Cantera

Previous topic

diffusion_flame.py

Next topic

stagnation_flame.py

This Page

Warning

This documentation is for an old version of Cantera. You can find docs for newer versions here.

flame_fixed_T.py

"""
FIXED_T_FLAME - A burner-stabilized, premixed methane/air flat flame with
multicomponent transport properties and a specified temperature profile.
"""

import cantera as ct


# read temperature vs. position data from a file.
# The file is assumed to have one z, T pair per line, separated by a comma.
def getTempData(filename):
    # open the file containing the temperature data for reading
    lines = open(filename).readlines()

    # check for unix/Windows/Mac line ending problems
    if len(lines) == 1:
        print('Warning: only one line found.')
        print('Possible text file line-ending problem?')
        print('The one line found is: ', lines[0])

    z = []
    T = []

    for line in lines:
        if line[0] == '#':   # use '#' as the comment character
            continue

        try:
            zval, tval = line.split(',')
            z.append(float(zval))
            T.append(float(tval))
        except Exception:
            pass

    print('read {0} temperature values.'.format(len(z)))

    # convert z values into non-dimensional relative positions.
    n = len(z)
    zmax = z[n-1]
    for i in range(n):
        z[i] = z[i]/zmax

    return z,T


################################################################
# parameter values
p = ct.one_atm  # pressure
tburner = 373.7  # burner temperature
mdot = 0.04  # kg/m^2/s
comp = 'CH4:0.65, O2:1, N2:3.76'  # premixed gas composition

# The solution domain is chosen to be 1 cm, and a point very near the
# downstream boundary is added to help with the zero-gradient boundary
# condition at this boundary.
initial_grid = [0.0, 0.0025, 0.005, 0.0075, 0.0099, 0.01]  # m

tol_ss = [1.0e-5, 1.0e-9]  # [rtol atol] for steady-state problem
tol_ts = [1.0e-5, 1.0e-4]  # [rtol atol] for time stepping
loglevel = 1  # amount of diagnostic output (0 to 5)
refine_grid = True  # 'True' to enable refinement

################ create the gas object ########################
#
# This object will be used to evaluate all thermodynamic, kinetic, and
# transport properties. It is created with two transport managers, to enable
# switching from mixture-averaged to multicomponent transport on the last
# solution.
gas = ct.Solution('gri30.xml', 'gri30_mix')

# set its state to that of the unburned gas at the burner
gas.TPX = tburner, p, comp

# create the BurnerFlame object.
f = ct.BurnerFlame(gas=gas, grid=initial_grid)

# set the properties at the burner
f.burner.mdot = mdot
f.burner.X = comp
f.burner.T = tburner

# read in the fixed temperature profile
[zloc, tvalues] = getTempData('tdata.dat')

# set the temperature profile to the values read in
f.flame.set_fixed_temp_profile(zloc, tvalues)

f.flame.set_steady_tolerances(default=tol_ss)
f.flame.set_transient_tolerances(default=tol_ts)

# show the initial estimate for the solution
f.show_solution()

# don't solve the energy equation
f.energy_enabled = False

# first solve the flame with mixture-averaged transport properties
f.set_refine_criteria(ratio=3.0, slope=0.3, curve=1)
f.set_max_jac_age(50, 50)
f.set_time_step(1.0e-5, [1, 2, 5, 10, 20])

f.solve(loglevel, refine_grid)
f.save('ch4_flame_fixed_T.xml','mixav',
       'solution with mixture-averaged transport')

print('\n\n switching to multicomponent transport...\n\n')
f.transport_model = 'Multi'

f.set_refine_criteria(ratio=3.0, slope=0.1, curve=0.2)
f.solve(loglevel, refine_grid)
f.save('ch4_flame_fixed_T.xml','multi',
       'solution with  multicomponent transport')

# write the velocity, temperature, density, and mole fractions to a CSV file
f.write_csv('flame_fixed_T.csv', quiet=False)
f.show_stats()