:func:`restore` :param s: Instance of class :mat:func:`Stack` :param fname: File name where XML file should be written :param id: ID to be assigned to the XML element when it is written :param desc: Description to be written to the output file .. mat:function:: saveSoln(s, fname, id, desc) Save a solution to a file. The output file is in a format that can be used by :mat:func:`restore` :param s: Instance of class :mat:func:`Stack` :param fname: File name where XML file should be written :param id: ID to be assigned to the XML element when it is written :param desc: Description to be written to the output file .. mat:function:: setFlatProfile(s, domain, comp, v) Set a component to a value across the entire domain. :param s: Instance of class :mat:func:`Stack` :param domain: Integer ID of the domain :param comp: Component to be set :param v: Double, value to be set .. mat:function:: setMaxJacAge(s, ss_age, ts_age) Set the number of times the Jacobian will be used before it is recomputed. :param s: Instance of class :mat:func:`Stack` :param ss_age: Maximum age of the Jacobian for steady state analysis :param ts_age: Maximum age of the Jacobian for transient analysis. If not specified, defaults to ``ss_age``. .. mat:function:: setProfile(s, name, comp, p) Specify a profile for one component. The solution vector values for this component will be linearly interpolated from the discrete function defined by p(:,1) vs. p(:,2). Note that ``p(1,1) = 0.0`` corresponds to the leftmost grid point in the specified domain, and ``p(1,n) = 1.0`` corresponds to the rightmost grid point. This method can be called at any time, but is usually used to set the initial guess for the solution. Example (assuming ``s`` is an instance of :mat:func:`Stack`):: >> zr = [0 0.1 0.2 0.4 0.8 1]; >> v = [500 650 700 730 800 900]; >> setProfile(s, 1, 2, [zr, v]); :param s: Instance of class :mat:func:`Stack` :param name: Domain name :param comp: component number :param p: n x 2 array, whose columns are the relative (normalized) positions and the component values at those points. The number of positions ``n`` is arbitrary. .. mat:function:: setRefineCriteria(s, n, ratio, slope, curve, prune) Set the criteria used to refine the grid. :param s: Instance of class :mat:func:`Stack` :param n: Domain number :param ratio: Maximum size ratio between adjacent cells :param slope: Maximum relative difference in value between adjacent points :param curve: Maximum relative difference in slope between adjacent cells :param prune: Minimum value for slope or curve for which points will be retained in the grid. If the computed slope or curve value is below prune for all components, it will be deleted, unless either neighboring point is already marked for deletion. .. mat:function:: setTimeStep(s, stepsize, steps) Specify a sequence of time steps. :param stepsize: Initial step size (s) :param steps: Vector of number of steps to take before re-attempting solution of steady-state problem. For example, steps = [1, 2, 5, 10] would cause one time step to be taken first the the steady-state solution attempted. If this failed, two time steps would be taken, etc. .. mat:function:: setValue(s, n, comp, localPoint, v) Set the value of a single entry in the solution vector. Example (assuming ``s`` is an instance of :mat:func:`Stack`):: setValue(s, 3, 5, 1, 5.6) This sets component 5 at the leftmost point (local point 1) in domain 3 to the value 5.6. Note that the local index always begins at 1 at the left of each domain, independent of the global index of the point, which depends on the location of this domain in the stack. :param s: Instance of class :mat:func:`Stack` :param n: Domain number :param comp: Component number :param localPoint: Local index of the grid point in the domain :param v: Value .. mat:function:: solution(s, domain, component) Get a solution component in one domain. :param s: Instance of class :mat:func:`Stack` :param domain: String, name of the domain from which the solution is desired :param component: String, component for which the solution is desired. If omitted, solutions for all of the components will be returned in an :mat:func:`nPoints` x :mat:func:`nComponents` array. :return: Either an :mat:func:`nPoints` x 1 vector, or :mat:func:`nPoints` x :mat:func:`nComponents` array. .. mat:function:: solve(s, loglevel, refine_grid) Solve the problem. :param s: Instance of class :mat:func:`Stack` :param loglevel: Integer flag controlling the amount of diagnostic output. Zero supresses all output, and 5 produces very verbose output. :param refine_grid: Integer, 1 to allow grid refinement, 0 to disallow. .. mat:function:: writeStats(s) Print statistics for the current solution. Prints a summary of the number of function and Jacobian evaluations for each grid, and the CPU time spent on each one. :param s: Instance of class :mat:func:`Stack`